1
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
2
|
Palma M. Epitopes and Mimotopes Identification Using Phage Display for Vaccine Development against Infectious Pathogens. Vaccines (Basel) 2023; 11:1176. [PMID: 37514992 PMCID: PMC10384025 DOI: 10.3390/vaccines11071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional vaccines use inactivated or weakened forms of pathogens which could have side effects and inadequate immune responses. To overcome these challenges, phage display has emerged as a valuable tool for identifying specific epitopes that could be used in vaccines. This review emphasizes the direct connection between epitope identification and vaccine development, filling a crucial gap in the field. This technique allows vaccines to be engineered to effectively stimulate the immune system by presenting carefully selected epitopes. Phage display involves screening libraries of random peptides or gene/genome fragments using serum samples from infected, convalescent, or vaccinated individuals. This method has been used to identify epitopes from various pathogens including SARS-CoV-2, Mycobacterium tuberculosis, hepatitis viruses, H5N1, HIV-1, Human T-lymphotropic virus 1, Plasmodium falciparum, Trypanosoma cruzi, and Dirofilaria repens. Bacteriophages offer advantages such as being immunogenic carriers, low production costs, and customization options, making them a promising alternative to traditional vaccines. The purpose of this study has been to highlight an approach that encompasses the entire process from epitope identification to vaccine production using a single technique, without requiring additional manipulation. Unlike conventional methods, phage display demonstrates exceptional efficiency and speed, which could provide significant advantages in critical scenarios such as pandemics.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- Protheragen Inc., Ronkonkoma, NY 11779, USA
| |
Collapse
|
3
|
Bhattacharya M, Sharma AR, Mallick B, Lee SS, Seo EM, Chakraborty C. B.1.1.7 (Alpha) variant is the most antigenic compared to Wuhan strain, B.1.351, B.1.1.28/triple mutant and B.1.429 variants. Front Microbiol 2022; 13:895695. [PMID: 36033846 PMCID: PMC9411949 DOI: 10.3389/fmicb.2022.895695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid spread of the SARS-CoV-2 virus and its variants has created a catastrophic impact worldwide. Several variants have emerged, including B.1.351 (Beta), B.1.1.28/triple mutant (P.1), B.1.1.7 (Alpha), and B.1.429 (Epsilon). We performed comparative and comprehensive antigenicity mapping of the total S-glycoprotein using the Wuhan strain and the other variants and identified 9-mer, 15-mer, and 20-mer CTL epitopes through in silico analysis. The study found that 9-mer CTL epitope regions in the B.1.1.7 variant had the highest antigenicity and an average of the three epitope types. Cluster analysis of the 9-mer CTL epitopes depicted one significant cluster at the 70% level with two nodes (KGFNCYFPL and EGFNCYFPL). The phage-displayed peptides showed mimic 9-mer CTL epitopes with three clusters. CD spectra analysis showed the same band pattern of S-glycoprotein of Wuhan strain and all variants other than B.1.429. The developed 3D model of the superantigen (SAg)-like regions found an interaction pattern with the human TCR, indicating that the SAg-like component might interact with the TCR beta chain. The present study identified another partial SAg-like region (ANQFNSAIGKI) from the S-glycoprotein. Future research should examine the molecular mechanism of antigen processing for CD8+ T cells, especially all the variants’ antigens of S-glycoprotein.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Bidyut Mallick
- Department of Applied Science, Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Eun-Min Seo
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
- *Correspondence: Eun-Min Seo,
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
- Chiranjib Chakraborty,
| |
Collapse
|
4
|
de Freitas LS, Queiroz MAF, Machado LFA, Vallinoto ACR, Ishak MDOG, Santos FDAA, Goulart LR, Ishak R. Bioprospecting by Phage Display of Mimetic Peptides of Chlamydia trachomatis for Use in Laboratory Diagnosis. Infect Drug Resist 2022; 15:4935-4945. [PMID: 36065279 PMCID: PMC9440705 DOI: 10.2147/idr.s369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis infection is a major public health problem and the most common sexually transmitted infection in the world. Although highly prevalent, 70% to 80% of cases are asymptomatic and undiagnosed. Purpose To overcome some limitations in terms of rapid diagnosis, phage display technology was used to bioprospect peptide mimetics of C. trachomatis immunoreactive and immunogenic antigens to be selected for the production of synthetic peptides. Methods Initially, IgG from 22 individuals with C. trachomatis and 30 negative controls was coupled to G protein magnetic beads. The phage display technique consisted of biopanning, genetic sequencing, bioinformatics analysis and phage ELISA. Results Clones G1, H5, C6 and H7 were selected for testing with individual samples positive and negative for C. trachomatis. Reactions were statistically significant (p < 0.05), with a sensitivity of 90.91, a specificity of 54.55, and AUC values >0.8. One-dimensional analysis with C. trachomatis components indicated that the G1 clone aligned with cell wall-associated hydrolase domain-containing protein, the H5 clone aligned with glycerol-3-phosphate acyltransferase PlsX protein, the C6 clone aligned with a transposase and inactivated derivatives, and the H7 clone aligned with GTP-binding protein. Molecular modeling and three-dimensional analysis indicated the best fit of the four clones with a protein known as chlamydial protease/proteasome-like activity factor (CPAF), an important virulence factor of the bacterium. Conclusion The peptides produced by phage display are related to the metabolic pathways of C. trachomatis, indicating that they can be used to understand the pathogenesis of the infection. Because of their high sensitivity and AUC values, the peptides present considerable potential for use in platforms for screening C. trachomatis infections.
