1
|
Chakravorty G, Ahmad S, Godbole MS, Gupta S, Badwe RA, Dutt A. Deciphering the mechanisms of action of progesterone in breast cancer. Oncotarget 2023; 14:660-667. [PMID: 37395734 PMCID: PMC10317070 DOI: 10.18632/oncotarget.28455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/27/2023] [Indexed: 07/04/2023] Open
Abstract
A practice-changing, randomized, controlled clinical study established that preoperative hydroxyprogesterone administration improves disease-free and overall survival in patients with node-positive breast cancer. This research perspective summarizes evidences from our studies that preoperative hydroxyprogesterone administration may improve disease-free and overall survival in patients with node-positive breast cancer by modulating cellular stress response and negative regulation of inflammation. Non-coding RNAs, particularly DSCAM-AS1, play a regulatory role in this process, along with the upregulation of the kinase gene SGK1 and activation of the SGK1/AP-1/NDRG1 axis. Progesterone-induced modification of the progesterone receptor and estrogen receptor genomic binding pattern is also involved in orchestrating estrogen signaling in breast cancer, preventing cell migration and invasion, and improving patient outcomes. We also highlight the role of progesterone in endocrine therapy resistance, which could lead to novel treatment options for patients with hormone receptor-positive breast cancer and for those who develop resistance to traditional endocrine therapies.
Collapse
Affiliation(s)
- Gaurav Chakravorty
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| | - Suhail Ahmad
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| | - Mukul S. Godbole
- Department of Biosciences and Technology, Faculty of Sciences and Health Sciences, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India
| | - Rajendra A. Badwe
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, Maharashtra, India
| |
Collapse
|
2
|
Ali M, Wani SUD, Salahuddin M, S.N. M, K M, Dey T, Zargar MI, Singh J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023; 9:e13684. [PMID: 36865478 PMCID: PMC9971193 DOI: 10.1016/j.heliyon.2023.e13684] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Bioactive compounds are crucial for an extensive range of therapeutic uses, and some exhibit anticancer activity. Scientists advocate that phytochemicals modulate autophagy and apoptosis, involved in the underlying pathobiology of cancer development and regulation. The pharmacological aiming of the autophagy-apoptosis signaling pathway using phytocompounds hence offers an auspicious method that is complementary to conventional cancer chemotherapy. The current review aims to explore the molecular level of the autophagic-apoptotic pathway to know its implication in the pathobiology of cancer and explore the essential cellular process as a druggable anticancer target and therapeutic emergence of naturally derived phytocompound-based anticancer agents. The data in the review were collected from scientific databases such as Google search, Web of Science, PubMed, Scopus, Medline, and Clinical Trials. With a broad outlook, we investigated their cutting-edge scientifically revealed and/or searched pharmacologic effects, a novel mechanism of action, and molecular signaling pathway of phytochemicals in cancer therapy. In this review, the evidence is focused on molecular pharmacology, specifically caspase, Nrf2, NF-kB, autophagic-apoptotic pathway, and several mechanisms to understand their role in cancer biology.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Md Salahuddin
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bangalore, 560027, India
| | - Manjula S.N.
