1
|
Yang Q, Zhang J, Liu F, Chen H, Zhang W, Yang H, He N, Dong J, Zhao P. A. caviae infection triggers IL-1β secretion through activating NLRP3 inflammasome mediated by NF-κB signaling pathway partly in a TLR2 dependent manner. Virulence 2022; 13:1486-1501. [PMID: 36040120 PMCID: PMC9450903 DOI: 10.1080/21505594.2022.2116169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aeromonas caviae, an important food-borne pathogen, induces serious invasive infections and inflammation. The pro-inflammatory IL-1β functions against pathogenic infections and is elevated in various Aeromonas infection cases. However, the molecular mechanism of A. caviae-mediated IL-1β secretion remains unknown. In this study, mouse macrophages (PMs) were used to establish A. caviae infection model and multiple strategies were utilized to explore the mechanism of IL-1β secretion. IL-1β was elevated in A. caviae infected murine serum, PMs lysates or supernatants. This process triggered NLRP3 levels upregulation, ASC oligomerization, as well as dot gathering of NLRP3 and speck-like signals of ASC in the cytoplasm. MCC950 blocked A. caviae mediated IL-1β release. Meanwhile, NLRP3 inflammasome mediated the release of IL-1β in dose- and time-dependent manners, and the release of IL-1β was dependent on active caspase-1, as well as NLRP3 inflammasome was activated by potassium efflux and cathepsin B release ways. A. caviae also enhanced TLR2 levels, and deletion of TLR2 obviously decreased IL-1β secretion. What’s more, A. caviae resulted in NF-κB p65 nuclear translocation partly in a TLR2-dependent manner. Blocking NF-κB using BAY 11-7082 almost completely inhibited NLRP3 inflammasome first signal pro-IL-1β expression. Blocking TLR2, NF-κB, NLRP3 inflammasome significantly downregulated IL-1β release and TNF-α and IL-6 levels. These data illustrate that A. caviae caused IL-1β secretion in PMs is controlled by NLRP3 inflammasome, of which is mediated by NF-κB pathway and is partially dependent on TLR2, providing basis for drugs against A. caviae.
Collapse
Affiliation(s)
- Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jianguo Zhang
- Department of Radiation, The Second People's Hospital of Lianyungang (Lianyungang Tumor Hospital), Lianyungang, Jiangsu 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
2
|
Kim HT, Desouza AH, Umhoefer H, Han J, Anzia L, Sacotte SJ, Williams RA, Blumer JT, Bartosiak JT, Fontaine DA, Baan M, Kibbe CR, Davis DB. Cholecystokinin attenuates β-cell apoptosis in both mouse and human islets. Transl Res 2022; 243:1-13. [PMID: 34740874 PMCID: PMC9504967 DOI: 10.1016/j.trsl.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Loss of functional pancreatic β-cell mass and increased β-cell apoptosis are fundamental to the pathophysiology of type 1 and type 2 diabetes. Pancreatic islet transplantation has the potential to cure type 1 diabetes but is often ineffective due to the death of the islet graft within the first few years after transplant. Therapeutic strategies to directly target pancreatic β-cell survival are needed to prevent and treat diabetes and to improve islet transplant outcomes. Reducing β-cell apoptosis is also a therapeutic strategy for type 2 diabetes. Cholecystokinin (CCK) is a peptide hormone typically produced in the gut after food intake, with positive effects on obesity and glucose metabolism in mouse models and human subjects. We have previously shown that pancreatic islets also produce CCK. The production of CCK within the islet promotes β-cell survival in rodent models of diabetes and aging. We demonstrate a direct effect of CCK to reduce cytokine-mediated apoptosis in a β-cell line and in isolated mouse islets in a receptor-dependent manner. However, whether CCK can protect human β-cells was previously unknown. Here, we report that CCK can also reduce cytokine-mediated apoptosis in isolated human islets and CCK treatment in vivo decreases β-cell apoptosis in human islets transplanted into the kidney capsule of diabetic NOD/SCID mice. Collectively, these data identify CCK as a novel therapy that can directly promote β-cell survival in human islets and has therapeutic potential to preserve β-cell mass in diabetes and as an adjunct therapy after transplant.
Collapse
Affiliation(s)
- Hung Tae Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Arnaldo H Desouza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heidi Umhoefer
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeeyoung Han
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lucille Anzia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steven J Sacotte
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rashaun A Williams
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joseph T Blumer
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jacob T Bartosiak
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Danielle A Fontaine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mieke Baan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carly R Kibbe
- Department of Human Biology, University of Wisconsin-Green Bay, Green Bay, Wisconsin.