Collapse
Affiliation(s)
- Larissa Silva de Freitas
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
- Correspondence: Maria Alice Freitas Queiroz, Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil, Tel +55 91 3201-7587, Email
| | | | | | | | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
5
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
6
|
Bai H, Liu S, Shi S, Lu W, Yang Y, Zhu Y, Zhang Z, Guo H, Li X. Identification of the epitope in human poliovirus type 1 Sabin strain recognized by the monoclonal antibody 1G10 using mimotope strategy. J Virol Methods 2019; 276:113791. [PMID: 31778678 DOI: 10.1016/j.jviromet.2019.113791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 01/17/2023]
Abstract
Following the recommended use of the inactivated poliovirus vaccine from Sabin strains (sIPV) by the WHO, a D antigen-specific neutralizing monoclonal antibody (mAb) 1G10 that recognized the human poliovirus type 1 Sabin strain (PV-I Sabin) was produced for D-antigen potency evaluation on sIPV. Study of the mAb 1G10 showed that it recognized a discontinuous conformational epitope of PV-I Sabin antigen. To identify this epitope quickly, easily and cost-effectively, clues to the epitope's identity were first obtained by employing a novel mimotope strategy based on a phage display library and "in silico" prediction. Then, the conformation of the epitope region, including the amino acid sequence, neutralizing sites, and location of this epitope, was identified using several classic epitope-mapping methods such as synthesized peptides analysis, neutralization assay and site-directed mutagenesis. The mimotope strategy may offer some guidance for achieving epitope identification in a more feasible and effective way. This mAb could be used in an in-house or national and international standard IPV D-antigen potency ELISA kit in the future.
Collapse
Affiliation(s)
- Han Bai
- National Vaccine & Serum Institute, Beijing, China
| | - Shaohua Liu
- National Vaccine & Serum Institute, Beijing, China
| | - Shenghe Shi
- Department of Laboratory Medicine, Beijing Capital International Airport Hospital, China
| | - Weiwei Lu
- National Vaccine & Serum Institute, Beijing, China
| | | | - Yunkai Zhu
- National Vaccine & Serum Institute, Beijing, China
| | | | - Huijie Guo
- National Vaccine & Serum Institute, Beijing, China
| | - Xiuling Li
- National Vaccine & Serum Institute, Beijing, China.
| |
Collapse
|
7
|
Shi W, Zhao L, Xu Y, Xu G, Zeng Y. Identification of mimotope of Mycoplasma pneumoniae P1 protein and its potential value in serodiagnosis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1638299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Wenyuan Shi
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Chenzhou, PR China
- Institute of Translational Medicine, University of South China, Chenzhou, PR China
- Chenzhou Hospital Affiliated to Southern Medical University, Chenzhou, PR China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, PR China
| | - Yujuan Xu
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Chenzhou, PR China
- Institute of Translational Medicine, University of South China, Chenzhou, PR China
- Chenzhou Hospital Affiliated to Southern Medical University, Chenzhou, PR China
| | - Guizhen Xu
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Chenzhou, PR China
- Institute of Translational Medicine, University of South China, Chenzhou, PR China
- Chenzhou Hospital Affiliated to Southern Medical University, Chenzhou, PR China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, PR China
| |
Collapse
|
8
|
Abstract
Hepatitis E virus (HEV) infection is an emerging zoonotic disease posing a severe threat to public health in the world, especially to pregnant women. Currently, no specific treatments are available for HEV infection. Therefore, it is crucial to develop vaccine to prevent this infection. Although several potential candidate vaccines against HEV have been studied for their immunogenicity and efficacy, only Hecolin® which is developed by Xiamen Innovax Biotech Co., Ltd. and approved by China Food and Drug Administration (CFDA) in 2012, is the licensed HEV vaccine in the world so far. Extensive studies on safety, immunogenicity and efficacy in phase III clinical trials have shown that Hecolin® is a promising vaccine for HEV prevention and control. In this article, the advances on HEV vaccine development and research are briefly reviewed.