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Mruthunjaya K
- Department of Pharmacognosy, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Jagadeesh Singh
- Department of Pharmacognosy, East Point College of Pharmacy, Bangalore, 560049, India
| |
Collapse
|
3
|
Wu AH, Vigen C, Tseng C, Garcia AA, Spicer D. Effect of Chemotherapy on the Gut Microbiome of Breast Cancer Patients During the First Year of Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:433-451. [PMID: 36532254 PMCID: PMC9747861 DOI: 10.2147/bctt.s305486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/26/2022] [Indexed: 10/24/2023]
Abstract
INTRODUCTION There is accumulating information of the effects of chemotherapy and weight changes on the gut microbiome of breast cancer patients. METHODS In this 1-year follow-up study, we investigated gut microbiome of 33 breast cancer patients who donated fecal samples at baseline and after completion of treatment. We compared alpha diversity and mean taxa abundance at baseline and absolute taxa abundance changes (final-baseline) by treatment (16 neoadjuvant [neoADJ], 13 adjuvant [ADJ], 4 no chemotherapy [noC]) and specific chemotherapy agent using Wilcoxon rank sum and negative binomial mixed model (NBMM) analysis. RESULTS All four gut alpha diversity measures changed in association with chemotherapy treatment; they increased in the neoADJ (+16.4% OTU p = 0.03; +51.6% Chao1 p = 0.03; +7.0% Shannon index p = 0.02; +11.0% PD whole tree p = 0.09) but not in the ADJ and noC group (ADJ+noC). The difference in Chao1 index change between groups was statistically significant (pneoADJ vs. ADJ+noC=0.04). Wilcoxon p values of 0.03-0.003 were observed for five taxa. In NBMM analysis, changes in taxa abundance differed (Bonferroni-adjusted p ≤ 0.0007) for two Bacteroidetes taxa (g_Alistipes, f_S24-7) and two Firmicutes taxa (g_Catenibacterium, g_Eubacterium). NBMM analysis results remained unchanged with adjustment for weight changes. Alpha diversity changes were also found by receipt of chemotherapy agents. Consistent increases in alpha diversity were observed among those treated with TCHP (OTU p = 0.009; Chao1 p = 0.02; Shannon p = 0.02; PD whole tree p = 0.05) but not AC, Taxol or Herceptin. Those treated with TCHP or Herceptin showed increases in Verrucomicrobia (g_Akkermansia) but decreases of Bacteroidetes(g_Alistipes); the differences in changes in taxa abundance were statistically significant. CONCLUSION Results from this pilot longitudinal study support an effect of chemotherapy, particularly neoADJ on the gut microbiome of breast cancer patients even after adjustment for weight changes. Further investigations are needed to confirm these findings in larger studies and with longer follow-up and to assess the impact of these microbiome changes on patient outcome.
Collapse
Affiliation(s)
- Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheryl Vigen
- Mrs. TH Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Agustin A Garcia
- Department of Medicine, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Darcy Spicer
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sang X, Han H, Li T, Lin SX. Mutual regulations and breast cancer cell control by steroidogenic enzymes: Dual sex-hormone receptor modulation upon 17β-HSD7 inhibition. J Steroid Biochem Mol Biol 2019; 193:105411. [PMID: 31207361 DOI: 10.1016/j.jsbmb.2019.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17β-HSD1, 17β-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17β-HSD7, STS, 11β-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17β-HSD7, STS and 11β-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17β-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17β-HSD7 and ERα.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
5
|
Sang X, Han H, Poirier D, Lin SX. Steroid sulfatase inhibition success and limitation in breast cancer clinical assays: An underlying mechanism. J Steroid Biochem Mol Biol 2018; 183:80-93. [PMID: 29803725 DOI: 10.1016/j.jsbmb.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022]
Abstract
Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant. Breast Cancer epithelial cells (MCF-7 and T47D) were treated with two STS inhibitors (STX64 and EM1913). Cell proliferation, cell cycle, and the concentrations of estradiol and 5α-dihydrotestosterone were measured to determine the endocrinological mechanism of sulfatase inhibition. Comparisons were made with inhibitions of reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs). Proliferation studies showed that DNA synthesis in cancer cells was modestly decreased (approximately 20%), accompanied by an up to 6.5% in cells in the G0/G1 phase and cyclin D1 expression reduction. The concentrations of estradiol and 5α-dihydrotestosterone were decreased by 26% and 3% respectively. However, supplementation of 5α-dihydrotestosterone produced a significant increase (approximately 35.6%) in the anti-proliferative effect of sulfatase inhibition. This study has clarified sex-hormone control by sulfatase in BC, suggesting that the different roles of estradiol and 5α-dihydrotestosterone can lead to a reduction in the effect of sulfatase inhibition when compared with 17β-HSD7 inhibition. This suggests that combined treatment of sulfatase inhibitors with 17β-HSD inhibitors such as the type7 inhibitor could hold promise for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec, G1V4G2, Canada.