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.
| |
Collapse
|
3
|
Malone M, Radzieta M, Peters TJ, Dickson HG, Schwarzer S, Jensen SO, Lavery LA. Host-microbe metatranscriptome reveals differences between acute and chronic infections in diabetes-related foot ulcers. APMIS 2021; 130:751-762. [PMID: 34888950 DOI: 10.1111/apm.13200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022]
Abstract
Virtually all diabetes-related foot ulcers (DRFUs) will become colonized by microorganisms that may increase the risk of developing an infection. The reasons why some ulcerations develop acute clinical infections (AI-DRFUs) whilst others develop chronic infection (CI-DRFUs) and the preceding host-microbe interactions in vivo remain largely unknown. Establishing that acute and chronic infections are distinct processes requires demonstrating that these are two different strategies employed by microbes when interacting with a host. In this study, dual-RNA seq was employed to differentiate the host-microbe metatranscriptome between DRFUs that had localized chronic infection or acute clinical infection. Comparison of the host metatranscriptome in AI-DRFUs relative to CI-DRFUs identified upregulated differentially expressed genes (DEGs) that functioned as regulators of vascular lymphatic inflammatory responses, T-cell signalling and olfactory receptors. Conversely, CI-DRFUs upregulated DEGs responsible for cellular homeostasis. Gene set enrichment analysis using Hallmark annotations revealed enrichment of immune and inflammatory profiles in CI-DRFUs relative to AI-DRFUs. Analysis of the microbial metatranscriptome identified the DEGs being enriched within AI-DRFUs relative to CI-DRFUs included several toxins, two-component systems, bacterial motility, secretion systems and genes encoding for energy metabolism. Functions relevant to DRFU pathology were further explored, including biofilm and bacterial pathogenesis. This identified that the expression of biofilm-associated genes was higher within CI-DRFUs compared to that of AI-DRFUs, with mucR being the most highly expressed gene. Collectively, these data provide insights into the host-microbe function in two clinically-distinct infective phenotypes that affect DRFUs. The data reveal that bacteria in acutely infected DRFUs prioritize motility over biofilm and demonstrate greater pathogenicity and mechanisms, which likely subvert host cellular and immune pathways to establish infection. Upregulation of genes for key vascular inflammatory mediators in acutely infected ulcers may contribute, in part, to the clinical picture of a red, hot, swollen foot, which differentiates an acutely infected ulcer from that of a chronic infection.
Collapse
Affiliation(s)
- Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Hugh G Dickson
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Saskia Schwarzer
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia
| | - Slade O Jensen
- Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
4
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
5
|
Ustunova S, Haciosmanoglu E, Bulut H, Elibol B, Kilic A, Hekimoglu R, Tunc S, Atmaca R, Kaygusuz I, Tunc S, Tunc GB, Meral I. A low direct electrical signal attenuates oxidative stress and inflammation in septic rats. PLoS One 2021; 16:e0257177. [PMID: 34499695 PMCID: PMC8428794 DOI: 10.1371/journal.pone.0257177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation is proposed to exert an antimicrobial effect according to studies performed using bacterial and cell cultures. Therefore, we investigated the effects of electrification on inflammation in septic rats. Twenty-eight male Wistar albino rats were divided into 4 groups: healthy control (C), electrified healthy (E), sepsis (S), and electrified sepsis (SE) groups. Staphylococcus aureus (1 x 109 colonies) in 1 ml of medium was intraperitoneally injected into rats to produce a sepsis model. The rats in the E and SE groups were exposed to a low direct electrical signal (300 Hz and 2.5 volts) for 40 min and 1 and 6 h after bacterial infection. Immediately after the second electrical signal application, blood and tissue samples of the heart, lung, and liver were collected. An antibacterial effect of a low direct electrical signal was observed in the blood of rats. The effects of electrical signals on ameliorating changes in the histological structure of tissues, blood pH, gases, viscosity and cell count, activities of some important enzymes, oxidative stress parameters, inflammation and tissue apoptosis were observed in the SE group compared to the S group. Low direct electrical signal application exerts antibacterial, antioxidant, anti-inflammatory and antiapoptotic effects on septic rats due to the induction of electrolysis in body fluids without producing any tissue damage.
