1
|
Israel I, Riehl G, Butt E, Buck AK, Samnick S. Gallium-68-Labeled KISS1-54 Peptide for Mapping KISS1 Receptor via PET: Initial Evaluation in Human Tumor Cell Lines and in Tumor-Bearing Mice. Pharmaceuticals (Basel) 2023; 17:44. [PMID: 38256878 PMCID: PMC10821118 DOI: 10.3390/ph17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade, increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to evaluate the developed KISS1-54 derivative, [68Ga]KISS1-54, as a PET-imaging probe for KISS1R-expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability of the resulting [68Ga]KISS1-54 evaluated in injection solution and human serum, followed by an examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231, MCF7, LNCap, SK-BR-3, and HCT116. Finally, [68Ga]KISS1-54 was tested in LNCap- and MDA-MB-231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [68Ga]KISS1-54 was obtained in a 77 ± 7% radiochemical yield and at a >99% purity. The [68Ga]KISS1-54 cell uptake amounted to 0.6-4.4% per 100,000 cells. Moreover, the accumulation of [68Ga]KISS1-54 was effectively inhibited by nonradioactive KISS1-54. In [68Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular KISS1R expression. Our first results suggest that [68Ga]KISS1-54 is a promising candidate for a radiotracer for targeting KISS1R-expressing tumors via PET.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Gabriele Riehl
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Elke Butt
- Institute of Experimental Biomedicine II, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany;
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| |
Collapse
|
2
|
Zheng G, Su Y, Wei L, Yao Y, Wang Y, Luo X, Wang X, Ruan XZ, Li D, Chen Y. SCAP contributes to embryonic angiogenesis by negatively regulating KISS-1 expression in mice. Cell Death Dis 2023; 14:249. [PMID: 37024487 PMCID: PMC10079761 DOI: 10.1038/s41419-023-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) is indispensable in organ development because it maintains intracellular cholesterol homeostasis. The vessel is not widely conceived of as a cholesterol-sensitive tissue, so the specific role of SCAP in angiogenesis has not been paid attention to. As an important component of the vascular mesoderm, vascular smooth muscle cells (VSMCs) are widely involved in each step of angiogenesis. Here, we report for the first time that VSMC-specific ablation of SCAP inhibits VSMC proliferation and migration, interacting with endothelial cells (ECs), and finally causes defective embryonic angiogenesis in mice. Mechanistically, we demonstrated that SCAP ablation in VSMCs leads to the upregulation of KISS-1 protein, consequently resulting in suppressed activation of the MAPK/ERK signaling pathway and downregulation of matrix metalloproteinase 9 (MMP9) and vascular endothelial-derived growth factor (VEGF) expression to prevent angiogenesis. Importantly, we found that SCAP promotes the cleavage and nuclear translocation of SREBP2, which acts as a negative transcription regulator, regulating KISS-1 expression. Our findings suggest that SCAP contributes to embryonic angiogenesis by negatively regulating KISS-1 expression in mice and provide a new point of view for therapeutic targets of vascular development.
Collapse
Affiliation(s)
- Guo Zheng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yingcheng Yao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yizhe Wang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Luo
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xing Wang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Danyang Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Kim CW, Lee HK, Nam MW, Choi Y, Choi KC. Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity. Mol Cells 2022; 45:935-949. [PMID: 36572562 PMCID: PMC9794555 DOI: 10.14348/molcells.2022.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022] Open
Abstract
Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
5
|
Kim CW, Lee HK, Nam MW, Lee G, Choi KC. The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. Life Sci 2022; 310:121009. [PMID: 36181862 DOI: 10.1016/j.lfs.2022.121009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Metastatic prostate cancers have a high mortality rate. KiSS1 was originally identified as a metastasis suppressor gene in metastatic melanoma and breast cancer, but its role in prostate cancer has been contradictory. This study was therefore undertaken to investigate the effects of KiSS1 overexpression on the growth and migration of human metastatic prostate cancer cells. We first tested the effect of KiSS1 overexpression on the growth and migration of DU145 human metastatic prostate cancer cells in vitro. DU145 cells were infected with the culture medium of 293T cells, which produce lentivirus particles containing KiSS1. A 2.5-fold increase in proliferation of KiSS1-overexpressing cancer cells was observed, and these cells formed tumor spheroids about 3 times larger than the vector control group. qPCR and immunoblotting revealed the association between increased cell growth and regulation of the PI3K/Akt and cell cycle genes, and also that increases in β-catenin and CD133 contribute to tumor aggregation. KiSS1 overexpression resulted in upregulation of the β-arrestin1/2 and Raf-MEK-ERK-NF-κB pathways via KiSS1R. Moreover, the migration and invasion of KiSS1-overexpressing cells were determined to be faster than the control group, along with 1.6-fold increased metastatic colonization of the KiSS1-overexpressing cancer cells. These were associated to the regulation of EMT gene expressions, such as E-cadherin and N-cadherin, and the upregulation of MMP9. In a xenograft mouse model inoculated with DU145 cells infected GFP or KiSS1 via a lentiviral vector, KiSS1 statistically significantly increased the tumor growth, with upregulation of PCNA and Ki-67 in the tumor tissues. In addition, KiSS1 increased the angiogenic capacity by upregulating VEGF-A and CD31, both in vitro and in vivo. Taken together, our results indicate that KiSS1 not only induces prostate cancer proliferation, but also promotes metastasis by increasing the migration, invasion, and angiogenesis of malignant cells.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
6
|
Bhattacharya A, Santhoshkumar A, Kurahara H, Harihar S. Metastasis Suppressor Genes in Pancreatic Cancer: An Update. Pancreas 2021; 50:923-932. [PMID: 34643607 DOI: 10.1097/mpa.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), has for long remained a deadly form of cancer characterized by high mortality rates resulting from metastasis to multiple organs. Several factors, including the late manifestation of the disease, partly amplified by lack of efficient screening methods, have hampered the drive to design an effective therapeutic strategy to treat this deadly cancer. Understanding the biology of PDAC progression and identifying critical genes regulating these processes are essential to overcome the barriers toward effective treatment. Metastasis suppressor genes have been shown to inhibit multiple steps in the metastatic cascade without affecting primary tumor formation and are considered to hold promise for treating metastatic cancers. In this review, we catalog the bona fide metastasis suppressor genes reported in PDAC and discuss their known mechanism of action.
Collapse
Affiliation(s)
- Arnav Bhattacharya
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anirudh Santhoshkumar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
7
|
Gorbunova OL, Shirshev SV. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. BIOCHEMISTRY (MOSCOW) 2021; 85:839-853. [PMID: 33045946 DOI: 10.1134/s0006297920080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The work is focused on physiological role of the hormone kisspeptin produced by neurons of the hypothalamus anterior zone, which is a key regulator of reproduction processes. Role of the hormone in transmission of information on metabolic activity and induction of the secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus that determines gestation processes involving fertilization, placentation, fetal development, and child birth is considered. The literature data on molecular mechanisms and effects of kisspeptin on reproductive system including puberty initiation are summarized and analyzed. In addition, attention is paid to hormone-mediated changes in the cardiovascular system in pregnant women. For the first time, the review examines the effect of kisspeptin on functional activity of immune system cells presenting molecular mechanisms of the hormone signal transduction on the level of lymphoid cells that lead to the immune tolerance induction. In conclusion, a conceptual model is presented that determines the role of kisspeptin as an integrator of reproductive and immune functions during pregnancy.
Collapse
Affiliation(s)
- O L Gorbunova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| | - S V Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| |
Collapse
|
8
|
Abstract
The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.
Collapse
Affiliation(s)
- Thuc Ly
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Zhu N, Zhao M, Song Y, Ding L, Ni Y. The KiSS-1/GPR54 system: Essential roles in physiological homeostasis and cancer biology. Genes Dis 2020; 9:28-40. [PMID: 35005105 PMCID: PMC8720660 DOI: 10.1016/j.gendis.2020.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
KiSS-1, first identified as an anti-metastasis gene in melanoma, encodes C-terminally amidated peptide products, including kisspeptin-145, kisspeptin-54, kisspeptin-14, kisspeptin-13 and kisspeptin-10. These products are endogenous ligands coupled to G protein-coupled receptor 54 (GPR54)/hOT7T175/AXOR12. To date, the regulatory activities of the KiSS-1/GPR54 system, such as puberty initiation, antitumor metastasis, fertility in adulthood, hypothalamic-pituitary-gonadal axis (HPG axis) feedback, and trophoblast invasion, have been investigated intensively. Accumulating evidence has demonstrated that KiSS-1 played a key role in reproduction and served as a promising biomarker relative to the diagnosis, identification of therapeutic targets and prognosis in various carcinomas, while few studies have systematically summarized its subjective factors and concluded the functions of KiSS-1/GPR54 signaling in physiology homeostasis and cancer biology. In this review, we retrospectively summarized the regulators of the KiSS-1/GPR54 system in different animal models and reviewed its functions according to physiological homeostasis regulations and above all, cancer biology, which provided us with a profound understanding of applying the KiSS-1/GPR54 system into medical applications.
