1
|
Sachen KL, Hammaker D, Sarabia I, Stoveken B, Hartman J, Leppard KL, Manieri NA, Bao P, Greving C, Lacy ER, DuPrie M, Wertheimer J, Deming JD, Brown J, Hart A, Li H(H, Freeman TC, Keyes B, Kohler K, White I, Karpowich N, Steele R, Elloso MM, Fakharzadeh S, Goyal K, Lavie F, Abreu MT, Allez M, Atreya R, Bissonnette R, Eyerich K, Krueger JG, McGonagle D, McInnes IB, Ritchlin C, Fourie AM. Guselkumab binding to CD64 + IL-23-producing myeloid cells enhances potency for neutralizing IL-23 signaling. Front Immunol 2025; 16:1532852. [PMID: 40145093 PMCID: PMC11937023 DOI: 10.3389/fimmu.2025.1532852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
IL-23 is implicated in the pathogenesis of immune-mediated inflammatory diseases, and myeloid cells that express Fc gamma receptor 1 (FcγRI or CD64) on their surface have been recently identified as a primary source of IL-23 in inflamed tissue. Our complementary analyses of transcriptomic datasets from psoriasis and IBD showed increased expression of CD64 and IL-23 transcripts in inflamed tissue, and greater abundance of cell types with co-expression of CD64 and IL-23. These findings led us to explore potential implications of CD64 binding on the function of IL-23-targeting monoclonal antibodies (mAbs). Guselkumab and risankizumab are mAbs that target the IL-23p19 subunit. Guselkumab has a native Fc domain while risankizumab contains mutations that diminish binding to FcγRs. In flow cytometry assays, guselkumab, but not risankizumab, showed Fc-mediated binding to CD64 on IFNγ-primed monocytes. Guselkumab bound CD64 on IL-23-producing inflammatory monocytes and simultaneously captured IL-23 secreted from these cells. Guselkumab binding to CD64 did not induce cytokine production. In live-cell confocal imaging of CD64+ macrophages, guselkumab, but not risankizumab, mediated IL-23 internalization to low-pH intracellular compartments. Guselkumab and risankizumab demonstrated similar potency for inhibition of IL-23 signaling in cellular assays with exogenous addition of IL-23. However, in a co-culture of IL-23-producing CD64+ THP-1 cells with an IL-23-responsive reporter cell line, guselkumab demonstrated Fc-dependent enhanced potency compared to risankizumab for inhibiting IL-23 signaling. These in vitro data highlight the potential for guselkumab binding to CD64 in inflamed tissue to contribute to the potent neutralization of IL-23 at its cellular source.
Collapse
Affiliation(s)
| | | | | | | | - John Hartman
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Phuc Bao
- Johnson & Johnson, San Diego, CA, United States
| | | | | | | | | | | | | | - Amy Hart
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Brice Keyes
- Johnson & Johnson, San Diego, CA, United States
| | | | - Ian White
- Johnson & Johnson, Spring House, PA, United States
| | | | - Ruth Steele
- Johnson & Johnson, Spring House, PA, United States
| | | | | | | | | | - Maria T. Abreu
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Matthieu Allez
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Raja Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kilian Eyerich
- Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine – Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Dennis McGonagle
- Leeds Biomedical Research Centre, University of Leeds, Leeds, United Kingdom
| | - Iain B. McInnes
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher Ritchlin
- Center for Musculoskeletal Research, Allergy, Immunology, and Rheumatology Division, University of Rochester, Rochester, NY, United States
| | | |
Collapse
|
2
|
Lovelace-Macon L, Baker SM, Ducken D, Seal S, Rerolle G, Tomita D, Smith KD, Schwarz S, West TE. Flagellin-modulated inflammasome pathways characterize the human alveolar macrophage response to Burkholderia pseudomallei, a lung-tropic pathogen. Infect Immun 2024; 92:e0006024. [PMID: 38619302 PMCID: PMC11075458 DOI: 10.1128/iai.