Collapse
Affiliation(s)
- Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ebru Haciosmanoglu
- Department of Biophysics, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Bulut
- Department of Biochemistry, School of Medicine, Istinye University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysu Kilic
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Rumeysa Hekimoglu
- Department of Histology & Embryology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | | | | | | | - Ismail Meral
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
6
|
Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. The Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol 2021; 12:720703. [PMID: 34354597 PMCID: PMC8329365 DOI: 10.3389/fphar.2021.720703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Harry van Goor
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - André P. van Beek
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Peter R. van Dijk
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Saia RS, Ribeiro AB, Giusti H. Cholecystokinin Modulates the Mucosal Inflammatory Response and Prevents the Lipopolysaccharide-Induced Intestinal Epithelial Barrier Dysfunction. Shock 2020; 53:242-251. [DOI: 10.1097/shk.0000000000001355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Chen S, Chen Y, Chen Y, Yao Z. InP/ZnS Quantum Dots Cause Inflammatory Response in Macrophages Through Endoplasmic Reticulum Stress and Oxidative stress. Int J Nanomedicine 2019; 14:9577-9586. [PMID: 31824152 PMCID: PMC6901044 DOI: 10.2147/ijn.s218748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are widely used semiconductor nanomaterials. Indium phosphide/zinc sulfide (InP/ZnS) QDs are becoming potential alternatives to toxic heavy metal-containing QDs. However, the potential toxicity and, in particular, the immunotoxicity of InP/ZnS QDs are unknown. This study aimed to investigate the impacts of InP/ZnS QDs on inflammatory responses both in vivo and in vitro. METHODS Mice and mouse bone marrow-derived macrophages (BMMs) were exposed to polyethylene glycol (PEG) coated InP/ZnS QDs. The infiltration of neutrophils and the release of interleukin-6 (IL-6) were measured using a hematology analyzer and an enzyme-linked immunosorbent assay (ELISA) for the in vivo test. Cytotoxicity, IL-6 secretion, oxidative stress and endoplasmic reticulum (ER) stress were studied in the BMMs, and then, inhibitors of oxidative stress and ER stress were used to explore the mechanism of the InP/ZnS QDs. RESULTS We found that 20 mg/kg PEG-InP/ZnS QDs increased the number of neutrophils and the levels of IL-6 in both peritoneal lavage fluids and blood, which indicated acute phase inflammation in the mice. PEG-InP/ZnS QDs also activated the BMMs and increased the production of IL-6. In addition, PEG-InP/ZnS QDs triggered oxidative stress and the ER stress-related PERK-ATF4 pathway in the BMMs. Moreover, the inflammatory response caused by the PEG-InP/ZnS QDs could be attenuated in the macrophages by blocking the oxidative stress or the ER stress with inhibitors. CONCLUSION InP/ZnS QDs can activate macrophages and induce acute phase inflammation both in vivo and in vitro, which may be regulated by oxidative stress and ER stress. Our present work is expected to help clarify the biosafety of InP/ZnS QDs and promote their safe application in biomedical and engineering fields.
Collapse
Affiliation(s)
- Shuzhen Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Yajing Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Yenhua Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Zhengyuan Yao
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| |
Collapse
|
9
|
Zhang Y, Zhu J, Guo L, Zou Y, Wang F, Shao H, Li J, Deng X. Cholecystokinin protects mouse liver against ischemia and reperfusion injury. Int Immunopharmacol 2017; 48:180-186. [PMID: 28521244 DOI: 10.1016/j.intimp.2017.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cholecystokinin (CCK), as a gastrointestinal hormone, has an important protective role against sepsis or LPS-induced endotoxic shock. We aim to address the role of CCK in hepatic ischemia followed by reperfusion (I/R) injury. MATERIALS AND METHODS A murine model of 60min partial hepatic ischemia followed by 6h of reperfusion was used in this study. CCK and CCKAR Levels in blood and liver were detected at 3h, 6h, 12h and 24h after reperfusion. Then the mice were treated with CCK or proglumide, a nonspecific CCK-receptor (CCK-R) antagonist. Mice were randomly divided into four groups as follows: (1) sham group, in which mice underwent sham operation and received saline; (2) I/R group, in which mice were subjected to hepatic I/R and received saline; (3) CCK group, in which mice were subjected to hepatic I/R and treated with CCK (400μg/kg); (4) proglumide group (Pro), in which mice underwent hepatic I/R and treated with proglumide (3mg/kg); CCK and proglumide were administrated via tail vein at the moment of reperfusion. Serum AST (sAST) and serum ALT (sALT) were determined with a biochemical assay and histological analysis were performed with hematoxylin-eosin (H&E). Cytokines (IL-1β, IL-6, IL-10, TNF-α) expressions in blood were determined with enzyme-linked immunosorbent assay (ELISA). The MPO (myeloperoxidase) assay were used to measure neutrophils' infiltration into the liver. The apoptotic index (TUNEL-positive cell number/total liver cell number×100%) was calculated to assess hepatocelluar apoptosis. Finally, activation of NF-κB and phosphor-p38 expression in liver homogenates were analyzed with Western Blot (WB). RESULTS Our findings showed that 1) CCK and CCK-AR were upregulated in our experimental model over time; 2) Treatment with CCK decreased sAST/sALT levels, inflammatory hepatic injury, neutrophil influx and hepatocelluar apoptosis, while proglumide aggravated hepatic injury. CONCLUSION These findings support our hypothesis and suggest that CCK played a positive role in the ongoing inflammatory process leading to liver I/R injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Central Hospital of Jiading District, 1 Chengbai Road, Shanghai 201800, China.
