1
|
Kim M, Wang J, Pilley SE, Lu RJ, Xu A, Kim Y, Liu M, Fu X, Booth SL, Mullen PJ, Benayoun BA. Estropausal gut microbiota transplant improves measures of ovarian function in adult mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.03.592475. [PMID: 40060387 PMCID: PMC11888174 DOI: 10.1101/2024.05.03.592475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Decline in ovarian function with age not only affects fertility but is also linked to a higher risk of age-related diseases in women (e.g. osteoporosis, dementia). Intriguingly, earlier menopause is linked to shorter lifespan; however, the underlying molecular mechanisms of ovarian aging are not well understood. Recent evidence suggests the gut microbiota may influence ovarian health. In this study, we characterized ovarian aging associated microbial profiles in mice and investigated the effect of the gut microbiome from young and estropausal female mice on ovarian health through fecal microbiota transplantation. We demonstrate that the ovarian transcriptome can be broadly remodeled after heterochronic microbiota transplantation, with a reduction in inflammation-related gene expression and trends consistent with transcriptional rejuvenation. Consistently, these mice exhibited enhanced ovarian health and increased fertility. Using metagenomics-based causal mediation analyses and serum untargeted metabolomics, we identified candidate microbial species and metabolites that may contribute to the observed effects of fecal microbiota transplantation. Our findings reveal a direct link between the gut microbiota and ovarian health.
Collapse
Affiliation(s)
- Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Steven E Pilley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan J Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, CA 90089, USA
| | - Younggyun Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Minying Liu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Peter J Mullen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Singh W, Kushwaha P, Kushwaha SP. Exploring Menatetrenone: Origin, Chemistry, Therapies and Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-13. [PMID: 39898865 DOI: 10.1080/27697061.2025.2460539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Menatetrenone (MK-4), a potent form of vitamin K2, has gained significant attention for its diverse therapeutic potential, particularly in bone health, cardiovascular protection, and metabolic disorders. This manuscript explores the origins and chemical structure of menatetrenone, highlighting its synthesis from dietary sources and its enzymatic conversion in the body. The review examines the extensive therapeutic applications of MK-4, focusing on its role in treating osteoporosis, diabetes, and cardiovascular diseases, along with emerging evidence of its anticancer and neuroprotective effects. Furthermore, the manuscript discusses innovative delivery systems, such as nanostructured lipid carriers and other advanced formulations, designed to enhance the bioavailability and therapeutic efficacy of menatetrenone. By addressing the challenges associated with its pharmacokinetics and exploring novel drug delivery strategies, this review provides a comprehensive overview of menatetrenone's therapeutic promise and outlines future directions for its clinical use.
Collapse
Affiliation(s)
- Widhilika Singh
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Poonam Kushwaha
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
4
|
Krzyżanowska-Jankowska P, Nowak J, Karaźniewicz-Łada M, Jamka M, Klapkova E, Kurek S, Drzymała-Czyż S, Lisowska A, Wojsyk-Banaszak I, Skorupa W, Szydłowski J, Prusa R, Walkowiak J. Vitamin K Status Based on K1, MK-4, MK-7, and Undercarboxylated Prothrombin Levels in Adolescent and Adult Patients with Cystic Fibrosis: A Cross-Sectional Study. Nutrients 2024; 16:1337. [PMID: 38732584 PMCID: PMC11085146 DOI: 10.3390/nu16091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The available evidence on vitamin K status in cystic fibrosis (CF) is scarce, lacking data on vitamin K2 (menaquinones-MK). Therefore, we assessed vitamin K1, MK-4 and MK-7 concentrations (LC-MS/MS) in 63 pancreatic insufficient and modulator naïve CF patients, and compared to 61 healthy subjects (HS). Vitamin K1 levels did not differ between studied groups. MK-4 concentrations were higher (median <1st-3rd quartile>: 0.778 <0.589-1.086> vs. 0.349 <0.256-0.469>, p < 0.0001) and MK-7 levels lower (0.150 <0.094-0.259> vs. 0.231 <0.191-0.315>, p = 0.0007) in CF patients than in HS. MK-7 concentrations were higher in CF patients receiving K1 and MK-7 supplementation than in those receiving vitamin K1 alone or no supplementation. Moreover, vitamin K1 concentrations depended on the supplementation regime. Based on multivariate logistic regression analysis, we have found that MK-7 supplementation dose has been the only predictive factor for MK-7 levels. In conclusion, vitamin K1 levels in CF are low if not currently supplemented. MK-4 concentrations in CF patients supplemented with large doses of vitamin K1 are higher than in HS. MK-7 levels in CF subjects not receiving MK-7 supplementation, with no regard to vitamin K1 supplementation, are low. There do not seem to be any good clinical predictive factors for vitamin K status.