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Melioidosis is an emerging tropical infection caused by inhalation, inoculation, or ingestion of the flagellated, facultatively intracellular pathogen Burkholderia pseudomallei. The melioidosis case fatality rate is often high, and pneumonia, the most common presentation, doubles the risk of death. The alveolar macrophage is a sentinel pulmonary host defense cell, but the human alveolar macrophage in B. pseudomallei infection has never been studied. The objective of this study was to investigate the host-pathogen interaction of B. pseudomallei infection with the human alveolar macrophage and to determine the role of flagellin in modulating inflammasome-mediated pathways. We found that B. pseudomallei infects primary human alveolar macrophages but is gradually restricted in the setting of concurrent cell death. Electron microscopy revealed cytosolic bacteria undergoing division, indicating that B. pseudomallei likely escapes the alveolar macrophage phagosome and may replicate in the cytosol, where it triggers immune responses. In paired human blood monocytes, uptake and intracellular restriction of B. pseudomallei are similar to those observed in alveolar macrophages, but cell death is reduced. The alveolar macrophage cytokine response to B. pseudomallei is characterized by marked interleukin (IL)-18 secretion compared to monocytes. Both cytotoxicity and IL-18 secretion in alveolar macrophages are partially flagellin dependent. However, the proportion of IL-18 release that is driven by flagellin is greater in alveolar macrophages than in monocytes. These findings suggest differential flagellin-mediated inflammasome pathway activation in the human alveolar macrophage response to B. pseudomallei infection and expand our understanding of intracellular pathogen recognition by this unique innate immune lung cell.
Collapse
Affiliation(s)
- Lara Lovelace-Macon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sarah M. Baker
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Deirdre Ducken
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sudeshna Seal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Guilhem Rerolle
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Diane Tomita
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - T. Eoin West
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
4
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Kaewarpai T, Ekchariyawat P, Phunpang R, Wright SW, Dulsuk A, Moonmueangsan B, Morakot C, Thiansukhon E, Day NPJ, Lertmemongkolchai G, West TE, Chantratita N. Longitudinal profiling of plasma cytokines in melioidosis and their association with mortality: a prospective cohort study. Clin Microbiol Infect 2019; 26:783.e1-783.e8. [PMID: 31705997 DOI: 10.1016/j.cmi.2019.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To characterize plasma cytokine responses in melioidosis and analyse their association with mortality. METHODS A prospective longitudinal study was conducted in two hospitals in Northeast Thailand to enrol 161 individuals with melioidosis, plus 13 uninfected healthy individuals and 11 uninfected individuals with diabetes to act as controls. Blood was obtained from all individuals at enrolment (day 0), and at days 5, 12 and 28 from surviving melioidosis patients. Interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-23, and tumour necrosis factor-α (TNF-α) were assayed in plasma. The association of each cytokine and its dynamics with 28-day mortality was determined. RESULTS Of the individuals with melioidosis, 131/161 (81%) were bacteraemic, and 68/161 (42%) died. On enrolment, median levels of IFN-γ, IL-6, IL-8, IL-10, IL-23 and TNF-α were higher in individuals with melioidosis compared with uninfected healthy individuals and all but IFN-γ were positively associated with 28-day mortality. Interleukin-8 provided the best discrimination of mortality (area under the receiver operating characteristic curve 0.78, 95% CI 0.71-0.85). Over time, non-survivors had increasing IL-6, IL-8 and IL-17A levels, in contrast to survivors. In joint modelling, temporal trajectories of IFN-γ, IL-6, IL-8, IL-10 and TNF-α predicted survival. CONCLUSIONS In a severely ill cohort of individuals with melioidosis, specific pro- and anti-inflammatory and T helper type 17 cytokines were associated with survival from melioidosis, at enrolment and over time. Persistent inflammation preceded death. These findings support further evaluation of these mediators as prognostic biomarkers and to guide targeted immunotherapeutic development for severe melioidosis.