Collapse
Affiliation(s)
- Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, PR China
| |
Collapse
|
10
|
Hu KL, Chang HM, Zhao HC, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2020; 25:326-343. [PMID: 30649364 PMCID: PMC6450039 DOI: 10.1093/humupd/dmy046] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation. OBJECTIVE AND RATIONALE A successful pregnancy, from the initiation of embryo implantation to parturition, is a complex process that requires the orchestration of a series of events. This review aims to concisely summarize what is known about the role of the kisspeptin system in implantation, placentation, early human pregnancy and pregnancy-related disorders, and to develop strategies for predicting, diagnosing and treating these abnormalities. SEARCH METHODS Using the PubMed and Google Scholar databases, we performed comprehensive literature searches in the English language describing the advancement of kisspeptins and the kisspeptin receptor (KISS1R) in implantation, placentation and early pregnancy in humans, since its initial identification in 1996 and ending in July 2018. OUTCOMES Recent studies have shown the coordinated spatial and temporal expression patterns of kisspeptins and KISS1R during human pregnancy. The experimental data gathered recently suggest putative roles of kisspeptin signaling in the regulation of trophoblast invasion, embryo implantation, placentation and early pregnancy. Dysregulation of the kisspeptin system may negatively affect the processes of implantation as well as placentation. Clinical studies indicate that the circulating levels of kisspeptins or the expression levels of kisspeptin/KISS1R in the placental tissues may be used as potential diagnostic markers for women with miscarriage and gestational trophoblastic neoplasia. WIDER IMPLICATIONS Comprehensive research on the pathophysiological role of the kisspeptin/KISS1R system in implantation and placentation will provide a dynamic and powerful approach to understanding the processes of early pregnancy, with potential applications in observational and analytic screening as well as the diagnosis, prognosis and treatment of implantation failure and early pregnancy-related disorders.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hong-Cui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
12
|
Stathaki M, Stamatiou ME, Magioris G, Simantiris S, Syrigos N, Dourakis S, Koutsilieris M, Armakolas A. The role of kisspeptin system in cancer biology. Crit Rev Oncol Hematol 2019; 142:130-140. [PMID: 31401420 DOI: 10.1016/j.critrevonc.2019.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Kisspeptins are a family of neuropeptides that are known to be critical in puberty initiation and ovulation. Apart from that kisspeptin derived peptides (KPs) are also known for their antimetastatic activities in several malignancies. Herein we report recent evidence of the role of kisspeptins in cancer biology and we examine the prospective of targeting the kisspeptin pathways leading to a better prognosis in patients with malignant diseases.
Collapse
Affiliation(s)
- Martha Stathaki
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Maria Evanthia Stamatiou
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - George Magioris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Simantiris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Nikolaos Syrigos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Dourakis
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens School of Medicine Hippokration General Hospital Athens Greece, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece.
| |
Collapse
|
13
|
Taniguchi-Ponciano K, Ribas-Aparicio RM, Marrero-Rodríguez D, Arreola-De la Cruz H, Huerta-Padilla V, Muñoz N, Gómez-Ortiz L, Ponce-Navarrete G, Rodríguez-Esquivel M, Mendoza-Rodríguez M, Gómez-Virgilio L, Peralta R, Serna L, Gómez G, Ortiz J, Mantilla A, Hernández D, Hernández Á, Bandala C, Salcedo M. The KISS1 gene overexpression as a potential molecular marker for cervical cancer cells. Cancer Biomark 2018; 22:709-719. [DOI: 10.3233/cbm-181215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Keiko Taniguchi-Ponciano
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
- Programa de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Departamento de Microbiología, Escuela de Ciencias Biológicas Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Programa de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Departamento de Microbiología, Escuela de Ciencias Biológicas Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Daniel Marrero-Rodríguez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
- Laboratorio 5 Departamento de Biomedicina Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Hugo Arreola-De la Cruz
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Víctor Huerta-Padilla
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Nancy Muñoz
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Laura Gómez-Ortiz
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Gustavo Ponce-Navarrete
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Miriam Rodríguez-Esquivel
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| | - Mónica Mendoza-Rodríguez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
- Universidad Politécnico de Huatusco, Huatusco, Veracruz, Mexico
| | - Laura Gómez-Virgilio
- Laboratorio 5 Departamento de Biomedicina Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luis Serna
- Clínica de Displasias, Hospital General de México, Mexico City, Mexico
| | - Guillermo Gómez
- Clínica de Displasias, Hospital General de México, Mexico City, Mexico
| | - Jorge Ortiz
- Clínica de Displasias, Hospital General de México, Mexico City, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología CMN-SXXI, IMSS, Mexico City, Mexico
| | - Daniel Hernández
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, IMSS, Mexico City, Mexico
| | - Ángeles Hernández
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, IMSS, Mexico City, Mexico
| | - Cindy Bandala
- Unidad de Apoyo a la Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, Mexico
| | - Mauricio Salcedo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, CMN-SXXI, IMSS, Mexico City, Mexico
| |
Collapse
|
14
|
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in Cancer: Friend or Foe? Front Endocrinol (Lausanne) 2018; 9:437. [PMID: 30123188 PMCID: PMC6085450 DOI: 10.3389/fendo.2018.00437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The KISS1 gene encodes KISS1, a protein that is rapidly processed in serum into smaller but biologically active peptides called kisspeptins (KPs). KISS1 and the KPs signal via the G-protein coupled receptor KISS1R. While KISS1 and KPs are recognized as potent positive regulators of the reproductive neuroendocrine axis in mammals, the first reported role for KISS1 was that of metastasis suppression in melanoma. Since then, it has become apparent that KISS1, KPs, and KISS1R regulate the development and progression of several cancers but interestingly, while these molecules act as suppressors of tumorigenesis and metastasis in many cancers, in breast and liver cancer they function as promoters. Thus, they join a small but growing number of molecules that exhibit dual roles in cancer highlighting the importance of studying cancer in context. Given their roles, KISS1, KPs and KISS1R represent important molecules in the development of novel therapies and/or as prognostic markers in treating cancer. However, getting to that point requires a detailed understanding of the relationship between these molecules and different cancers. The purpose of this review is therefore to highlight and discuss the clinical studies that have begun describing this relationship in varying cancer types including breast, liver, pancreatic, colorectal, bladder, and ovarian. An emerging theme from the reviewed studies is that the relationship between these molecules and a given cancer is complex and affected by many factors such as the micro-environment and steroid receptor status of the cancer cell. Our review and discussion of these important clinical studies should serve as a valuable resource in the successful development of future clinical studies.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Muriel Brackstone
- Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Sally Radovick
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Andy V. Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Moshmi M. Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Moshmi M. Bhattacharya
| |
Collapse
|
15
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Abstract
Kisspeptins are a group of peptide fragments encoded by the KISS1 gene in humans. They bind to kisspeptin receptors with equal efficacy. Kisspeptins and their receptors are expressed by neurons in the arcuate and anteroventral periventricular nuclei of the hypothalamus. Oestrogen mediates negative feedback of gonadotrophin-releasing hormone secretion via the arcuate nucleus. Conversely, it exerts positive feedback via the anteroventral periventricular nucleus. The sexual dimorphism of these nuclei accounts for the differential behaviour of the hypothalamic-pituitary-gonadal axis between genders. Kisspeptins are essential for reproductive function. Puberty is regulated by the maturation of kisspeptin neurons and by interactions between kisspeptins and leptin. Hence, kisspeptins have potential diagnostic and therapeutic applications. Kisspeptin agonists may be used to localise lesions in cases of hypothalamic-pituitary-gonadal axis dysfunction and evaluate the gonadotrophic potential of subfertile individuals. Kisspeptin antagonists may be useful as contraceptives in women, through the prevention of premature luteinisation during in vitro fertilisation, and in the treatment of sex steroid-dependent diseases and metastatic cancers.