| |
Collapse
|
6
|
Briest S, Stearns V. Advances in the Adjuvant and Neoadjuvant Treatment of Breast Cancer. WOMENS HEALTH 2016; 3:325-39. [DOI: 10.2217/17455057.3.3.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several advances in the adjuvant systemic therapy of primary breast cancer have occurred in the last decade and contributed to a decline in disease-related mortality. These include the introduction of aromatase inhibitors, new chemotherapy agents, and the novel antibody trastuzumab. New supportive treatments, such as growth factors, have contributed to the optimization of chemotherapy dose and schedule, and have improved the efficacy and safety of the treatment. In this review we will outline some of the recent advances in the adjuvant and neoadjuvant treatment of breast cancer. We will also discuss ongoing and proposed clinical trials.
Collapse
Affiliation(s)
- Susanne Briest
- University of Leipzig, Department of Gynecology and Obstetrics, Leipzig Germany
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 186, Baltimore, MD 21231-1000, USA, Tel.: +1 410 502 3472; Fax: +1 410 614 9421
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, 1650 Orleans Street, CRB I, Room 1M-53 Baltimore, MD 21231-1000, USA, Tel.: +1 443 287 6489; Fax: +1 410 955 0125
| |
Collapse
|
7
|
Braakhuis AJ, Campion P, Bishop KS. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics. Nutrients 2016; 8:E547. [PMID: 27608040 PMCID: PMC5037532 DOI: 10.3390/nu8090547] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli), and fruit (apples, citrus). At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5-10 g daily) and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.
Collapse
Affiliation(s)
- Andrea J Braakhuis
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Peta Campion
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Karen S Bishop
- Auckland Cancer Society Research Center, FM & HS, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Ouellet C, Maltais R, Ouellet É, Barbeau X, Lagüe P, Poirier D. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem 2016; 119:169-82. [PMID: 27155470 DOI: 10.1016/j.ejmech.2016.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments.
Collapse
Affiliation(s)
- Charles Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Étienne Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Xavier Barbeau
- Département de chimie, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Patrick Lagüe
- Département de biochimie microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Mocanu MM, Nagy P, Szöllősi J. Chemoprevention of Breast Cancer by Dietary Polyphenols. Molecules 2015; 20:22578-620. [PMID: 26694341 PMCID: PMC6332464 DOI: 10.3390/molecules201219864] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
The review will discuss in detail the effects of polyphenols on breast cancer, including both the advantages and disadvantages of the applications of these natural compounds. First, we focus on the characterization of the main classes of polyphenols and then on in vitro and in vivo experiments carried out in breast cancer models. Since the therapeutic effects of the administration of a single type of polyphenol might be limited because of the reduced bioavailability of these drugs, investigations on combination of several polyphenols or polyphenols with conventional therapy will also be discussed. In addition, we present recent data focusing on clinical trials with polyphenols and new approaches with nanoparticles in breast cancer. Besides the clinical and translational findings this review systematically summarizes our current knowledge about the molecular mechanisms of anti-cancer effects of polyphenols, which are related to apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways and epigenetic mechanisms. At the same time the effects of polyphenols on primary tumor, metastasis and angiogenesis in breast cancer are discussed. The increasing enthusiasm regarding the combination of polyphenols and conventional therapy in breast cancer might lead to additional efforts to motivate further research in this field.
