1
|
Coffin JM, Kearney MF. False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. Annu Rev Virol 2024; 11:261-281. [PMID: 38976866 DOI: 10.1146/annurev-virology-111821-125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.
Collapse
Affiliation(s)
- John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA;
| | | |
Collapse
|
2
|
Prevalence of Human Polyomavirus BK Virus in Prostate Cancer Patients and Benign Prostatic Hyperplasia: A Cross-sectional Study on Prostate Patients Referred to Imam Khomeini Hospital in Ahvaz Between 2015 and 2017. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Human polyomavirus BK virus (BKV) belongs to the Polyomaviridae family and seems to be a drastic virus in prostate cancer (PCa) etiology. BK virus induces oncogenesis via the expression of large tumor antigen (LTAg) and small tumor antigen (stAg). Also, BKV infection seems to play an essential role in prostate cancer development. Objectives: In this study was aimed to study the prevalence of BKV in benign and cancerous prostate tissues. Methods: In this study, 100 formalin-fixed paraffin-embedded tissues of PCa specimens and benign prostatic hyperplasia (BPH) were collected. The DNA was extracted from tissue samples, and the BKV DNA was investigated using a semi-nested polymerase chain reaction (PCR). The MEGA 6.0 software was used for phylogenetic analysis to assemble the viral genome. A phylogenetic tree was constructed by neighbor-joining analysis with 1,000 replicates of the bootstrap resampling test. Results: The BKV DNA was found in 66% (33/50) of patients with PCa and 36% (18/50) of patients with benign prostatic hyperplasia (BPH) (P = 0.003). The frequency of BKV DNA in different classes of Gleason score (5 - 10) was not significant (0.094). The distribution of BKV DNA among different age groups was not significant (P = 0.086). Conclusions: High frequency of BKV infection was detected in patients with PCa compared to patients with BPH (P = 0.003), and the coexistence of BKV DNA was confirmed in 51% (51/100) of tissue samples, which were confirmed to be subtype 1 of BKV infection.
Collapse
|
3
|
Malekshahi SS, Yavarian J, Salehi R, Babaei F, Ahmadi SA, Ghavami N, Naseri M, Hosseini M, Mokhtari-Azad T, Shafiei-Jandaghi NZ. Epstein-Barr and BK virus in cancerous and noncancerous prostate tissue. Future Virol 2020. [DOI: 10.2217/fvl-2019-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We conducted a case–control study to examine the presence of BK virus (BKV) and Epstein barr virus (EBV) genome in prostate specimens of benign prostatic hyperplasia (BPH) and prostate cancer (PCa) in Iran. Materials & methods: 64 paraffin-embedded PCa specimens were included as case subjects and 57 paraffin-embedded BPH specimens as control. DNA extraction was carried out by phenol–chloroform technique and PCR for detection of BKV and EBV. Results: 90 (73%) out of 121 specimens were collected by prostatectomy and 31 (27%) by transurethral resection of the prostate. BKV was not detected in any of the samples and one positive EBV was reported. Conclusion: These findings provide further evidence against a causative role of BKV and EBV in the development of PCa.
Collapse
Affiliation(s)
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Robabeh Salehi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Ali Ahmadi
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Rodríguez H, Levican J, Muñoz JP, Carrillo D, Acevedo ML, Gaggero A, León O, Gheit T, Espinoza-Navarro O, Castillo J, Gallegos I, Tommasino M, Aguayo F. Viral infections in prostate carcinomas in Chilean patients. Infect Agent Cancer 2015; 10:27. [PMID: 26330890 PMCID: PMC4556319 DOI: 10.1186/s13027-015-0024-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A few viruses have been detected in prostate cancer, however their role in the development of this malignancy has not been determined. The aim of this study was to analyze the presence and functionality of human papillomavirus (HPV) and polyomaviruses (BKPyV and JCPyV) in prostate carcinomas in Chilean patients. METHODS Sixty-nine primary prostate carcinomas were analyzed for the presence of HPV, BKPyV and JCPyV using standard polymerase chain reaction protocols. In addition, when samples were positive for HPyV, large T antigen (TAg) transcripts were analyzed using reverse transcriptase PCR. RESULTS HPV and JCPyV were not detected in any specimens (0/69, 0 %); whereas, BKPyV was detected in 6/69 PCas (8.7 %). We did not find a statistically significant association between the presence of BKPyV and age (p = 0.198) or Gleason score (p = 0.268). In addition, 2/6 (33 %) BKPyV positive specimens showed detectable levels of TAg transcripts. CONCLUSIONS There was no association between HPV or JCPyV presence and prostate cancer development. The presence of BKPyV in a small subset of prostate carcinomas in Chilean patients could indicate that this virus plays a potential role in prostate cancer development and requires further investigation.