Collapse
Affiliation(s)
- Eng Loon Tng
- Associate Consultant, Department of Medicine, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Singapore 609606
| |
Collapse
|
17
|
Yaron M, Renner U, Gilad S, Stalla GK, Stern N, Greenman Y. KISS1 receptor is preferentially expressed in clinically non-functioning pituitary tumors. Pituitary 2015; 18:306-11. [PMID: 24817066 DOI: 10.1007/s11102-014-0572-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE KISS1 is a metastasis suppressor gene involved in cancer biology. Given the high expression levels of KISS1 and KISS1R in the hypothalamus and the pituitary respectively, we hypothesized that this system could possibly affect tumor invasiveness and clinical behavior of pituitary tumors. METHODS Expression levels of KISS1 and KISS1R mRNA were evaluated by RT-PCR. Clinical information pertaining tumor characteristics was extracted from patients' charts. RESULTS Tumors from 39 patients (21 females, mean age 47.5 years) were examined. KISS1R was expressed in 26 (67%) of samples (94% of NFPA, 42% of GH-, 67% of ACTH-, and 25% of PRL-secreting adenomas) and was found more often in female patients (81 vs. 50% males, p < 0.05); and in NFPA (94 vs. 45.5% in secreting tumors; p = 0.003). Patients expressing KISS1R were older at presentation (50.5 ± 1.4 vs. 38.1 ± 1.3 years; p = 0.008). In the multivariate analysis, factors significantly associated with KISS1R expression included female gender (OR 13.8, 95 % CI 1.22-155.9; p = 0.03) and having a NFPA (OR 24.7, 95% CI 1.50-406.4; p = 0.02). Tumor size, invasiveness and age at presentation were not independently associated with KISS1R expression. Pituitary tumors and normal pituitary were negative for KISS1 mRNA expression. CONCLUSIONS The majority of human NFPA expressed KISS1R with lower rates of expression in other types of pituitary tumors. KISS1R expression did not impart a clinical beneficial tumor phenotype, as it was not associated with tumor size or invasiveness. Additional studies are required to elucidate the role of KISS1 receptor in pituitary gland physiology and pathology.
Collapse
Affiliation(s)
- Marianna Yaron
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann Street, 64239, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Prabhu VV, Sakthivel KM, Guruvayoorappan C. Kisspeptins (KiSS-1): essential players in suppressing tumor metastasis. Asian Pac J Cancer Prev 2015; 14:6215-20. [PMID: 24377507 DOI: 10.7314/apjcp.2013.14.11.6215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP- 10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers.
Collapse
|
19
|
Yuan TZ, Zhang HH, Tang QF, Zhang Q, Li J, Liang Y, Huang LJ, Zheng RH, Deng J, Zhang XP. Prognostic value of kisspeptin expression in nasopharyngeal carcinoma. Laryngoscope 2013; 124:E167-74. [PMID: 24254791 DOI: 10.1002/lary.24467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/23/2013] [Accepted: 10/10/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES/HYPOTHESIS The KiSS-1 gene has been reported to serve as a metastasis suppressor gene in various human malignancies. However, no information is available regarding the role of the KiSS-1 gene or its gene product kisspeptin in nasopharyngeal carcinoma. STUDY DESIGN Retrospective study. METHODS Kisspeptin and its receptor AXOR12 expression were assessed using immunohistochemistry in paraffin-embedded tumor tissues from 140 patients diagnosed with nasopharyngeal carcinoma. Immunoreactivity was quantified, and its relationships with patients' clinical parameters and survival were analyzed. RESULTS Using a 50% cutoff level, the immunoreactivities of kisspeptin and AXOR12 were divided into low and high expression. The expression levels of kisspeptin and AXOR12 in nasopharyngeal carcinoma were well correlated with each other (rs = 19.31, P < 0.01). Low expression of kisspeptin in nasopharyngeal carcinoma was correlated with clinical stage (P = 0.01), N stage (P = 0.03), and metastasis (P = 0.02). Patients with low kisspeptin expression had poorer distant metastasis-free survival than those with high kisspeptin expression (75.32% vs. 83.79%, P = 0.02). Although neither kisspeptin nor AXOR12 were found to be prognostic factors for overall survival, kisspeptin was determined to be an independent prognostic factor for distant metastasis-free survival (P = 0.03) using multivariate analysis. CONCLUSION In this study, we report for the first time that low kisspeptin expression in nasopharyngeal carcinoma is correlated with poor clinical outcome; kisspeptin could serve as an independent prognostic marker for metastasis in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiotherapy, Tumor Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cvetković D, Babwah AV, Bhattacharya M. Kisspeptin/KISS1R System in Breast Cancer. J Cancer 2013; 4:653-61. [PMID: 24155777 PMCID: PMC3805993 DOI: 10.7150/jca.7626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 01/18/2023] Open
Abstract
Kisspeptins (KP), peptide products of the kisspeptin-1 (KISS1) gene are the endogenous ligands for a G protein-coupled receptor (GPCR) - KP receptor (KISS1R). KISS1R couples to the Gαq/11 signaling pathway. KISS1 is a metastasis suppressor gene and the KP/KISS1R signaling has anti-metastatic and tumor-suppressant effects in numerous human cancers. On the other hand, recent studies indicate that KP/KISS1R pathway plays detrimental roles in breast cancer. In this review, we summarize recent developments in the understanding of the mechanisms regulating KP/KISS1R signaling in breast cancer metastasis.
Collapse
Affiliation(s)
- Donna Cvetković
- 1. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
21
|
Ji K, Ye L, Mason MD, Jiang WG. The Kiss-1/Kiss-1R complex as a negative regulator of cell motility and cancer metastasis (Review). Int J Mol Med 2013; 32:747-54. [PMID: 23969598 DOI: 10.3892/ijmm.2013.1472] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022] Open
Abstract
Metastasis is a complex multistep process that involves the impairment of cell-cell adhesion in the neoplastic epithelium, invasion into adjacent tissues and the dissemination of cancer cells through the lymphatic and haematogenous routes. The inhibition of the metastatic process at an early stage has become a hot topic in cancer research. The Kiss-1 gene, initially described as a suppressor of metastasis in malignant melanoma, encodes the Kiss-1 protein which can be processed to other peptides, e.g., Kisspeptin-10, Kisspeptin-13, Kisspeptin-14 and Kisspeptin-54. These peptides are endogenous ligands of the Kiss‑1 receptor (Kiss-1R), a G protein-coupled receptor (GPR) also known as hOT7T175, AXOR12 or GPR54. The Kiss-1 gene has been suggested as a suppressor of metastasis in a various types of cancer, including gastric cancer, oesophageal carcinoma, pancreatic, ovarian, bladder and prostate cancer, through the regulation of cellular migration and invasion. In the current review, we summarise the current understanding of the role of Kiss‑1 and Kiss‑1R in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Ke Ji
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK
| | | | | | | |
Collapse
|
22
|
Sun YB, Xu S. Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. Int J Oncol 2013; 43:521-30. [PMID: 23716269 DOI: 10.3892/ijo.2013.1967] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer worldwide. Loss of KISS1 expression has been associated with progression and poor prognosis of various cancers, however, the precise role of KISS1 expression in non-small cell lung cancer (NSCLC) is not well defined. KISS1 receptor (KISS1R, also named GPR54) coupled to KISS1, has been shown to play a pivotal role in suppressing cancer metastasis. In this study, 56 NSCLC specimens were divided into stage IIIB (locally advanced) and stage IV (metastatic). The mRNA and protein levels of KISS1 and KISS1R in cancer tissues were found to be lower compared to that in normal tissues using RT-PCR and western blot analysis, respectively. In addition, the expression of both KISS1 and KISS1R in stage IV NSCLC was lower compared to that in stage IIIB stage NSCLC. The cumulative survival rate of the patients with KISS1 or KISS1R expression was significantly higher compared to that without expression. KISS1 or KISS1R expression in NSCLC can be used to indicate favorable prognosis for disease outcome. Metastin, the product of the KISS1 gene, was lower in the serum of patients with stage IV NSCLC compared to that in stage IIIB NSCLC.