Collapse
Affiliation(s)
- Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
10
|
Wang X, Gérard C, Thériault JF, Poirier D, Doillon CJ, Lin SX. Synergistic control of sex hormones by 17β-HSD type 7: a novel target for estrogen-dependent breast cancer. J Mol Cell Biol 2015; 7:568-79. [PMID: 25966904 DOI: 10.1093/jmcb/mjv028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer. Recent confirmation of the role of dyhydroxytestosterone (DHT) in counteracting estrogen-induced cell growth prompted us to study the reductive 17β-HSD type 7 (17β-HSD7), which activates estrone while markedly inactivating DHT. The role of DHT in breast cancer cell proliferation is demonstrated by its independent suppression of cell growth in the presence of a physiological concentration of estradiol (E2). Moreover, an integral analysis of a large number of clinical samples in Oncomine datasets demonstrated the overexpression of 17β-HSD7 in breast carcinoma. Inhibition of 17β-HSD7 in breast cancer cells resulted in a lower level of E2 and a higher level of DHT, successively induced regulation of cyclinD1, p21, Bcl-2, and Bik, consequently arrested cell cycle in the G(0)/G(1) phase, and triggered apoptosis and auto-downregulation feedback of the enzyme. Such inhibition led to significant shrinkage of xenograft tumors with decreased cancer cell density and reduced 17β-HSD7 expression. Decreased plasma E2 and elevated plasma DHT levels were also found. Thus, the dual functional 17β-HSD7 is proposed as a novel target for estrogen-dependent breast cancer by regulating the balance of E2 and DHT. This demonstrates a conceptual advance on the general belief that the major role of this enzyme is in cholesterol metabolism.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Catherine Gérard
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Jean-François Thériault
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Donald Poirier
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Charles J Doillon
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
| |
Collapse
|
11
|
Ouellet C, Ouellet É, Poirier D. In vitro evaluation of a tetrahydroisoquinoline derivative as a steroid sulfatase inhibitor and a selective estrogen receptor modulator. Invest New Drugs 2014; 33:95-103. [PMID: 25410727 DOI: 10.1007/s10637-014-0187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are currently in use in the hormonal therapy of breast cancer. In that respect, a new hormone-related approach is the therapeutical inhibition of steroid sulfatase (STS), which converts inactive, sulfated steroids into active hormones. We investigated the potential of 6-EO-14, a non-steroidal STS inhibitor with SERM potential. The latter compound, which exhibits a sulfamate moiety, releases the phenol derivative 8-EO-14 after the irreversible inhibition of STS. STS was inhibited by 6-EO-14 (IC50 = 0.3 μM), but not 8-EO-14, in HEK-293 cells transfected with an STS expression vector. The SERM potential of 8-EO-14 was assessed in osteoblast-like Saos-2 cells by investigating its effect on cell proliferation and on the activity of alkaline phosphatase (ALP), a specific differentiation marker. Saos-2 cell proliferation was increased by 21 % following 8-EO-14 addition (1 μM), and 8-EO-14 induced ALP activity (31 % increase at 0.1 nM) via estrogen receptor alpha (ERα) similarly to the SERM raloxifene. As compared to estradiol (E2) (100 %), the relative binding affinity of 6-EO-14 and 8-EO-14) for ERα was found to be weak (0.09 and 0.01 %, respectively). When assessed in two estrogen-dependent human breast cancer cell lines (MCF-7 and T-47D), 8-EO-14 did not support MCF-7 cell proliferation, whereas both 8-EO-14 and 6-EO-14 exhibited estrogen-like growth stimulation in T-47D cells. These two compounds were also unable to block E2-induced cell proliferation, suggesting their lack of antiestrogenic activity. Despite the known potency of 6-EO-14 as an STS inhibitor, the observed trophic activity of this new scaffold towards ERα-positive cells needs to be carefully considered prior to its potential utilization as a therapeutic agent.
Collapse
Affiliation(s)
- Charles Ouellet
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec (CHUL) - Research Center (CHUL, T4-42), 2705 Laurier Boulevard, Quebec, QC, G1V 4G2, Canada
| | | | | |
Collapse
|
12
|
Briest S, Wolff AC. Insights on adjuvant endocrine therapy for premenopausal and postmenopausal breast cancer. Expert Rev Anticancer Ther 2014; 7:1243-53. [PMID: 17892424 DOI: 10.1586/14737140.7.9.1243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 2005, cancer accounted for 13% of all deaths worldwide. Breast cancer is the number-one cause of cancer-related death among women in the USA, affecting 178,480 of them in 2007. As 75% of tumors in postmenopausal women and half in premenopausal women express estrogen receptor, endocrine therapy plays a significant role as a systemic treatment. Robust datasets have demonstrated the impact of tamoxifen in reducing breast cancer recurrence and mortality, regardless of the age of the patient. Other estrogen-deprivation strategies, such as aromatase inhibitors in postmenopausal women and luteinizing hormone-releasing hormone agonists in premenopausal women, are being increasingly used for estrogen receptor-positive breast cancer. This review discusses basic principles regarding endocrine therapy, the need for accurate estrogen receptor testing and the role of menopause in therapy selection.