Collapse
Affiliation(s)
- Patrycja Krzyżanowska-Jankowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (J.N.); (M.J.); (S.K.); (J.W.)
| | - Jan Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (J.N.); (M.J.); (S.K.); (J.W.)
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka Street 3, 60-806 Poznan, Poland;
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (J.N.); (M.J.); (S.K.); (J.W.)
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic; (E.K.); (R.P.)
| | - Szymon Kurek
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (J.N.); (M.J.); (S.K.); (J.W.)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka Street 3, 60-806 Poznan, Poland;
| | - Aleksandra Lisowska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland;
| | - Irena Wojsyk-Banaszak
- Department of Pneumonology, Allergology and Clinical Immunology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland;
| | - Wojciech Skorupa
- Department of Lung Diseases, Institute for Tuberculosis and Lung Diseases, Plocka Street 26, 01-138 Warsaw, Poland;
| | - Jarosław Szydłowski
- Department of Pediatric Otolaryngology, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland;
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, V Úvalu 84, 150 06 Prague, Czech Republic; (E.K.); (R.P.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (J.N.); (M.J.); (S.K.); (J.W.)
| |
Collapse
|
5
|
Kaźmierczak-Barańska J, Karwowski BT. Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response. Nutrients 2022; 14:nu14204219. [PMID: 36296903 PMCID: PMC9611527 DOI: 10.3390/nu14204219] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)—a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)—a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)—a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K—menadione—appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.
Collapse
|
6
|
Role of Vitamin K in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14163401. [PMID: 36014904 PMCID: PMC9413298 DOI: 10.3390/nu14163401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
The main function of vitamin K in the human organism is its activity in the blood clotting cascade. Epidemiological studies suggest that reduced intake of vitamin K may contribute to an increased risk of geriatric diseases such as atherosclerosis, dementia, osteoporosis, and osteoarthritis. A growing number of studies also indicate that vitamin K may be involved not only in preventing the development of certain cancers but it may also support classical cancer chemotherapy. This review article summarizes the results of studies on the anticancer effects of vitamin K on selected female malignancies, i.e., breast, cervical, and ovarian cancer, published over the past 20 years. The promising effects of vitamin K on cancer cells observed so far indicate its great potential, but also the need for expansion of our knowledge in this area by conducting extensive research, including clinical trials.
Collapse
|
7
|
Jadhav N, Ajgaonkar S, Saha P, Gurav P, Pandey A, Basudkar V, Gada Y, Panda S, Jadhav S, Mehta D, Nair S. Molecular Pathways and Roles for Vitamin K2-7 as a Health-Beneficial Nutraceutical: Challenges and Opportunities. Front Pharmacol 2022; 13:896920. [PMID: 35774605 PMCID: PMC9237441 DOI: 10.3389/fphar.2022.896920] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Vitamin K2-7, also known as menaquinone-7 (MK-7) is a form of vitamin K that has health-beneficial effects in osteoporosis, cardiovascular disease, inflammation, cancer, Alzheimer's disease, diabetes and peripheral neuropathy. Compared to vitamin K1 (phylloquinone), K2-7 is absorbed more readily and is more bioavailable. Clinical studies have unequivocally demonstrated the utility of vitamin K2-7 supplementation in ameliorating peripheral neuropathy, reducing bone fracture risk and improving cardiovascular health. We examine how undercarboxylated osteocalcin (ucOC) and matrix Gla protein (ucMGP) are converted to carboxylated forms (cOC and cMGP respectively) by K2-7 acting as a cofactor, thus facilitating the deposition of calcium in bones and preventing vascular calcification. K2-7 is beneficial in managing bone loss because it upregulates osteoprotegerin which is a decoy receptor for RANK ligand (RANKL) thus inhibiting bone resorption. We also review the evidence for the health-beneficial outcomes of K2-7 in diabetes, peripheral neuropathy and Alzheimer's disease. In addition, we discuss the K2-7-mediated suppression of growth in cancer cells via cell-cycle arrest, autophagy and apoptosis. The mechanistic basis for the disease-modulating effects of K2-7 is mediated through various signal