Collapse
Affiliation(s)
- Yan-Bin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, PR China
| | | |
Collapse
|
23
|
Ziegler E, Olbrich T, Emons G, Gründker C. Antiproliferative effects of kisspeptin‑10 depend on artificial GPR54 (KISS1R) expression levels. Oncol Rep 2012; 29:549-54. [PMID: 23152107 DOI: 10.3892/or.2012.2135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/18/2012] [Indexed: 11/05/2022] Open
Abstract
Kisspeptins are peptides derived from the metastasis suppressor gene KISS1 interacting with GPR54 as their corresponding receptor. The KISS1/GPR54 system is one regulator of cellular motility mechanisms leading to decreased migration and invasion. Its role in cell proliferation processes is not clearly understood. In this study, breast cancer cell lines, T47D, ZR75-1, MDA‑MB‑231, MDA‑MB‑435s, MDA‑MB‑453, HCC 70, HCC 1806, HCC 1937 and MCF‑7, were investigated for their endogenous GPR54 expression by immunocytochemistry, RT‑PCR and western blot analysis. The effect of kisspeptin‑10 on proliferation was measured in MDA‑MB‑231, MDA‑MB‑435s, HCC 1806 and MCF‑7 cells. Further experiments on proliferation were carried out with cells transfected with GPR54. All of the tested breast cancer cell lines expressed GPR54 in different amounts. No effects on proliferation were detected in the breast cancer cells expressing the receptor endogenously. In transfected neuronal cells overexpressing GPR54, proliferation was significantly inhibited by kisspeptin‑10. The results indicate that the antiproliferative action of kisspeptin depends on the nature of GPR54 expression. The effect was detected in an artificial system of cells transfected with GPR54 and not in cells expressing the receptor endogenously. Thus, the antiproliferative action of kisspeptin seems not to be important for pathophysiological processes.
Collapse
Affiliation(s)
- Elke Ziegler
- Department of Gynecology and Obstetrics, Georg-August-University, Goettingen, Germany
| | | | | | | |
Collapse
|
24
|
|
25
|
Takeda T, Kikuchi E, Mikami S, Suzuki E, Matsumoto K, Miyajima A, Okada Y, Oya M. Prognostic role of KiSS-1 and possibility of therapeutic modality of metastin, the final peptide of the KiSS-1 gene, in urothelial carcinoma. Mol Cancer Ther 2012; 11:853-63. [PMID: 22367780 DOI: 10.1158/1535-7163.mct-11-0521] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The KiSS-1 gene has been reported to be a metastasis suppressor gene in human melanoma. The gene product was isolated from human placenta as the ligand of GPR54, a G protein-coupled receptor, and the C-terminally amidated peptide of 54 amino acids is called metastin. The binding of metastin to GPR54 has been shown to inhibit tumor metastasis in some tumor cells; however, its function remains unclear in urothelial carcinoma. We first evaluated KiSS-1 expression and GPR54 expression in 151 patients with upper urinary tract urothelial carcinoma to determine their prognostic significance. Next, we examined the role of metastin in the invasiveness and lung metastasis of MBT-2 variant (MBT-2V), which is a highly metastatic murine bladder cancer cell. Multivariate analysis revealed that KiSS-1 expression was an independent predictor of metastasis and overall survival. However, GPR54 expression was not selected. Hematogeneous metastasis had a significantly lower level of KiSS-1 expression compared with lymph node metastasis. Metastin treatment significantly reduced the invasiveness of MBT-2V cells and inhibited the DNA-binding activity of NF-κB by blocking its nuclear translocation, leading to a reduction in the expression and activity of matrix metalloproteinase-9. Metastin treatment dramatically prevented the occurrence of lung metastatic nodules (6.3 ± 2.3, n = 15) compared with controls (30.4 ± 5.1, n = 15; P < 0.01), as well as had survival benefit. KiSS-1 plays an important role in the prognosis of upper tract urothelial carcinoma and metastin may be an effective inhibitor of metastasis in urothelial carcinoma through its blockade of NF-κB function.
Collapse
Affiliation(s)
- Toshikazu Takeda
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jarząbek K, Kozłowski L, Milewski R, Wołczyński S. KiSS1/GPR54 and estrogen-related gene expression profiles in primary breast cancer. Oncol Lett 2012; 3:930-934. [PMID: 22741021 DOI: 10.3892/ol.2012.582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/18/2012] [Indexed: 01/19/2023] Open
Abstract
The estrogen receptor α (ERα)-mediated pathway plays a critical role in breast cancer development and progression. KiSS1 was previously described as a metastasis suppressor gene in certain carcinomas. However, the role of KiSS1/GPR54 in breast cancer remains controversial. Whether the function of the KiSS1/GPR54 system depends on estrogen signaling in the breast cancer cell remains to be determined. This study aimed to determine the expression profiles of the KiSS1/GPR54, ERα, ERβ, aromatase and cyclin D1 genes in human breast cancer tissues, and to identify a possible link between the expression levels of the studied genes and the selected clinical and pathological features. The study subjects comprised 59 females treated surgically for primary breast cancer. Total RNA was extracted from frozen breast cancer tissues, and expression levels were examined to determine any correlations. We observed strong positive correlations between the expression levels of the studied genes. The expression of ERα correlated positively with progesterone receptors (PRs), and in these tumors we also observed positive correlations between KiSS1, GPR54 and cyclin D1 mRNAs and the ERα protein. ER-positive breast tumors exhibited higher KiSS1 and GPR54 levels than the ER-negative tumors. The expression levels of the ERα and GPR54 transcripts were higher in the moderately differentiated tumors (G2) compared to the poorly differentiated high-grade (G3) cancers. We also found that HER-2/neu status in breast cancer is negatively associated with GPR54 mRNA expression. Decreasing GPR54 mRNA expression levels in HER-2/neu (+) tumors may be associated with the deregulation of the classical estrogen-mediated signaling pathway in breast tumors, and therefore, with promotion of tumor invasiveness. Our findings indicate that genes involved in the KiSS1/GPR54 system, as well as in the estrogen signaling pathway, may be utilizable molecular factors in pathogenesis studies of breast cancer.
Collapse
Affiliation(s)
- Katarzyna Jarząbek
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
27
|
Wang H, Jones J, Turner T, He QP, Hardy S, Grizzle WE, Welch DR, Yates C. Clinical and biological significance of KISS1 expression in prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1170-1178. [PMID: 22226740 DOI: 10.1016/j.ajpath.2011.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 11/14/2011] [Indexed: 12/27/2022]
Abstract
For men in the United States, prostate cancer (PCa) is the most frequent malignancy and the second leading cause of cancer mortality. The metastatic spread of PCa is responsible for most deaths related to PCa. Although KISS1 functions as a metastasis suppressor in various cancers, its expression levels and functions in PCa development and progression remain undetermined. The goals of this study were to correlate the expression levels of KISS1 in PCas with clinicopathologic characteristics and to assess the biological relevance of KISS1 to the viability and motility of PCa cells. Strong KISS1 staining was detected in benign prostate tissues, but the staining was weaker in primary and metastatic PCas (both P < 0.001, t-test). Furthermore, the low expression levels of KISS1 in PCas correlated with clinical stage (P < 0.01) and with KISS1R expression (P < 0.001). Overexpression of full-length KISS1 in low KISS1-expressing PC-3M cells, but not KFMΔSS, which lacks the secretion signal sequence, induced re-sensitization of cells to anoikis, although it had no effect on either cell proliferation or apoptosis. Overexpression of KISS1 also suppressed steps in the metastatic cascade, including motility and invasiveness. Moreover, cells overexpressing KISS1 were found to enhance chemosensitivity to paclitaxel. Collectively, our data suggest that KISS1 functions as a metastasis suppressor in PCas and may serve as a useful biomarker as well as a therapeutic target for aggressive PCas.
Collapse
Affiliation(s)
- Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama.
| | - Jacqueline Jones
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Timothy Turner
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Qinghua P He
- Department of Chemical Engineering, Tuskegee University, Tuskegee, Alabama
| | - Shana Hardy
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - William E Grizzle
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama.
| |
Collapse
|
28
|
Ruiz MT, Galbiatti ALS, Pavarino EC, Maniglia JV, Goloni-Bertollo EM. Q36R polymorphism of KiSS-1 gene in Brazilian head and neck cancer patients. Mol Biol Rep 2012; 39:6029-34. [PMID: 22209985 DOI: 10.1007/s11033-011-1416-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/19/2011] [Indexed: 01/18/2023]
Abstract
The KiSS-1 metastasis-suppressor gene (KiSS-1) product (metastin, kisspeptin) is reported to act after binding with the natural ligand of a G-protein coupled receptor and this gene product inhibits chemotaxis, invasion, and metastasis of cells. The aim of this study was to evaluate the Q36R polymorphism of KiSS-1 in patients with head and neck cancer and to compare the results with healthy individuals and its association with clinicopathological parameters. Gender, age, smoking and alcohol consumption were analyzed for 744 individual (252 head and neck cancer patients and in 522 control individuals). The molecular analysis of these individuals was made after extraction of genomic DNA using the SSCP-PCR technique. This study did not reveal any significant differences in genotype frequencies between healthy individuals and patients with head and neck cancer or with the clinical parameters. This study showed an increase frequency of the Q36R polymorphism in pharyngeal cancer.