Collapse
Affiliation(s)
- Susanne Briest
- University of Leipzig, Department of Gynecology & Obstetrics, Leipzig, Germany.
| | | |
Collapse
|
13
|
Pretreatment predictors of short-term nonadherence to oral hormonal therapy for women with breast cancer. Nurs Res 2013; 62:243-51. [PMID: 23817282 DOI: 10.1097/nnr.0b013e318298fd70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adjuvant treatment with oral hormonal therapy improves clinical outcomes for breast cancer, but women have difficulty adhering to the 5-year regimen. OBJECTIVE The aim of this study was to explore pretreatment predictors of short-term nonadherence to oral hormonal therapy for women with early-stage breast cancer from the pretreatment assessment to 6 months after initiation of hormonal therapy. METHODS A secondary analysis was performed using data collected from 198 women enrolled in one of two longitudinal studies. Nonadherence was defined as the percentage of prescribed doses of hormonal therapy not taken during the first 6 months of therapy measured using electronic medication event monitoring. Information on predictor variables was measured at pretreatment using self-report and medical record review. Linear regression analysis was performed to examine associations between predictor variables and 6-month nonadherence in a bivariate manner to first identify candidate predictors variables at p < .20 and then multivariately considering candidate predictors identified through stepwise and backward elimination regression methods. RESULTS Participants were White (98.3%), well educated (M = 15.0; SD = 2.9 years of schooling), and on average, 59.1 years old (SD = 7.5 years old). Mean nonadherence was 11.3%. Stepwise and backward elimination modeling algorithms identified a similar set of predictors associated with 6-month nonadherence and explained 13.0% of the variance (adjusted R = .11, standard error of the estimate = 0.28). Ductal carcinoma in situ tumor type (p = .004) and higher weight concern scores (p = .003) were associated with nonadherence. DISCUSSION The findings suggest that additional examinations of associations of tumor type and symptom burden with nonadherence are indicated.
Collapse
|
14
|
Therapeutic applications of herbal medicines for cancer patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:302426. [PMID: 23956768 PMCID: PMC3727181 DOI: 10.1155/2013/302426] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Medicinal herbs and their derivative phytocompounds are being increasingly recognized as useful complementary treatments for cancer. A large volume of clinical studies have reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. Here, we briefly review some examples of clinical studies that investigated the use of herbal medicines for various cancers and the development of randomized controlled trials (RCTs) in this emerging research area. In addition, we also report recent studies on the biochemical and cellular mechanisms of herbal medicines in specific tumor microenvironments and the potential application of specific phytochemicals in cell-based cancer vaccine systems. This review should provide useful technological support for evidence-based application of herbal medicines in cancer therapy.
Collapse
|
15
|
Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 2011; 25:61-73. [PMID: 21992498 DOI: 10.1021/tx200378c] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in reversing some of these defects. Methylation of CpG islands is an important component of the epigenetic code, and a number of genes become abnormally methylated in breast cancer patients. Currently, several epigenetic-based synthetic drugs that can reduce DNA hypermethylation and histone deacetylation are undergoing preclinical and clinical trials. However, these chemicals are generally very toxic and do not have gene specificity. Epidemiological studies have shown that Asian women are less prone to breast cancer due to their high consumption of soy food than the Caucasian women of western countries. Moreover, complementary/and or alternative medicines are commonly used by Asian populations which are rich in bioactive ingredients known to be chemopreventive against tumorigenesis in general. Examples of such agents include dietary polyphenols, (-)-epigallocatechin-3-gallate (EGCG) from green tea, genistein from soybean, isothiocyanates from plant foods, curcumin from turmeric, resveratrol from grapes, and sulforaphane from cruciferous vegetables. These bioactive components are able to modulate epigenetic events, and their epigenetic targets are known to be associated with breast cancer prevention and therapy. This approach could facilitate the discovery and development of novel drugs for the treatment of breast cancer. In this brief review, we will summarize the epigenetic events associated with breast cancer and the potential of some of these bioactive dietary components to modulate these events and thus afford new therapeutic or preventive approaches.
