1
|
In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity. Toxins (Basel) 2021; 13:toxins13080565. [PMID: 34437436 PMCID: PMC8402560 DOI: 10.3390/toxins13080565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and resulting in the accumulation of cAMP. Apart from this classical model, PTx also activates some receptors and can affect various ADP ribosylation- and adenylate cyclase-independent signalling pathways. Due to its potent ADP-ribosylation properties, PTx has been used in many research areas. Initially the research primarily focussed on the in vivo effects of the toxin, including histamine sensitization, insulin secretion and leukocytosis. Nowadays, PTx is also used in toxicology research, cell signalling, research involving the blood–brain barrier, and testing of neutralizing antibodies. However, the most important area of use is testing of acellular pertussis vaccines for the presence of residual PTx. In vivo models and in vitro assays for PTx often reflect one of the toxin’s properties or details of its mechanism. Here, the established and novel in vivo and in vitro methods used to evaluate PTx are reviewed, their mechanisms, characteristics and limitations are described, and their application for regulatory and research purposes are considered.
Collapse
|
2
|
Vega SC, Leiss V, Piekorz R, Calaminus C, Pexa K, Vuozzo M, Schmid AM, Devanathan V, Kesenheimer C, Pichler BJ, Beer-Hammer S, Nürnberg B. Selective protection of murine cerebral G i/o-proteins from inactivation by parenterally injected pertussis toxin. J Mol Med (Berl) 2019; 98:97-110. [PMID: 31811326 DOI: 10.1007/s00109-019-01854-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Pertussis toxin (PTX) is a potent virulence factor in patients suffering from whooping cough, but in its detoxified version, it is applied for vaccination. It is thought to contribute to the pathology of the disease including various CNS malfunctions. Based on its enzymatic activity, PTX disrupts GPCR-dependent signaling by modifying the α-subunit of heterotrimeric Gi/o-proteins. It is also extensively used as a research tool to study neuronal functions in vivo and in vitro. However, data demonstrating the penetration of PTX from the blood into the brain are missing. Here, we examined the Gαi/o-modifying activity of PTX in murine brains after its parenteral application. Ex vivo biodistribution analysis of [124I]-PTX displayed poor distribution to the brain while relatively high concentrations were visible in the pancreas. PTX affected CNS and endocrine functions of the pancreas as shown by open-field and glucose tolerance tests, respectively. However, while pancreatic islet Gαi/o-proteins were modified, their neuronal counterparts in brain tissue were resistant towards PTX as indicated by different autoradiographic and immunoblot SDS-PAGE analyses. In contrast, PTX easily modified brain Gαi/o-proteins ex vivo. An attempt to increase BBB permeability by application of hypertonic mannitol did not show PTX activity on neuronal G proteins. Consistent with these findings, in vivo MRI analysis did not point to an increased blood-brain barrier (BBB) permeability following PTX treatment. Our data demonstrate that the CNS is protected from PTX. Thus, we hypothesize that the BBB hinders PTX to penetrate into the CNS and to deliver its enzymatic activity to brain Gαi/o-proteins. KEY MESSAGES: i.p. applied PTX is poorly retained in the brain while reaches high concentration in the pancreas. Pancreatic islet Gαi/o- but not cerebral Gαi/o-proteins are modified by i.p. administered PTX. Gαi/o-proteins from isolated cerebral cell membranes were easily modified by PTX ex vivo. CNS is protected from i.p. administered PTX. PTX does not permeabilize the BBB.
Collapse
Affiliation(s)
- Salvador Castaneda Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center for Pharmacogenomics and Drug Research, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Roland Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
| | - Katja Pexa
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marta Vuozzo
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
| | - Vasudharani Devanathan
- Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center for Pharmacogenomics and Drug Research, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Neuroscience Lab, Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India
| | - Christian Kesenheimer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen and University Medical Center, Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center for Pharmacogenomics and Drug Research, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Interfaculty Center for Pharmacogenomics and Drug Research, Eberhard Karls University Tübingen, 72074, Tübingen, Germany.
- Department of Toxicology, Institute for Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Tübingen, and University Medical Center, Tübingen, Germany.