Collapse
Affiliation(s)
- Hector Rodríguez
- />Anatomy and Development Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Levican
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan P. Muñoz
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Diego Carrillo
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica L. Acevedo
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aldo Gaggero
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Oscar León
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tarik Gheit
- />Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Jorge Castillo
- />Pathological Anatomy Department, Barros Luco-Trudeau Hospital, Universidad de Chile, Santiago, Chile
| | - Iván Gallegos
- />Pathological Anatomy Service, Clinical Hospital, Universidad de Chile, Santiago, Chile
| | - Massimo Tommasino
- />Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Francisco Aguayo
- />Virology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Delbue S, Ferrante P, Provenzano M. Polyomavirus BK and prostate cancer: an unworthy scientific effort? Oncoscience 2014; 1:296-303. [PMID: 25594022 PMCID: PMC4278296 DOI: 10.18632/oncoscience.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
The Polyomavirus BK (BKV) has been proposed to be one of the possible co-factors in the genesis of prostate cancer (PCa) but, so far, the only convincing suggestion is the hypothesis of a “hit and run” carcinogenic mechanism induced by the virus at early stages of this disease. To support this hypothesis we conducted an updated systematic review on previous studies regarding the association between BKV and PCa, in order to interpret the contrasting results and to explore whether there might be a significant virus-disease link. This updated analysis provides evidence for a significant link between BKV expression and PCa development, particularly between the BKV infection and the cancer risk. Forthcoming scientific efforts that take cue from this study might overcome the atavistic and fruitless debate regarding the BKV-PCa association.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Italy
| | - Maurizio Provenzano
- Oncology Unit, Division of Urology, University Hospital of Zurich, Switzerland
| |
Collapse
|
6
|
The saga of XMRV: a virus that infects human cells but is not a human virus. Emerg Microbes Infect 2014; 3:e. [PMID: 26038516 PMCID: PMC4008767 DOI: 10.1038/emi.2014.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/17/2023]
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) was discovered in 2006 in a search for a viral etiology of human prostate cancer (PC). Substantial interest in XMRV as a potentially new pathogenic human retrovirus was driven by reports that XMRV could be detected in a significant percentage of PC samples, and also in tissues from patients with chronic fatigue syndrome (CFS). After considerable controversy, etiologic links between XMRV and these two diseases were disproven. XMRV was determined to have arisen during passage of a human PC tumor in immunocompromised nude mice, by activation and recombination between two endogenous murine leukemia viruses from cells of the mouse. The resulting XMRV had a xentropic host range, which allowed it replicate in the human tumor cells in the xenograft. This review describes the discovery of XMRV, and the molecular and virological events leading to its formation, XMRV infection in animal models and biological effects on infected cells. Lessons from XMRV for other searches of viral etiologies of cancer are discussed, as well as cautions for researchers working on human tumors or cell lines that have been passed through nude mice, includingpotential biohazards associated with XMRV or other similar xenotropic murine leukemia viruses (MLVs).
Collapse
|
7
|
Delbue S, Matei DV, Carloni C, Pecchenini V, Carluccio S, Villani S, Tringali V, Brescia A, Ferrante P. Evidence supporting the association of polyomavirus BK genome with prostate cancer. Med Microbiol Immunol 2013; 202:425-30. [PMID: 23821367 DOI: 10.1007/s00430-013-0304-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/19/2013] [Indexed: 01/29/2023]
Abstract
Prostate cancer (PCA) is the most frequent cancer in men. Exposure to infectious agents has been reported to have a putative role in tumorigenesis. Among the infectious agents, convincing evidence has been accumulated about the human polyomavirus BK (BKV). Tissue fresh specimens, serum, and urine samples were collected from 124 consecutive patients, 56 with PCA and 68 with benign prostatic hyperplasia (BPH). Quantitative PCR assays were used to assess the presence of BKV and JC virus (JCV) genomes. BKV-positive tissue specimens were found in 32.1 and 22.1 % of PCA and BPH patients, respectively; in PCA group the number of positive BKV specimens/patients was significantly higher than in BPH group (3.06 vs. 1.73, p = 0.02). JCV genome was found in the biopsies collected from 28.1 and 24.2 % of PCA and BPH patients, respectively, with no significant difference in the rate of JCV specimens/patients between PCA and BPH groups. Our results support the putative causal association between BKV genome and PCA. Further studies are required to demonstrate the direct pathogenetic role of BKV in the PCA occurrence and progression in order to clear the tempting way of vaccine prophylaxis.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36, 20123, Milan, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Delviks-Frankenberry K, Cingoz O, Coffin JM, Pathak VK. Recombinant origin, contamination, and de-discovery of XMRV. Curr Opin Virol 2012; 2:499-507. [PMID: 22818188 PMCID: PMC3426297 DOI: 10.1016/j.coviro.2012.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/20/2023]
Abstract
The discovery and de-discovery of the xenotropic murine leukemia virus-related virus (XMRV) has been a tumultuous roller-coaster ride for scientists and patients. The initial associations of XMRV with chronic fatigue syndrome and prostate cancer, while providing much hope and optimism, have now been discredited and/or retracted following overwhelming evidence that (1) numerous patient cohorts from around the world are XMRV-negative, (2) the initial reports of XMRV-positive patients were due to contamination with mouse DNA, XMRV plasmid DNA, or virus from the 22Rv1 cell line and (3) XMRV is a laboratory-derived virus generated in the mid 1990s through recombination during passage of a prostate tumor xenograft in immuno-compromised mice. While these developments are disappointing to scientists and patients, they provide a valuable road map of potential pitfalls to the would-be microbe hunters.