Collapse
Affiliation(s)
- Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
16
|
van der Hage JA, Mieog JSD, van de Velde CJH, Putter H, Bartelink H, van de Vijver MJ. Impact of established prognostic factors and molecular subtype in very young breast cancer patients: pooled analysis of four EORTC randomized controlled trials. Breast Cancer Res 2011; 13:R68. [PMID: 21699739 PMCID: PMC3218957 DOI: 10.1186/bcr2908] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/08/2011] [Accepted: 06/24/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction Young age at the time of diagnosis of breast cancer is an independent factor of poor prognosis. In many treatment guidelines, the recommendation is to treat young patients with adjuvant chemotherapy regardless of tumor characteristics. However, limited data on prognostic factors are available for young breast cancer patients. The purpose of this study was to determine the prognostic value of established clinical and pathological prognostic factors in young breast cancer patients. Methods Data from four European Organisation for Research and Treatment of Cancer (EORTC) clinical trials were pooled, resulting in a dataset consisting of 9,938 early breast cancer patients with a median follow-up of 11 years. For 549 patients aged less than 40 years at the time of diagnosis, including 341 node negative patients who did not receive chemotherapy, paraffin tumor blocks were processed for immunohistochemistry using a tissue microarray. Cox proportional hazard analysis was applied to assess the association of clinical and pathological factors with overall and distant metastasis free survival. Results For young patients, tumor size (P = 0.01), nodal status (P = 0.006) and molecular subtype (P = 0.02) were independent prognostic factors for overall survival. In the node negative subgroup, only molecular subtype was a prognostic factor for overall survival (P = 0.02). Young node negative patients bearing luminal A tumors had an overall survival rate of 94% at 10 years' follow-up compared to 72% for patients with basal-type tumors. Conclusions Molecular subtype is a strong independent prognostic factor in breast cancer patients younger than 40 years of age. These data support the use of established prognostic factors as a diagnostic tool to assess disease outcome and to plan systemic treatment strategies in young breast cancer patients.
Collapse
Affiliation(s)
- Jos A van der Hage
- Division of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Lin SX, Chen J, Mazumdar M, Poirier D, Wang C, Azzi A, Zhou M. Molecular therapy of breast cancer: progress and future directions. Nat Rev Endocrinol 2010; 6:485-93. [PMID: 20644568 DOI: 10.1038/nrendo.2010.92] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Breast cancer is a major cause of death in Western women, with a 10% lifetime risk of the disease. Most breast cancers are estrogen-dependent. Molecular therapies for breast cancer have developed rapidly in the past few decades and future treatment strategies are being investigated. The selective estrogen receptor (ER) modulator tamoxifen, which until now has served as a standard therapy, functions not only as an estrogen antagonist but also as an estrogen agonist in terms of bone maintenance. Aromatase inhibitors have performed well in international trials and have become a new standard therapy for estrogen-dependent breast cancer. The systematic study of estrogen activation pathways suggests that the enzymes steroid sulfatase and 17beta-hydroxysteroid dehydrogenase type 1, which both have pivotal roles in estrogen biosynthesis, are promising targets; the results of a phase I trial of steroid sulfatase inhibitors are encouraging. The activity of the human epidermal growth factor receptor (HER) pathway correlates negatively with that of the ER. HER2 is overexpressed in 22% of all breast cancers. In the decade since HER2 began being targeted, the monoclonal antibody trastuzumab has been used as well as pertuzumab and HER2 vaccines. Among the estrogen-independent breast cancers, the basal-like subtype has low survival, and therapeutic improvement is a priority. Crosstalk between ER and HER2 signaling pathways means that combinatory therapies may hold the key to enhancement of treatment responses. Other molecular therapies involving functional genomics and RNA interference studies also hold promise.