| | - Jiali Zhu
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Long Guo
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Yun Zou
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Fang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Han Shao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China.
| | - Xiaoming Deng
- Department of Anesthesiology and Critical Care, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Ribeiro AB, de Barcellos-Filho PCG, Franci CR, Menescal-de-Oliveira L, Saia RS. Pro-inflammatory cytokines, IL-1β and TNF-α, produce persistent compromise in tonic immobility defensive behaviour in endotoxemia guinea-pigs. Acta Physiol (Oxf) 2016; 218:123-35. [PMID: 27261351 DOI: 10.1111/apha.12729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
Abstract
AIM Sepsis has been associated with acute behavioural changes in humans and rodents, which consists of a motivational state and an adaptive response that improve survival. However, the involvement of peripheral cytokines synthesized during systemic inflammation as modulators of the tonic immobility (TI) defensive behaviour remains a literature gap. Our purposes were to characterize the TI defensive behaviour in endotoxemia guinea-pigs at acute phase and after recovery from the initial inflammatory challenge. Furthermore, we investigated whether peri-aqueductal grey matter (PAG) exists as a brain structure related to this behaviour and also pro-inflammatory cytokines, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, act at this mesencephalic nucleus. METHODS Endotoxemia was induced by lipopolysaccharide (LPS) administration in guinea-pigs. The parameters evaluated included TI defensive behaviour, survival, cytokines production, as well as neuronal activation and apoptosis in the PAG. RESULTS Endotoxemia guinea-pigs exhibited a reduction in the duration of TI episodes, starting at 2 h after LPS administration and persisting throughout the experimental period evaluated over 7 days. Moreover, endotoxemia increased the c-FOS immunoreactivity of neurones in the ventrolateral PAG (vlPAG), as well as the caspase-3 expression. The LPS microinjection into vlPAG reproduces the same compromise, that is a decrease in the duration of TI defensive behaviour, observed after the peripheral administration. The immunoneutralization against IL-1β and TNF-α into vlPAG reverts all the effects produced by peripheral LPS administration. CONCLUSION Our findings confirm that vlPAG is an important brain structure involved in the behavioural alterations induced by endotoxemia, possibly changing the neuronal activity caused by pro-inflammatory cytokines produced peripherally.
Collapse
Affiliation(s)
- A. B. Ribeiro
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - P. C. G. de Barcellos-Filho
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - C. R. Franci
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - L. Menescal-de-Oliveira
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - R. S. Saia
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto São Paulo Brazil
| |
Collapse
|
11
|
Peng QY, Ai ML, Zhang LN, Zou Y, Ma XH, Ai YH. Blocking NAD(+)/CD38/cADPR/Ca(2+) pathway in sepsis prevents organ damage. J Surg Res 2015; 201:480-9. [PMID: 27020835 DOI: 10.1016/j.jss.2015.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although the nicotinamide adenine dinucleotide (NAD(+))/CD38/cyclic ADP ribose (cADPR)/Ca(2+) signaling pathway has been shown to regulate intracellular calcium homeostasis and functions in multiple inflammatory processes, its role in sepsis remains unknown. The aim of this study was to determine whether the NAD(+)/CD38/cADPR/Ca(2+) signaling pathway is activated during sepsis and whether an inhibitor of this pathway, 8-Br-cADPR, protects the organs from sepsis-induced damage. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP) or sham laparotomies. NAD(+), cADPR, CD38, and intracellular Ca(2+) levels were measured in the hearts, livers, and kidneys of septic rats at 0, 6, 12, 24, and 48 h after CLP surgery. Rats were also divided into sham, CLP, and CLP+8-Br-cADPR groups, and the hearts, livers, and kidneys were hematoxylin-eosin-stained and assayed for malondialdehyde and superoxide dismutase activities. RESULTS NAD(+), cADPR, CD38, and intracellular Ca(2+) levels increased in the hearts, livers, and kidneys of septic rats as early as 6-24 h after CLP surgery. Treatment with 8-Br-cADPR inhibited sepsis-induced intracellular Ca(2+) mobilization, attenuated tissue injury, reduced malondialdehyde levels, and increased superoxide dismutase activity in septic rats. CONCLUSIONS The NAD(+)/CD38/cADPR/Ca(2+) signaling pathway was activated during sepsis in the CLP rat model. Blocking this pathway with 8-Br-cADPR protected hearts, livers, and kidneys from sepsis-induced damage.