Collapse
Affiliation(s)
- Mariângela Torreglosa Ruiz
- Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | | | | | | | | |
Collapse
|
29
|
Ulasov IV, Kaverina NV, Pytel P, Thaci B, Liu F, Hurst DR, Welch DR, Sattar HA, Olopade OI, Baryshnikov AY, Kadagidze ZG, Lesniak MS. Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer 2011; 118:2096-105. [PMID: 21928364 DOI: 10.1002/cncr.26525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Metastases to the brain represent a feared complication and contribute to the morbidity and mortality of breast cancer. Despite improvements in therapy, prognostic factors for development of metastases are lacking. KISS1 is a metastasis suppressor that demonstrates inhibition of metastases formation in several types of cancer. The purpose of this study was to determine the importance of KISS1 expression in breast cancer progression and the development of intracerebral lesions. METHODS In this study, we performed a comparative analysis of 47 brain metastases and 165 primary breast cancer specimens by using the antihuman KISS1 antibody. To compare KISS1 expression between different groups, we used a 3-tier score and the automated score computer software (ACIS) evaluation. To reveal association between mRNA and protein expression, we used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Significance of immunohistochemistry stainings was correlated with clinicopathological data. RESULTS We identified that KISS1 expression is significantly higher in primary breast cancer compared with brain metastases (P < .05). The mRNA analysis performed on 33 selected ductal carcinoma brain metastatic lesions and 36 primary ductal carcinomas revealed a statistically significant down-regulation of KISS1 protein in metastatic cases (P = .04). Finally, we observed a significant correlation between expression of KISS1 and metastasis-free survival (P = .04) along with progression of breast cancer and expression of KISS1 in primary breast cancer specimens (P = .044). CONCLUSIONS In conclusion, our study shows that breast cancer expresses KISS1. Cytoplasmic expression of KISS1 may be used as a prognostic marker for increased risk of breast cancer progression.
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Over the past 25 years, an expanding set of metastasis-suppressor genes (MSGs) has been identified that specifically regulate metastasis formation without affecting primary growth. MSGs are involved in diverse molecular processes in multiple tumor types. Given the wealth of metastasis biology that underlies their functions, treatment strategies based on MSGs have an unparalleled potential to improve patient care. Using NM23 as a prime example, we discuss how specific MSGs have been used as prognostic markers, tools for predicting response to treatment, and targets for the development of novel therapies. Barriers specific to the translation of MSG biology into clinical practice are reviewed and future research directions necessary for clinical advances are delineated. Although to date the impact of MSGs on patient care is limited, it is an expanding field with vast potential to help develop new treatments and identify patients who will most benefit from them.
Collapse
|
31
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
32
|
Kirby HR, Maguire JJ, Colledge WH, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol Rev 2010; 62:565-78. [PMID: 21079036 PMCID: PMC2993257 DOI: 10.1124/pr.110.002774] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the convention of naming the receptor protein after the endogenous ligand. The endogenous ligand was initially called metastin, after its role as a metastasis suppressor, and is now referred to as kisspeptin-54 (KP-54), a C-terminally amidated 54-amino acid peptide cleaved from the 145-amino acid gene product. Shorter C-terminal cleavage fragments [KP-14, KP-13 and KP-10 (the smallest active fragment)] are also biologically active. Both receptor and peptide are widely expressed in human, rat, and mouse; the receptor sequence shares more than 80% homology in these species. Activation of the kisspeptin receptor by kisspeptin is via coupling to G(q/11) and the phospholipase C pathway, causing Ca(2+) mobilization. Mutations in the KISS1R gene result in hypogonadotropic hypogonadotropism, and targeted disruption of Kiss1r in mice reproduces this phenotype, which led to the discovery of the remarkable ability of the kisspeptin receptor to act as a molecular switch for puberty. In addition to regulating the reproductive axis, the kisspeptin receptor is also implicated in cancer, placentation, diabetes, and the cardiovascular system.
Collapse
Affiliation(s)
- Helen R Kirby
- Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
33
|
Shoji S, Tang XY, Sato H, Usui Y, Uchida T, Terachi T. Metastin has potential as a suitable biomarker and novel effective therapy for cancer metastasis (Review). Oncol Lett 2010; 1:783-788. [PMID: 22966379 DOI: 10.3892/ol_00000136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/06/2010] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is a leading cause of death in cancer patients and is a multistep process involving complex interactions between tumor and host cells. To metastasize, tumor cells must invade or migrate from the primary tumor and be transported to close or distant secondary sites. A tumor cell should successfully accomplish each step of the pathway or metastasis may not develop. KiSS-1 is a human metastasis suppressor gene that inhibits metastasis of human melanomas and breast carcinomas without affecting tumorigenicity. KiSS-1 encodes a carboxy-terminally amidated peptide with 54 amino-acid residues. The peptide was isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor and termed 'metastin'. The literature reports metastin related to human carcinoma, such as melanoma, thyroid cancer, esophageal squamous cell carcinoma (ESCC), hepatocellular carcinoma, pancreatic carcinoma, as well as breast, ovarian, bladder and kidney cancer. These malignancies are difficult to treat and, even in early-stage cancer, a number of patients develop metastasis shortly after surgery. Studies have suggested that metastin inhibits tumor invasion or migration through focal adhesion kinase, paxillin, MAP kinase or Rho A. Additionally, metastin may be a biomarker in ESCC, pancreatic carcinoma and bladder cancer. Metastin has potential as a suitable biomarker in the identification of tumors with high metastatic potential and as a novel effective treatment modality for patients with metastasis.
Collapse
Affiliation(s)
- Sunao Shoji
- Department of Urology, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Beck BH, Welch DR. The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 2010; 46:1283-9. [PMID: 20303258 DOI: 10.1016/j.ejca.2010.02.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/16/2010] [Indexed: 01/01/2023]
Abstract
Re-expression of KISS1 in tumor cell lines allows all antecedent steps of metastasis, but prevents colonization of secondary sites. Because tumor cells have already disseminated by the time of cancer diagnosis, KISS1 may represent a new opportunity for therapeutic intervention. Moreover, numerous clinical reports demonstrate that a loss or reduction of KISS1 expression in different human cancers inversely correlates with tumor progression, metastasis, and survival. Taken together, these observations compel the hypothesis that KISS1 could be of tremendous utility in controlling metastasis in a therapeutic context. In this review, we highlight some key findings from preclinical and clinical studies and discuss strategies whereby KISS1 may be exploited clinically to treat metastases.
Collapse
Affiliation(s)
- Benjamin H Beck
- Department of Pathology, University of Alabama, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
35
|
Shengbing Z, Feng LJ, Bin W, Lingyun G, Aimin H. Expression of KiSS-1 gene and its role in invasion and metastasis of human hepatocellular carcinoma. Anat Rec (Hoboken) 2009; 292:1128-34. [PMID: 19645016 DOI: 10.1002/ar.20950] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
KiSS-1 has been identified as a putative metastasis-suppressor gene in human melanomas and breast cancer cell lines. Although loss of KiSS-1 expression has been associated with progression and poor prognosis of various cancers, the exact role of KiSS-1 expression in HCC is not well-defined. Our study investigated KiSS-1 expression levels in HCC and its role in invasion and metastasis of human HCC. The expression levels of KiSS-1 and MMP-9 protein were determined by tissue microarray (TMA) serial sections, immunohistochemistry and semi-quantitative image analysis. All clinical and histological data obtained were subjected to statistical analysis. The expression of KiSS-1 protein in HCC and intrahepatic metastasis lesions was significantly lower (P < 0.01) when compared with non-tumor liver tissue and normal liver tissue. Multivariate analysis revealed a significant inverse correlation between KiSS-1 expression and o1 TNM stage, (F = 7.113, P < 0.01) and o2 intrahepatic metastasis (t = 2.898, P < 0.01). Loss of KiSS-1 in intrahepatic metastasis versus primary carcinomas was statistically significant (P<0.01). We also found a negative correlation between KiSS-1 and MMP-9 expression in HCC (r = -0.506, P < 0.01). We conclude that loss of KiSS-1 during HCC metastasis, along with a concomitant upregulation of MMP-9 suggests a possible mechanism for cell motility and invasion during HCC metastasis, with KiSS-1 emerging as a possible therapeutic target during HCC metastasis.