Collapse
Affiliation(s)
| | - Oya Cingoz
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - John M. Coffin
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - Vinay K. Pathak
- Viral Mutation Section, NCI, HIV DRP, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
9
|
Curriu M, Carrillo J, Massanella M, Garcia E, Cunyat F, Peña R, Wienberg P, Carrato C, Areal J, Bofill M, Clotet B, Blanco J, Cabrera C. Susceptibility of human lymphoid tissue cultured ex vivo to xenotropic murine leukemia virus-related virus (XMRV) infection. PLoS One 2012; 7:e37415. [PMID: 22616002 PMCID: PMC3353939 DOI: 10.1371/journal.pone.0037415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/19/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) was generated after a recombination event between two endogenous murine leukemia viruses during the production of a prostate cancer cell line. Although the associations of the XMRV infection with human diseases appear unlikely, the XMRV is a retrovirus of undefined pathogenic potential, able to replicate in human cells in vitro. Since recent studies using animal models for infection have yielded conflicting results, we set out an ex vivo model for XMRV infection of human tonsillar tissue to determine whether XMRV produced by 22Rv1 cells is able to replicate in human lymphoid organs. Tonsil blocks were infected and infection kinetics and its pathogenic effects were monitored RESULTS XMRV, though restricted by APOBEC, enters and integrates into the tissue cells. The infection did not result in changes of T or B-cells, immune activation, nor inflammatory chemokines. Infectious viruses could be recovered from supernatants of infected tonsils by reinfecting DERSE XMRV indicator cell line, although these supernatants could not establish a new infection in fresh tonsil culture, indicating that in our model, the viral replication is controlled by innate antiviral restriction factors. CONCLUSIONS Overall, the replication-competent retrovirus XMRV, present in a high number of laboratories, is able to infect human lymphoid tissue and produce infectious viruses, even though they were unable to establish a new infection in fresh tonsillar tissue. Hereby, laboratories working with cell lines producing XMRV should have knowledge and understanding of the potential biological biohazardous risks of this virus.
Collapse
Affiliation(s)
- Marta Curriu
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Marta Massanella
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Elisabet Garcia
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Francesc Cunyat
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Ruth Peña
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Peter Wienberg
- Department of Otorhinolaryngology, Hospital Universitari Sant Joan de Déu, Passeig Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Joan Areal
- Urology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Margarita Bofill
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
- Lluita contra la SIDA Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| |
Collapse
|
10
|
Del Prete GQ, Kearney MF, Spindler J, Wiegand A, Chertova E, Roser JD, Estes JD, Hao XP, Trubey CM, Lara A, Lee K, Chaipan C, Bess JW, Nagashima K, Keele BF, Macallister R, Smedley J, Pathak VK, KewalRamani VN, Coffin JM, Lifson JD. Restricted replication of xenotropic murine leukemia virus-related virus in pigtailed macaques. J Virol 2012; 86:3152-66. [PMID: 22238316 PMCID: PMC3302341 DOI: 10.1128/jvi.06886-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 11/20/2022] Open
Abstract
Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >10(10) RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread.
Collapse
Affiliation(s)
| | - Mary F. Kearney
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jon Spindler
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | | | | | | | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | - Chawaree Chaipan
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | - Rhonda Macallister
- Laboratory Animal Science Program, SAIC—Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Science Program, SAIC—Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John M. Coffin
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|