Collapse
Affiliation(s)
- T Kaewarpai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Ekchariyawat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - R Phunpang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S W Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - A Dulsuk
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - B Moonmueangsan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - C Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - E Thiansukhon
- Department of Medicine, Udon Thani Hospital, Udon Thani, Thailand
| | - N P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre of Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - G Lertmemongkolchai
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - T E West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, USA; International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, USA
| | - N Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Dunachie SJ, Jenjaroen K, Reynolds CJ, Quigley KJ, Sergeant R, Sumonwiriya M, Chaichana P, Chumseng S, Ariyaprasert P, Lassaux P, Gourlay L, Promwong C, Teparrukkul P, Limmathurotsakul D, Day NPJ, Altmann DM, Boyton RJ. Infection with Burkholderia pseudomallei - immune correlates of survival in acute melioidosis. Sci Rep 2017; 7:12143. [PMID: 28939855 PMCID: PMC5610189 DOI: 10.1038/s41598-017-12331-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Melioidosis, caused by Burkholderia pseudomallei, is a potentially lethal infection with no licensed vaccine. There is little understanding of why some exposed individuals have no symptoms, while others rapidly progress to sepsis and death, or why diabetes confers increased susceptibility. We prospectively recruited a cohort of 183 acute melioidosis patients and 21 control subjects from Northeast Thailand and studied immune parameters in the context of survival status and the presence or absence of diabetes. HLA-B*46 (one of the commonest HLA class I alleles in SE Asia) and HLA-C*01 were associated with an increased risk of death (odds ratio 2.8 and 3.1 respectively). Transcriptomic analysis during acute infection in diabetics indicated the importance of interplay between immune pathways including those involved in antigen presentation, chemotaxis, innate and adaptive immunity and their regulation. Survival was associated with enhanced T cell immunity to nine of fifteen immunodominant antigens analysed including AhpC (BPSL2096), BopE (BPSS1525), PilO (BPSS1599), ATP binding protein (BPSS1385) and an uncharacterised protein (BPSL2520). T cell immunity to GroEL (BPSL2697) was specifically impaired in diabetic individuals. This characterization of immunity associated with survival during acute infection offers insights into correlates of protection and a foundation for design of an effective multivalent vaccine.
Collapse
Affiliation(s)
- Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Kathryn J Quigley
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Ruhena Sergeant
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suchintana Chumseng
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | - Louise Gourlay
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Daniel M Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary J Boyton
- Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM. Persistent infection due to a small-colony variant of Burkholderia pseudomallei leads to PD-1 upregulation on circulating immune cells and mononuclear infiltration in viscera of experimental BALB/c mice. PLoS Negl Trop Dis 2017; 11:e0005702. [PMID: 28820897 PMCID: PMC5562302 DOI: 10.1371/journal.pntd.0005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
Background Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy. Methodology/Principal findings A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice. Conclusions/Significance The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host. B. pseudomallei is a bacterium that causes melioidosis, a disease endemic in Southeastern Asia and Northern Australia. It is estimated that melioidosis leads to 89,000 deaths worldwide each year. Nevertheless, melioidosis continues to remain a neglected tropical disease that is not even on the list of neglected tropical diseases of the World Health Organization. Furthermore, the disease has a high mortality and recurrence rate, which can be up to 40% and 13%, respectively. It has also been well documented that B. pseudomallei causes latent/persistent infections for a prolonged period without showing apparent symptoms in the infected individual. The mechanisms that are responsible for bacterial persistence in the host remain unclear. Our results demonstrated that B. pseudomallei were able to upregulate PD-1 expression on B cells, NK cells, and/or monocytes during persistent diseases, which likely diminish optimal host immunity. The weakened host immunity in turns facilitates persistence of the bacterium. Interestingly, the SCV had a higher PD-1 expression on distinct immune cells compared to the WT, which might explain its frequent association with persistent infections. Immunotherapies by targeting PD-1/PD-L1 pathway could serve as a better treatment than the conventional antibiotic regimens, which cause a high rate of recurrence in melioidosis patients.