Collapse
Affiliation(s)
- Zang Shengbing
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian, China
| | | | | | | | | |
Collapse
|
36
|
Cho SG, Yi Z, Pang X, Yi T, Wang Y, Luo J, Wu Z, Li D, Liu M. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res 2009; 69:7062-70. [PMID: 19671799 PMCID: PMC3242001 DOI: 10.1158/0008-5472.can-09-0476] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kisspeptin-10 (Kp-10), a decapeptide derived from the primary translation product of KISS1 gene, has been reported previously to be a key hormone for puberty and an inhibitor for tumor metastasis via the activation of G protein-coupled receptor 54. However, whether Kp-10 inhibits angiogenesis, which is critical for tumor growth and metastasis and other human diseases, is still unknown. Here we show that Kp-10 significantly inhibits human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation, key processes in angiogenesis. Using chicken chorioallantoic membrane assay and vascular endothelial growth factor (VEGF)-induced mouse corneal micropocket assay, we show that Kp-10 inhibits angiogenesis in vivo. Furthermore, Kp-10 inhibits tumor growth in severe combined immunodeficient mice xenografted with human prostate cancer cells (PC-3) through inhibiting tumor angiogenesis, whereas Kp-10 has little effect on the proliferation of HUVECs and human prostate cancer cells. In deciphering the underlying molecular mechanisms, we show that Kp-10 suppresses VEGF expression by inhibiting the binding of specificity protein 1 to VEGF promoter and by blocking the activation of c-Src/focal adhesion kinase and Rac/Cdc42 signaling pathways in HUVECs, leading to the inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Sung-Gook Cho
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Interdisciplinary Genetics Program, Texas A&M University, College Station, TX77843
| | - Zhengfang Yi
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Pang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tingfang Yi
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ying Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Jian Luo
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zirong Wu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dali Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Interdisciplinary Genetics Program, Texas A&M University, College Station, TX77843
| |
Collapse
|
37
|
Nagai K, Doi R, Katagiri F, Ito T, Kida A, Koizumi M, Masui T, Kawaguchi Y, Tomita K, Oishi S, Fujii N, Uemoto S. Prognostic value of metastin expression in human pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:9. [PMID: 19154616 PMCID: PMC2639538 DOI: 10.1186/1756-9966-28-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/21/2009] [Indexed: 01/03/2023]
Abstract
BACKGROUND KiSS-1 was identified as a metastasis-suppressing gene in melanoma cells. The KiSS-1 gene product (metastin) was isolated from human placenta as the ligand of GPR54, a G-protein-coupled receptor. The role of metastin and GPR54 in tumor progression is not fully understood. METHODS We investigated the clinical significance of metastin and GPR54 expression in pancreatic cancer. We evaluated immunohistochemical expression of metastin and GPR54 in pancreatic ductal adenocarcinoma tissues obtained from 53 consecutive patients who underwent resection between July 2003 and May 2007 at Kyoto University Hospital. In 23 consecutive patients, the plasma metastin level was measured before surgery by enzyme immunoassay. RESULTS Strong immunohistochemical expression of metastin was detected in 13 tumors (24.5%), while strong expression of GPR54 was detected in 30 tumors (56.6%). Tumors that were negative for both metastin and GPR54 expression were significantly larger than tumors that were positive for either metastin or GPR54 (p = 0.047). Recurrence was less frequent in patients who had metastin-positive tumors compared with those who had metastin-negative tumors (38.5% versus 70.0%, p = 0.04). Strong expression of metastin and GPR54 was significantly correlated with longer survival (p = 0.02). Metastin expression by pancreatic cancer was an independent prognostic factor for longer survival (hazard ratio, 2.1; 95% confidence interval, 1.1-4.7; p = 0.03), and the patients with a high plasma metastin level (n = 6) did not die after surgical resection. CONCLUSION Strong expression of metastin and GPR54 by pancreatic cancer is associated with longer survival. Metastin expression is an independent prognostic factor for the survival of pancreatic cancer patients. The plasma metastin level could become a noninvasive prognostic factor for the assessment of pancreatic cancer.
Collapse
Affiliation(s)
- Kazuyuki Nagai
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moon JS, Lee YR, Oh DY, Hwang JI, Lee JY, Kim JI, Vaudry H, Kwon HB, Seong JY. Molecular cloning of the bullfrog kisspeptin receptor GPR54 with high sensitivity to Xenopus kisspeptin. Peptides 2009; 30:171-9. [PMID: 18550222 DOI: 10.1016/j.peptides.2008.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
Abstract
Kisspeptin and its receptor, GPR54, play important roles in mammalian reproduction and cancer development. However, little is known about their function in nonmammalian species. In the present study, we have isolated the cDNA encoding the kisspeptin receptor, GPR54, from the bullfrog, Rana catesbeiana. The bullfrog GPR54 (bfGPR54) cDNA encodes a 379-amino acid heptahelical G protein-coupled receptor. bfGPR54 exhibits 45-46% amino acid identity with mammalian GPR54s and 70-74% identity with fish GPR54s. RT-PCR analysis showed that bfGPR54 mRNA is highly expressed in the forebrain, hypothalamus and pituitary. Upon stimulation by synthetic human kisspeptin-10 with Phe-amide residue at the C-terminus (h-Kiss-10F), bfGPR54 induces SRE-luc activity, a PKC-specific reporter, evidencing the PKC-linked signaling pathway of bfGPR54. Using a blast search, we found a gene encoding a kisspeptin-like peptide in Xenopus. The C-terminal decapeptide of Xenopus kisspeptin shows higher amino acid sequence identity to fish Kiss-10s than mammalian Kiss-10s. A synthetic Xenopus kisspeptin peptide (x-Kiss-12Y) showed a higher potency than mammalian Kiss-10s in the activation of bfGPR54. This study expands our understanding of the physiological roles and molecular evolution of kisspeptins and their receptors.
Collapse
Affiliation(s)
- Jung Sun Moon
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Kisspeptins are the protein products encoded by KiSS1 gene, an important tumor metastatic suppressor and pivotal master hormone of puberty. Although KiSS1 gene is expressed in both central and peripheral tissues, the molecular mechanisms that determine the temporal and spatial expression of KiSS1 gene are not well understood. This review provides an update on the latest studies and ideas about the expression of KiSS1 gene as a puberty gatekeeper and a metastasis suppressor, with special emphasis on the molecular mechanisms for the transcriptional regulation of KiSS1 gene expression.
Collapse
Affiliation(s)
- Dali Li
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | | | | |
Collapse
|
40
|
Makri A, Pissimissis N, Lembessis P, Polychronakos C, Koutsilieris M. The kisspeptin (KiSS-1)/GPR54 system in cancer biology. Cancer Treat Rev 2008; 34:682-92. [PMID: 18583061 DOI: 10.1016/j.ctrv.2008.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 10/21/2022]
Abstract
Kisspeptin (KiSS-1) gene, initially described as a melanoma metastasis suppressor gene, encodes a number of peptides (kp-54, kp-14, kp-13, kp-10), which are endogenous ligands to a G protein-coupled receptor, referred as hOT7T175 or AXOR12 or GPR54. So far intensive investigation has provided substantiate evidence supporting the role of KiSS-1/GPR54 system in cancer biology as well as in the regulation of the reproductive function and trophoblast invasion. The precise mechanism by which KiSS-1/GPR54 system is affecting cancer cell growth and metastasis includes complex endocrine, paracrine and autocrine actions. Nevertheless, the detail mechanism of such actions is still under intensive investigation. Herein we review the evidence which support the role of KiSS-1/GPR54 system in cancer biology.