Collapse
Affiliation(s)
- Qian-Yi Peng
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mei-Lin Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Zhang
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Zou
- Department of Anesthesia, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin-Hua Ma
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Hang Ai
- Department of Critical Care Medicine, Xiang-Ya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Saia RS, Garcia FM, Cárnio EC. Estradiol protects female rats against sepsis induced by Enterococcus faecalis improving leukocyte bactericidal activity. Steroids 2015; 102:17-26. [PMID: 26143494 DOI: 10.1016/j.steroids.2015.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/25/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Enterococcus faecalis is a Gram-positive bacteria described as an important causative agent of sepsis. The contact between host leukocytes and bacteria activates the innate immunity, participating as the first defense mechanism against infection. Pro-inflammatory cytokines [including tumor necrosis factor (TNF)-α and interleukin-1β] and nitric oxide (NO) are essential to recruitment of leukocytes into the infectious focus as well as their activation for phagocytosis. Beyond the bacteria species, gender has been considered another factor to predict outcome in septic patients. Studies suggest that females exhibit a protective advantage during sepsis models, being gonadal hormones possible modulators of functions of immune cells. Nevertheless, the role of estradiol during Gram-positive infection remains a literature gap. Our aims were to investigate whether estradiol protects rats against bacterial dissemination during E. faecalis-induced sepsis. We determined whether estradiol modulates the local and systemic inflammatory response, as well as the cell migration into the infectious focus and the bactericidal capacity of leukocytes. Our findings demonstrated that estradiol pre-treated rats showed a dose-dependent reduction in bacterial counts in peritoneal lavage fluid (PLF) and in liver. Moreover, TNF-α and nitrate levels were increased in plasma, while only TNF-α was increased in the PLF in estradiol-treated rats. The prevention of bacterial dissemination may be related to the enhanced neutrophil and macrophage migration into the peritoneal cavity. Furthermore, estradiol improved the phagocytic and bactericidal ability of these both inflammatory cells. Taken together, the present study clearly demonstrates an important protective role of estradiol against sepsis induced by E. faecalis in female rats.
Collapse
Affiliation(s)
- Rafael Simone Saia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Fabíola Morales Garcia
- Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evelin Capellari Cárnio
- Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Cholecystokinin inhibits inducible nitric oxide synthase expression by lipopolysaccharide-stimulated peritoneal macrophages. Mediators Inflamm 2014; 2014:896029. [PMID: 25125801 PMCID: PMC4122025 DOI: 10.1155/2014/896029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/26/2014] [Accepted: 06/23/2014] [Indexed: 01/10/2023] Open
Abstract
Cholecystokinin (CCK) was first described as a gastrointestinal hormone. However, apart from its gastrointestinal effects, studies have described that CCK also plays immunoregulatory roles. Taking in account the involvement of inducible nitric oxide synthase- (iNOS-) derived NO in the sepsis context, the present study was undertaken to investigate the role of CCK on iNOS expression in LPS-activated peritoneal macrophages. Our results revealed that CCK reduces NO production and attenuates the iNOS mRNA expression and protein formation. Furthermore, CCK inhibited the nuclear factor- (NF-) κB pathway reducing IκBα degradation and minor p65-dependent translocation to the nucleus. Moreover, CCK restored the intracellular cAMP content activating the protein kinase A (PKA) pathway, which resulted in a negative modulatory role on iNOS expression. In peritoneal macrophages, the CCK-1R expression, but not CCK-2R, was predominant and upregulated by LPS. The pharmacological studies confirmed that CCK-1R subtype is the major receptor responsible for the biological effects of CCK. These data suggest an anti-inflammatory role for the peptide CCK in modulating iNOS-derived NO synthesis, possibly controlling the macrophage activation through NF-κB, cAMP-PKA, and CCK-1R pathways. Based on these findings, CCK could be used as an adjuvant agent to modulate the inflammatory response and prevent systemic complications commonly found during sepsis.
Collapse
|