Collapse
Affiliation(s)
- Jia-Xiang See
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail: (SC); (EMS); (JV)
| | - Mahmood Ameen Abdulla
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail: (SC); (EMS); (JV)
| | - Esaki M. Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Division of Infection Biology, Department of Life Sciences, School of Basic & Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
- * E-mail: (SC); (EMS); (JV)
| |
Collapse
|
9
|
Gene Expression Profile of Human Cytokines in Response to Burkholderia pseudomallei Infection. mSphere 2017; 2:mSphere00121-17. [PMID: 28435890 PMCID: PMC5397567 DOI: 10.1128/msphere.00121-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Melioidosis is an underreported infectious disease, caused by the Gram-negative bacterium Burkholderia pseudomallei. Understanding the disease susceptibility and pathogenesis is crucial for developing newer diagnostic and therapeutic strategies for this life-threatening infection. In this study, we aimed to analyze the gene expression levels of important cytokines in melioidosis patients and establish useful correlates with disease biomarkers compared to cases of sepsis infection caused by other pathogens and healthy individuals. A Qiagen common human cytokines array profiling the gene expression of 84 important cytokines by real-time quantitative PCR (RT-qPCR) was used. We analyzed 26 melioidosis cases, 5 healthy controls, and 10 cases of sepsis infection caused by other pathogens. Our results showed consistently upregulated expression of interleukins (IL) interleukin-4 (IL-4), interleukin-17 alpha (IL-17A), IL-23A, and IL-24, interferons (IFN) interferon alpha 1 (IFNA1) and interferon beta 1 (IFNB1), tumor necrosis factor (TNF) superfamily 4 (TNFSF4), transforming growth factor (TGF) superfamily, bone morphogenetic proteins 3 and 6 (BMP3 and BMP6), transforming growth factor beta 1 (TGFB1), and other growth factors, including macrophage colony-stimulating factor (M-CSF), C-fos-induced growth factor (FIGF), and platelet-derived growth factor alpha (PDGFA) polypeptide, in melioidosis patients compared to their expression in other sepsis cases, irrespective of comorbidities, duration of fever/clinical symptoms, and antibiotic treatment. Our findings indicate a dominant Th2- and Th17-type-cytokine response, suggesting that their dysregulation at initial stages of infection may play an important role in disease pathogenesis. IL-1A, interleukin-1 beta (IL-1B), and IL-8 were significantly downregulated in septicemic melioidosis patients compared to their expression in other sepsis cases. These differentially expressed genes may serve as biomarkers for melioidosis diagnosis and targets for therapeutic intervention and may help us understand immune response mechanisms. IMPORTANCE Melioidosis is a life-threatening infectious disease caused by a soil-associated Gram-negative bacterium, B. pseudomallei. Melioidosis is endemic in Southeast Asia and northern Australia; however, the global distribution of B. pseudomallei and the disease burden of melioidosisis are still poorly understood. Melioidosis is difficult to treat, as B. pseudomallei is intrinsically resistant to many antibiotics and requires a long course of antibiotic treatment. The mortality rates remain high in areas of endemicity, with reoccurrence being common. Therefore, it is imperative to diagnose the disease at an early stage and provide vital clinical care to reduce the mortality rate. With limitations in treatment and lack of a vaccine, it is crucial to study the immune response mechanisms to this infection to get a better understanding of disease susceptibility and pathogenesis. Therefore, this study aimed to analyze the gene expression levels of important cytokines to establish useful correlations for diagnostic and therapeutic purposes.
Collapse
|
10
|
Nishise S, Abe Y, Nomura E, Sato T, Sasaki Y, Iwano D, Yoshizawa K, Yagi M, Sakuta K, Ueno Y. Effect of Cellulose Acetate Beads on Interleukin-23 Release. Ther Apher Dial 2016; 20:354-9. [DOI: 10.1111/1744-9987.12466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Shoichi Nishise
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Yasuhiko Abe
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Eiki Nomura
- Department of Gastroenterology; Sendai City Hospital; Sendai Japan
| | - Takeshi Sato
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Yu Sasaki
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Daisuke Iwano
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Kazuya Yoshizawa
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Makoto Yagi
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Kazuhiro Sakuta
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology; Yamagata University Faculty of Medicine; Yamagata Japan
| |
Collapse
|