Collapse
Affiliation(s)
- Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHUL (CHUQ) Research Center and Laval University, 2705 Boulevard Laurier, QC G1V 4G2, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hackshaw A. Luteinizing hormone-releasing hormone (LHRH) agonists in the treatment of breast cancer. Expert Opin Pharmacother 2009; 10:2633-9. [DOI: 10.1517/14656560903224980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Wardley A. The need for advanced breast cancer treatment guidelines: Results of an internet-based survey. Breast 2008; 17:275-81. [DOI: 10.1016/j.breast.2007.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/18/2007] [Accepted: 10/21/2007] [Indexed: 10/22/2022] Open
|
20
|
Breast cancer patients with estrogen receptor-negative/progesterone receptor-positive tumors: being younger and getting less benefit from adjuvant tamoxifen treatment. J Cancer Res Clin Oncol 2008; 134:1347-54. [DOI: 10.1007/s00432-008-0414-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
|
21
|
van der Hage JA, Mieog JSD, van de Vijver MJ, van de Velde CJH. Efficacy of adjuvant chemotherapy according to hormone receptor status in young patients with breast cancer: a pooled analysis. Breast Cancer Res 2008; 9:R70. [PMID: 17931406 PMCID: PMC2242667 DOI: 10.1186/bcr1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 09/04/2007] [Indexed: 11/19/2022] Open
Abstract
Introduction Breast cancer at a young age is associated with an unfavorable prognosis. Very young patients with breast cancer therefore are advised to undergo adjuvant chemotherapy irrespective of tumor stage or grade. However, chemotherapy alone may not be adequate in young patients with hormone receptor-positive breast cancer. Therefore, we studied the effect of adjuvant chemotherapy in young patients with breast cancer in relation to hormone receptor status. Methods Paraffin-embedded tumor material was collected from 480 early-stage breast cancer patients younger than 41 years who participated in one of four European Organization for Research and Treatment of Cancer trials. Using immunohistochemistry on the whole series of tumors, we assessed estrogen receptor (ER) status and progesterone receptor (PgR) status in a standardized way. Endpoints in this study were overall survival (OS) and distant metastasis-free survival (DMFS). The median follow-up period was 7.3 years. Results Overall, patients with ER-positive tumors had better OS rates (hazard ratio [HR] 0.63; P = 0.02) compared with those with ER-negative tumors. However, in the subgroup of patients who received chemotherapy, no significant difference in OS (HR 0.87; P = 0.63) and DMFS (HR 1.36; P = 0.23) was found between patients with ER-positive tumors or those with ER-negative tumors. These differences were similar for PgR status. Conclusion Young patients with hormone receptor-positive tumors benefit less from adjuvant systemic chemotherapy than patients with hormone receptor-negative tumors. These results confirm that chemotherapy alone cannot be considered optimal adjuvant systemic treatment in breast cancer patients 40 years old or younger with hormone receptor-positive tumors.