| |
Collapse
|
3
|
Pan L, Liu D, Zhao L, Wang L, Xin M, Li X. Retracted
: Long noncoding RNA MALAT1 alleviates lipopolysaccharide‐induced inflammatory injury by upregulating microRNA‐19b in murine chondrogenic ATDC5 cells. J Cell Biochem 2018; 119:10165-10175. [DOI: 10.1002/jcb.27357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Pan
- Department of Rheumatology Qilu Hospital of Shandong University Jinan China
- Department of Rheumatology and Clinical Immunology The Affiliated Hospital of Qingdao University Qingdao China
| | - Deheng Liu
- Department of Hand and Foot Surgery Qilu Hospital of Shandong University (Qingdao) Qingdao China
| | - Lei Zhao
- Department of Rheumatology and Clinical Immunology The Affiliated Hospital of Qingdao University Qingdao China
| | - Liqin Wang
- Department of Rheumatology and Clinical Immunology The Affiliated Hospital of Qingdao University Qingdao China
| | - Miaomiao Xin
- Department of Rheumatology and Clinical Immunology The Affiliated Hospital of Qingdao University Qingdao China
| | - Xingfu Li
- Department of Rheumatology Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
4
|
Pertussis toxin targets the innate immunity through DAP12, FcRγ, and MyD88 adaptor proteins. Immunobiology 2017; 222:664-671. [DOI: 10.1016/j.imbio.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022]
|
5
|
Villarino Romero R, Hasan S, Faé K, Holubova J, Geurtsen J, Schwarzer M, Wiertsema S, Osicka R, Poolman J, Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int J Med Microbiol 2015; 306:38-47. [PMID: 26699834 DOI: 10.1016/j.ijmm.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023] Open
Abstract
Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of FHA, placing specific emphasis on the role of the residual endotoxin contamination of FHA preparations. We show that endotoxin depletion did not affect the capacity of FHA to bind primary human monocyte-derived dendritic cells, while it abrogated the capacity of FHA to elicit TNF-α and IL-10 secretion and strongly reduced its capacity to trigger IL-6 production. The levels of cytokines induced by the different FHA preparations correlated with their residual contents of B. pertussis endotoxin. Moreover, FHA failed to trigger cytokine secretion in the presence of antibodies that block TLR2 and/or TLR4 signaling. The TLR2 signaling capacity appeared to be linked to the presence of endotoxin-associated components in FHA preparations and not to the FHA protein itself. These results show that the endotoxin-depleted FHA protein does not induce cytokine release from human dendritic cells.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kellen Faé
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jeroen Geurtsen
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Martin Schwarzer
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Selma Wiertsema
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Poolman
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Coutte L, Locht C. Investigating pertussis toxin and its impact on vaccination. Future Microbiol 2015; 10:241-54. [PMID: 25689536 DOI: 10.2217/fmb.14.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Whooping cough, caused by Bordetella pertussis, remains a major global health problem. Each year around 40 million of pertussis cases resulting in 200,000-400,000 annual deaths occur worldwide. Pertussis toxin is a major virulence factor of B. pertussis. Murine studies have shown its importance in bacterial colonization and in immunomodulation to evade innate or adaptive immunity. The toxin is composed of an A protomer expressing ADP-ribosyltransferase activity and a B oligomer, responsible for toxin binding to target cells. The toxin is also a major protective antigen in all currently available vaccines. However, vaccine escape mutants with altered toxin expression have recently been isolated in countries with high vaccination coverage illustrating the need for improved pertussis vaccines.
Collapse
Affiliation(s)
- Loic Coutte
- Center for Infection & Immunity of Lille, Institut Pasteur de Lille, 1, rue du Prof. Calmette, F-59019 Lille Cedex, France
| | | |
Collapse
|
7
|
G proteins Gαi1/3 are critical targets for Bordetella pertussis toxin-induced vasoactive amine sensitization. Infect Immun 2013; 82:773-82. [PMID: 24478091 DOI: 10.1128/iai.00971-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pertussis toxin (PTX) is an AB5-type exotoxin produced by the bacterium Bordetella pertussis, the causative agent of whooping cough. In vivo intoxication with PTX elicits a variety of immunologic and inflammatory responses, including vasoactive amine sensitization (VAAS) to histamine (HA), serotonin (5-HT), and bradykinin (BDK). Previously, by using a forward genetic approach, we identified the HA H1 receptor (Hrh1/H1R) as the gene in mice that controls differential susceptibility to B. pertussis PTX-induced HA sensitization (Bphs). Here we show, by using inbred strains of mice, F1 hybrids, and segregating populations, that, unlike Bphs, PTX-induced 5-HT sensitivity (Bpss) and BDK sensitivity (Bpbs) are recessive traits and are separately controlled by multiple loci unlinked to 5-HT and BDK receptors, respectively. Furthermore, we found that PTX sensitizes mice to HA independently of Toll-like receptor 4, a purported receptor for PTX, and that the VAAS properties of PTX are not dependent upon endothelial caveolae or endothelial nitric oxide synthase. Finally, by using mice deficient in individual Gαi/o G-protein subunits, we demonstrate that Gαi1 and Gαi3 are the critical in vivo targets of ADP-ribosylation underlying VAAS elicited by PTX exposure.
Collapse
|
8
|
The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:445-57. [PMID: 23955529 DOI: 10.1007/s00005-013-0242-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/04/2013] [Indexed: 01/05/2023]
Abstract
Approximately 40 million whooping cough cases and between 200,000 and 400,000 pertussis-linked deaths are recorded each year. Although several types of vaccines are licensed and widely used, Bordetella pertussis continues to circulate in populations with high vaccine coverage of infants and children due to the waning of protection induced by the vaccination. B. pertussis typically expresses a wide array of virulence factors which promote bacterial adhesion and invasion by altering the local environment, including pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and the lipooligosaccharide. The virulence factors of B. pertussis also possess immunomodulatory properties, exerted through their enzymatic and receptor-binding activities. Both pro- and anti-inflammatory effects are mediated, that can subvert host innate and adaptive immunity and favor the onset of a long-term infection. This review describes the capacities of B. pertussis virulence factors to modulate host immune responses and the mechanisms employed, which have been the subject of extensive research in the recent years, both in murine and human experimental systems. Knowledge of these mechanisms is gaining increasing importance, since it could provide in the near future the basis for the identification of therapeutic agents for modulating the immune system as well as novel molecular targets to treat pertussis.
Collapse
|