Collapse
Affiliation(s)
- Angeliki Makri
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, 75 Micras Asias, Goudi-Athens 115 27, Greece.
| | | | | | | | | |
Collapse
|
41
|
Simanovsky M, Berlinsky S, Sinai P, Leiba M, Nagler A, Galski H. Phenotypic and gene expression diversity of malignant cells in human blast crisis chronic myeloid leukemia. Differentiation 2008; 76:908-22. [PMID: 18452548 DOI: 10.1111/j.1432-0436.2008.00270.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) is considered as a paradigm of neoplasias developing through multistep track. It is believed that in the blast crisis (BC) terminal phase of the disease, blood-circulating blasts represent an expansion of a single CML clone. However, although these blasts grow mostly in suspension under standard culture conditions, a relatively small cell-fraction adheres to the plastic dish. Yet, it is unknown whether these two cell-fractions are distinct sub-populations that originated from a common CML clone and whether they have different biological and malignant properties. To address these questions, we have characterized the plastic-adherent and non-adherent sub-populations of various cell lines and primary cells derived from patients with CML in BC. This study indicated that the adherent-subsets retain repopulating ability with indications of increased malignant properties as greater anchorage-independent clonogenicity, impairment of cell-cell contact inhibition, loss of serum-dependent attenuation of plastic-adhesion, and a significant up-regulation of the oncogenes BCR-ABL, c-JUN, and c-FOS along with the adhesion-related genes KiSS-1, THBS3, and ITGB5. The adherent blasts stably retain their unique properties even after elimination of the adherence selection pressure. Sub-cloning analyses indicated that the adherent cells could be continuously evolved from any parental non-adherent clone in a unidirectional manner. This study provides new insights into the biology and the malignant evolution of CML, indicating that at the BC phase, circulating blasts are heterogeneous and consisting of at least two distinct populations of a common clonal origin. The existence of a minor "pool" of blasts of greater clonogenic capacity along with significantly higher expression level of BCR-ABL, individually or in conjunction with other cancer and adhesion-related genes, might also signify clonal evolution toward subsequent increased malignancy and lower therapeutic sensitivity.
Collapse
Affiliation(s)
- Masha Simanovsky
- Division of Hematology and Bone Marrow Transplantation, Laboratory of Molecular Immunobiology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Tomita K, Oishi S, Ohno H, Fujii N. Structure-activity relationship study and NMR analysis of fluorobenzoyl pentapeptide GPR54 agonists. Biopolymers 2008; 90:503-11. [DOI: 10.1002/bip.20968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Abstract
The G-protein coupled receptor GPR54 has an essential role in the initiation and maintenance of mammalian fertility. Humans and mice with mutations in GPR54 have hypogonadotropic hypogonadism characterized by absence of sexual maturation and low levels of gonadotropic hormones (LH and FSH). The ligand for GPR54 is encoded by the KISS1 gene, which produces a 54-amino-acid peptide (metastin or kisspeptin-54) that can be cleaved into shorter peptides (kisspeptins 14, 13 and 10) with similar potencies. Kisspeptin administration stimulates gonadotropin release in several species by inducing GnRH secretion from hypothalamic GnRH neurons expressing GPR54. Kisspeptins are produced by neurons located in the AVPV and ARC regions of the hypothalamus. Expression of Kiss1 in these neurons is differentially regulated by sex steroids providing a mechanism by which testosterone or estrogen can regulate GnRH release. The AVPV region is sexually dimorphic with highest expression of kisspeptin in females. Positive feedback by estrogen on expression of Kiss1 in the AVPV region may be responsible for the pre-ovulatory LH surge during the estrus cycle. Central administration of kisspeptin to immature female rats can induce precocious activation of the gonadotropic axis, causing advanced vaginal opening, elevated uterus weight, increased serum levels of LH and estrogen and induce ovulation. Kisspeptins/GPR54 have also been implicated in regulating the estrus cycle of seasonal breeders and in the control of lactational amenorrhea. Expression of Gpr54 and Kiss1 have also been reported in several peripheral tissues including the pituitary, ovary, testes and the placenta raising the possibility that these genes may have additional functions in these tissues. Regulation of kisspeptin expression by peripheral factors such as leptin may be involved in coordinating metabolic status with the reproductive axis.
Collapse
Affiliation(s)
- W H Colledge
- Physiological Laboratory, Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Prentice LM, Klausen C, Kalloger S, Köbel M, McKinney S, Santos JL, Kenney C, Mehl E, Gilks CB, Leung P, Swenerton K, Huntsman DG, Aparicio SAJ. Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis and clear cell subtype in ovarian carcinoma. BMC Med 2007; 5:33. [PMID: 18005407 PMCID: PMC2200658 DOI: 10.1186/1741-7015-5-33] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins and their G-protein coupled receptor, GPR54 are required for GnRH release and have been associated with anti-metastatic tumour cell behaviour in model systems. The latter might suggest that their overexpression would be associated with a better prognosis in cancer. However, kisspeptin/GPR54 interactions (autocrine, paracrine, and/or endocrine) could also impact tumour behaviour in a negative manner. Here, for the first time, we associate the immunoreactivity of the kisspeptin/GPR54 ligand-receptor pair with favourable prognosis in a large cohort of ovarian carcinomas. METHODS Immunohistochemical analysis for kisspeptin and GPR54 was performed on a tissue microarray (TMA) consisting of 518 early stage ovarian carcinomas, all with linked clinical outcome data. The TMA was scored using a staining intensity scale of 0 (negative), +1 (mild-moderate), and +2 (strong). Strong staining cases were considered either kisspeptin or GPR54 positive and designated as 1, while all other cases were considered negative and designated 0. All statistical analysis was conducted using two-sided tests and a p value equal to or less than 0.05 was considered significant. RESULTS Kisspeptin and GPR54 immunoreactive cases show a favourable prognosis in univariable disease specific survival (p = 0.0023, p = 0.0092), as well as in overall survival (p = 0.0006, p = 0.0002). Furthermore, kisspeptin is an independent marker for favourable prognosis as determined by multivariable disease specific (p = 0.0046) and overall survival analysis (p = 0.0170), while GPR54 is an independent marker for overall survival only (p = 0.0303). Both kisspeptin positive and GPR54 positive cases are strongly associated with the ovarian carcinoma clear cell subtype (p < 0.0001, p < 0.0001), and GPR54 is significantly associated with favourable prognosis in overall survival within the clear cell subtype (p = 0.0102). CONCLUSION Kisspeptin and GPR54 immunoreactivity are significantly associated with favourable prognosis in both disease specific and overall survival, as well as being significantly associated with the clear cell ovarian carcinoma subtype, thereby creating the first independent prognostic biomarkers specific for ovarian clear cell carcinomas.
Collapse
Affiliation(s)
- Leah M Prentice
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre and Department of Pathology, University ofBritish Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schmid K, Wang X, Haitel A, Sieghart W, Peck-Radosavljevic M, Bodingbauer M, Rasoul-Rockenschaub S, Wrba F. KiSS-1 overexpression as an independent prognostic marker in hepatocellular carcinoma: an immunohistochemical study. Virchows Arch 2007; 450:143-9. [PMID: 17216189 DOI: 10.1007/s00428-006-0352-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/22/2006] [Accepted: 11/12/2006] [Indexed: 12/16/2022]
Abstract
The KiSS-1 gene has been reported to play an important role as a metastasis suppressor gene in various human malignancies. However, there is little information about its possible role in hepatocellular carcinoma (HCC). In this study, we evaluated the prognostic significance of the expression of KiSS-1 and its receptor AXOR12 in 142 HCC tissue specimens by immunohistochemistry. By using a cutoff level of 50%, immunoreactivity of KiSS-1 and AXOR12 was found in 6 (4%) and 11 (8%) HCCs. The expression of KiSS-1 and AXOR12 in HCC correlated with each other (r = 0.42, p < 0.0001) and with the expression in corresponding, surrounding liver tissue (both r = 0.35, p < 0.0001). Positive AXOR12 immunoreactivity in HCC correlated with advanced pT-stage of tumors and low tumor grading (r = 0.18, p = 0.032; r = -0.18, p = 0.029). High KiSS-1 expression in HCC had a statistically significant influence on diminished disease-free and overall survival in uni- (p = 0.006 and p = 0.002) and multivariate analysis (r = 2.874, p = 0.027 and r = 2.913, p = 0.026). In this study, we report for the first time that elevated KiSS-1 expression level in HCC correlates with worsened clinical outcome, as an independent prognostic marker for the aggressiveness of HCC.
Collapse
Affiliation(s)
- Katharina Schmid
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W. Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. Int J Exp Pathol 2007; 88:175-83. [PMID: 17504447 PMCID: PMC2517304 DOI: 10.1111/j.1365-2613.2006.00510.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Metastasis remains an incurable common complication in patients with gastric cancer. A variety of theories have been proposed to explain the inefficiency of the metastatic process. To compare protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) between primary tumours and metastatic tumours may be useful in illustrating these theories. METHODS Metastasis-related tissue microarrays (including normal tissues, primary tumours, nodal metastases and liver metastases) were constructed. The protein expression of nm23, KISS1, KAI1 and p53 in lymph node and liver metastases from advanced gastric cancer specimens was mainly examined by immunohistochemical staining in relation to primary tumours. RESULTS Immunohistochemical staining showed reduced protein expression of nm23, KISS1 and KAI1 in lymph node and liver metastases compared with primary tumours. Results for p53 were to the contrary. CONCLUSIONS Our investigations revealed a tendency of reduced protein expression of metastasis suppressor genes nm23, KISS1 and KAI1 in gastric cancer with the progress of metastasis. This means that the progression theory is an important determinant of metastatic efficiency.