Collapse
Affiliation(s)
- Jos A van der Hage
- Leiden University Medical Center, Department of Surgery, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Piersma D, Themmen APN, Look MP, Klijn JGM, Foekens JA, Uitterlinden AG, Pols HAP, Berns EMJJ. GnRH and LHR gene variants predict adverse outcome in premenopausal breast cancer patients. Breast Cancer Res 2008; 9:R51. [PMID: 17692113 PMCID: PMC2206727 DOI: 10.1186/bcr1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/30/2007] [Accepted: 08/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer development and progression are dependent on estrogen activity. In premenopausal women, estrogen production is mainly regulated through the hypothalamic-pituitary-gonadal (HPG) axis. METHODS We have investigated the prognostic significance of two variants of genes involved in the HPG-axis, the GnRH (encoding gonadotropin-releasing hormone) 16Trp/Ser genotype and the LHR (encoding the luteinizing hormone receptor) insLQ variant, in retrospectively collected premenopausal breast cancer patients with a long follow-up (median follow-up of 11 years for living patients). RESULTS Carriership was not related with breast cancer risk (the case control study encompassed 278 premenopausal cases and 1,758 premenopausal controls). A significant adverse relationship of the LHR insLQ and GnRH 16Ser genotype with disease free survival (DFS) was observed in premenopausal (hormone receptor positive) breast cancer patients. In particular, those patients carrying both the GnRH 16Ser and LHR insLQ allele (approximately 25%) showed a significant increased risk of relapse, which was independent of traditional prognostic factors (hazard ratio 2.14; 95% confidence interval 1.32 to 3.45; P = 0.002). CONCLUSION We conclude that the LHR insLQ and GnRH 16Ser alleles are independently associated with shorter DFS in premenopausal patients. When validated, these findings may provide a lead in the development of tailored treatment for breast cancer patients carrying both polymorphisms.
Collapse
Affiliation(s)
- Djura Piersma
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Axel PN Themmen
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Maxime P Look
- Department of Medical Oncology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Jan GM Klijn
- Department of Medical Oncology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Huibert AP Pols
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Els MJJ Berns
- Department of Medical Oncology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
23
|
Abstract
Endocrine therapy is a mainstay for the many women who develop in situ or invasive steroid receptor-positive breast cancer. The use of tamoxifen has reduced mortality in such women. Recently estrogen deprivation strategies have come under scrutiny. Here the use of aromatase inhibitors for treatment of postmenopausal endocrine-responsive breast cancer in the metastatic, adjuvant, and preoperative settings is reviewed.
Collapse
Affiliation(s)
- Susanne Briest
- Department of Gynecology and Obstetrics, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
24
|
Giltnane JM, Rydén L, Cregger M, Bendahl PO, Jirström K, Rimm DL. Quantitative measurement of epidermal growth factor receptor is a negative predictive factor for tamoxifen response in hormone receptor positive premenopausal breast cancer. J Clin Oncol 2007; 25:3007-14. [PMID: 17634479 DOI: 10.1200/jco.2006.08.9938] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Although there is evidence for interaction between epidermal growth factor receptor (EGFR) and estrogen receptor (ER), it is still not clear how this affects response to endocrine therapies like tamoxifen. Here we assess the relationship between EGFR expression and tamoxifen response, with a new quantitative technology. PATIENTS AND METHODS A tissue microarray was constructed from breast cancer from a cohort of 564 patients enrolled in a randomized clinical trial for adjuvant tamoxifen treatment in early breast cancer, with a median follow-up of 14 years. EGFR expression was measured using automated quantitative analysis, a fluorescence-based method for quantitative analysis of in situ protein expression. RESULTS In ER-positive patients, tamoxifen-treated patients with low EGFR expression (n = 113) showed a significant effect by 2 years of adjuvant tamoxifen (P = .01), in contrast to no treatment effect in the EGFR-high group (n = 73, P = .69). The untreated group showed 49% v 57% 10-year recurrence-free survival for EGFR low versus high (P = .466) in the corresponding group of ER-positive patients. A significant beneficial effect of tamoxifen treatment was seen in the EGFR-low group (hazard ratio [HR] = 0.43 (95% CI, 0.22 to 0.84; P = .013) in contrast to no effect in the EGFR-high group (HR = 1.14; 95% CI, 0.59 to 2.22; P = .7) by using a Cox model. CONCLUSION This study provides clinical evidence that confirms the basic work that has shown high EGFR can indicate resistance to tamoxifen. It suggests that careful measurement of EGFR protein expression might define a subset of low-stage patients that could benefit from an alternative therapy.
Collapse
Affiliation(s)
- Jennifer M Giltnane
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | | | |
Collapse
|