Collapse
Affiliation(s)
- Yufeng Cao
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,b Changchun Institute of Biological Products Co. Ltd. , Changchun , Jilin , PR China
| | - Zhenhong Bing
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Shiyu Guan
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Zecai Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| | - Xinping Wang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| |
Collapse
|
9
|
Shi W, Zhao L, Li S, Xu G, Zeng Y. Serological diagnosis of Mycoplasma pneumoniae infection by using the mimic epitopes. World J Microbiol Biotechnol 2018; 34:82. [PMID: 29845357 DOI: 10.1007/s11274-018-2467-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
Abstract
Nowadays, there is lack of effective serological detection method for Mycoplasma pneumoniae (M. pneumoniae) infection in clinic. In this study, the mimic epitopes of M. pneumoniae were screened to evaluate the role in the serodiagnosis of M. pneumoniae infection. The M. pneumoniae-positive serum was used as the target for biopanning to phage display random 7-peptide library. The positive phage clones were selected and the DNA were sequenced and analyzed by BLAST. The representative phages were identified using dot immunoblotting and ELISA. The exogenous heptapeptides were synthesized and their reactions with M. pneumonia-positive serum were tested by indirect ELISA. Two heptapeptides, namely heptapeptide 1: TVNFKLY and heptapeptide 2: LPQRLRT, were screened out from the randomly selected 40 phages after the four bio-panning rounds. They had high homologies to some M. pneumoniae antigens. Besides, the representative bacteriophage containing heptapeptide 1 or 2 could react with the M. pneumonia- positive serum. The sensitivities of heptapeptide 1 and heptapeptide 2 for the diagnosis of M. pneumoniae infection were 90.1 and 80.0%, respectively, and the specificities were 94.3 and 97.1%, respectively. Therefore the two heptapeptides were the mimic epitopes of M. pneumoniae and might have potential serological diagnosis value for M. pneumoniae infection.
Collapse
Affiliation(s)
- Wenyuan Shi
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Institute of Translational Medicine, University of South China, Chenzhou, 423000, People's Republic of China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, School of Medicine, University of South China, No. 28, West Changsheng Road, Zhengxiang District, Hengyang, 421001, People's Republic of China
| | - Shengtao Li
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Institute of Translational Medicine, University of South China, Chenzhou, 423000, People's Republic of China
| | - Guizhen Xu
- Department of Clinical Laboratory, Chenzhou First People's Hospital, Institute of Translational Medicine, University of South China, Chenzhou, 423000, People's Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, School of Medicine, University of South China, No. 28, West Changsheng Road, Zhengxiang District, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
10
|
An ethanol extract of Lysimachia mauritiana exhibits inhibitory activity against hepatitis E virus genotype 3 replication. J Microbiol 2017; 55:984-988. [PMID: 29214492 DOI: 10.1007/s12275-017-7477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E virus (HEV) is an etiological agent of acute hepatitis E, a self-limiting disease prevalent in developing countries. HEV can cause fulminant hepatic failure with high mortality rates in pregnant women, and genotype 3 is reported to trigger chronic hepatitis in immunocompromised individuals worldwide. Screening of plant extracts for compounds with potential anti-HEV effects led to the identification of a 70% ethanol extract of Lysimachia mauritiana (LME) that interferes with replication of the swine HEV genotype 3 replicon. Furthermore, LME significantly inhibited replication of HEV genotype 3 and expression of HEV ORF2 in infected cells without exerting cytotoxic effects. Collectively, our findings demonstrate the potential utility of LME in the development of novel antiviral drugs against HEV infection.
Collapse
|
11
|
El-Shibiny A, El-Sahhar S. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria. Can J Microbiol 2017; 63:865-879. [PMID: 28863269 DOI: 10.1139/cjm-2017-0030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.
Collapse
Affiliation(s)
- Ayman El-Shibiny
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| | - Salma El-Sahhar
- University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 12588, Giza, Egypt
| |
Collapse
|