Collapse
Affiliation(s)
- Yu Guan-Zhen
- Department of Oncology, Changzheng Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
47
|
Mead EJ, Maguire JJ, Kuc RE, Davenport AP. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br J Pharmacol 2007; 151:1143-53. [PMID: 17519946 PMCID: PMC2189831 DOI: 10.1038/sj.bjp.0707295] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Orphan G-protein-coupled receptors that have recently been paired with their cognate ligand are an often untapped resource for novel drug development. The KISS1 receptor (previously designated GPR54) has been paired with biologically active cleavage peptides of the KiSS-1 gene product, the kisspeptins (KP). The focus of this review is the emerging pharmacology and physiology of the KP. Genetic linkage analysis in humans revealed that mutations in KISS1 (GPR54, AXOR12 or hOT7T175) result in idiopathic hypogonadotrophic hypogonadism and knockout mouse studies confirmed this finding. Identification of KISS1 (GPR54) as a molecular switch for puberty subsequently led to the discovery that KP activate the GnRH cascade. Prior to the role of KISS1 (GPR54) in puberty being described, KP had been shown to be inhibitors of tumour metastasis across a range of cancers. Subsequently the mechanism of this inhibition has been suggested to be via altered cell motility and adhesiveness. PCR detected highest expression of KP and KISS1 (GPR54) in placenta, and changes in KP levels throughout pregnancy and expression in trophoblasts suggests a role in placentation. Placentation and metastasis are invasive processes that require angiogenesis. Investigation of KISS1 (GPR54) and KP in vasculature revealed discrete localisation of KISS1 (GPR54) to blood vessels prone to atherosclerosis and a potent vasoconstrictor action. A role for KP has also been shown in whole body homeostasis. KP are multifunctional peptides and further investigation is required to fully elucidate the complex pathways regulated by these peptides and how these pathways integrate in the whole body system.
Collapse
Affiliation(s)
- E J Mead
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital Cambridge, UK
| | - J J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital Cambridge, UK
| | - R E Kuc
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital Cambridge, UK
| | - A P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital Cambridge, UK
- Author for correspondence:
| |
Collapse
|
48
|
Hata K, Dhar DK, Watanabe Y, Nakai H, Hoshiai H. Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. Eur J Cancer 2007; 43:1452-9. [PMID: 17442564 DOI: 10.1016/j.ejca.2007.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/16/2007] [Accepted: 03/07/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metastin, a product of the KiSS-1 gene, is a ligand for a G-protein-coupled receptor (AXOR12) and is a strong suppressant of metastasis. The aim of this study was to evaluate whether metastin and AXOR12 gene expressions affect prognosis of patients with epithelial ovarian cancer. METHODS The expression levels of metastin, AXOR12 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression were analysed by the real-time quantitative reverse transcription-polymerase chain reaction in 76 epithelial ovarian cancer surgical specimens. Their expression (metastin/GAPDH and AXOR12/GAPDH ratios) was correlated with the clinical findings. Furthermore, cellular distribution of metastin and AXOR12 mRNA was examined by in situ hybridisation on tissue sections. RESULTS The median and range of mRNA expression for metastin and AXOR12 were 0.047 and 0.01-13.57, and 4.00 and 0.011-135.13, respectively. Patients were dichotomised into two groups having low and high expressions by using the median value as the cutoff. A good agreement was noticed between metastin and AXOR12 gene expression levels (kappa coefficient; 0.74). The presence of residual tumour following resection was negatively associated with metastin (P=0.0084) and AXOR12 (P=0.0148) gene expressions indicating an association of low expression of these genes in more aggressive, and advanced tumours. By univariate Cox regression analysis, the prognosis of the patients with low AXOR12 gene expression was significantly worse than those with high AXOR12 gene expression (P=0.030). The combination of metastin and AXOR12 gene expression level was also significantly associated with the prognosis (P=0.049). Transcripts for both metastin and AXOR12 were detected in the epithelial ovarian carcinoma cells. CONCLUSIONS These results present a new insight into the understanding of the biological behaviour of epithelial ovarian cancer. Metastin/AXOR12 signalling may suppress the invasive phenotype of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Kohkichi Hata
- Department of Tumor Biology, Kagawa Prefectural University of Health Sciences, Takamastu 761-0123, Japan.
| | | | | | | | | |
Collapse
|
49
|
Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 2007; 99:309-21. [PMID: 17312308 PMCID: PMC1820615 DOI: 10.1093/jnci/djk053] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The KISS1 protein suppresses metastasis of several tumor models without blocking orthotopic tumor growth, but the mechanism remains elusive. For its role in human sexual maturation, KISS1 protein is secreted and processed to kisspeptins, which bind to the G protein-coupled receptor GPR54. We tested the hypothesis that KISS1 secretion is required for metastasis suppression via GPR54. METHODS KISS1 containing an internal FLAG epitope with (KFM) or without (KFMdeltaSS) a signal sequence was transfected into C8161.9 human melanoma cells, which do not express endogenous KISS1. Whole-cell lysates and conditioned medium from C8161.9(KFM) and C8161.9(KFMdeltaSS) cells were collected and analyzed for kisspeptins by immunoprecipitation and enzyme-linked immunosorbent assay. GPR54 levels were measured using real-time reverse transcription-polymerase chain reaction. The ability of conditioned medium from C8161.9(KFM) and C8161.9(KFMdeltaSS) cells to stimulate calcium mobilization in GPR54-expressing Chinese hamster ovary cells (CHO-G) and in C8161.9 cells was evaluated. Metastasis was monitored in athymic mice (groups of 10 per experiment) that were injected with C8161.9(KFM) or C8161.9(KFMdeltaSS) cells labeled with enhanced green fluorescent protein. Survival of mice injected with C8161.9 or C8161.9(KFM) cells was analyzed by Kaplan-Meier methods. RESULTS Full-length KFM and KFMdeltaSS were detected in whole-cell lysates of C8161.9(KFM) and C8161.9(KFMdeltaSS) cells, respectively, but kisspeptins were detected only in conditioned medium of C8161.9(KFM) cells. In vivo, C8161.9(KFM), but not C8161.9(KFMdeltaSS), cells were suppressed for metastasis to lung, eye, kidney, and bone, with corresponding differences in mouse survival (median > 120 versus 42 days). C8161.9(KFM) cells seeded mouse lungs but did not form macroscopic metastases. Conditioned medium from C8161.9(KFM), but not C8161.9(KFMdeltaSS), cells stimulated calcium mobilization in CHO-G cells. GPR54 expression was low in C8161.9 cells, which were not stimulated by conditioned medium from C8161.9(KFM) cells. CONCLUSIONS KISS1 secretion was required for multiple organ metastasis suppression and for maintenance of disseminated cells in a dormant state. The absence of GPR54 expression in C8161.9 cells (whose metastatic spread was suppressed by KFM) suggests that metastasis suppression is not mediated through this receptor. The results imply the existence of another KISS1 receptor and/or paracrine signaling. The findings raise the possibility that soluble KISS1, kisspeptins, or mimetics could be used to maintain tumor dormancy, rendering treatment of already disseminated tumor cells (i.e., micrometastases) a legitimate target.
Collapse
Affiliation(s)
- Kevin T Nash
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nicolle G, Comperat E, Nicolaïew N, Cancel-Tassin G, Cussenot O. Metastin (KISS-1) and metastin-coupled receptor (GPR54) expression in transitional cell carcinoma of the bladder. Ann Oncol 2006; 18:605-7. [PMID: 17164231 DOI: 10.1093/annonc/mdl421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
MESH Headings
- Carcinoma, Transitional Cell/chemistry
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Kisspeptins
- RNA, Messenger/analysis
- Receptors, G-Protein-Coupled/analysis
- Receptors, G-Protein-Coupled/genetics
- Receptors, Kisspeptin-1
- Tumor Suppressor Proteins/analysis
- Tumor Suppressor Proteins/genetics
- Urinary Bladder Neoplasms/chemistry
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
Collapse
|