transduction pathways such as PI3K/AKT, MAP Kinase, JAK/STAT, NF-κB, etc. Interestingly, K2-7 is also responsible for suppression of proinflammatory mediators such as IL-1α, IL-1β and TNF-α. We elucidate various genes modulated by K2-7 as well as the clinical pharmacometrics of vitamin K2-7 including K2-7-mediated pharmacokinetics/pharmacodynamics (PK/PD). Further, we discuss the current status of clinical trials on K2-7 that shed light on dosing strategies for maximum health benefits. Taken together, this is a synthetic review that delineates the health-beneficial effects of K2-7 in a clinical setting, highlights the molecular basis for these effects, elucidates the clinical pharmacokinetics of K2-7, and underscores the need for K2-7 supplementation in the global diet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yash Gada
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | | | | | - Dilip Mehta
- Synergia Life Sciences Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
8
|
Rajagopal S, Gupta A, Parveen R, Shukla N, Bhattacharya S, Naravula J, Kumar S A, Mathur P, Simlot A, Mehta S, Bihari C, Mehta S, Mishra AK, Nair BG, Medicherla KM, Reddy GB, Sreenivasulu N, Kishor PK, Suravajhala P. Vitamin K in human health and metabolism: A nutri-genomics review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
10
|
Ciebiera M, Ali M, Zgliczyńska M, Skrzypczak M, Al-Hendy A. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance. Int J Mol Sci 2020; 21:ijms21155528. [PMID: 32752274 PMCID: PMC7432695 DOI: 10.3390/ijms21155528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/27/2023] Open
Abstract
Uterine fibroid (UF) is the most common benign tumor pathology of the female reproductive organs. UFs constitute the main reason for a hysterectomy and hospitalization due to gynecological conditions. UFs consist of uterine smooth muscle immersed in a large amount of extracellular matrix (ECM). Genetic studies have demonstrated that UFs are monoclonal tumors originating from the myometrial stem cells that have underwent specific molecular changes to tumor initiating stem cells which proliferate and differentiate later under the influence of steroid hormones. There is growing interest in the role of micronutrients, for example, vitamins, in UFs. This article is a comprehensive review of publications regarding the available data concerning the role of vitamins in the biology and management of UFs. In summary, the results showed that some vitamins are important in the biology and pathophysiology of UFs. For example, vitamins A and D deserve particular attention following studies of their influence on the treatment of UF tumors. Vitamins B3, C, and E have not been as widely studied as the abovementioned vitamins. However, more research could reveal their potential role in UF biology.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Magdalena Zgliczyńska
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (M.C.); (A.A.-H.); Tel.: +48-225690274 (M.C.); +1-312-996-7006 (A.A.-H.)
| |
Collapse
|
11
|
Zhang C, Liu J, Tao F, Lu Y, He Q, Zhao L, Ou R, Xu Y, Li W. Retracted Article: The nuclear export of TR3 mediated gambogic acid-induced apoptosis in cervical cancer cells through mitochondrial dysfunction. RSC Adv 2019; 9:11855-11864. [PMID: 35516982 PMCID: PMC9063542 DOI: 10.1039/c8ra10542a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/29/2019] [Indexed: 12/02/2022] Open
Abstract
At present, chemotherapy is still the main treatment for cervical cancer. However, the drug resistance of chemotherapy drugs seriously restricts its use, so it is urgent to develop new drugs for cervical cancer. Some studies have shown that gambogic acid has a strong anti-tumor effect, while the anti-tumor effect and molecular mechanism of gambogic acid on cervical cancer need to be studied. Our study confirms that the cytotoxic effect of gambogic acid on cervical cancer cells depends on the expression of TR3 protein. Moreover, gambogic acid-induced apoptosis requires TR3 expression. In the mechanism, gambogic acid promoted nuclear export of TR3, resulting in up-regulation of p53, which leads to the decrease of mitochondrial membrane potential, eventually inducing apoptosis. These results suggest that the nuclear export of TR3 mediated gambogic acid-induced apoptosis through a p53-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Pharmacy, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Jia Liu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
- Plastic and Cosmetic Center, The Affiliated Eye Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Fengxing Tao
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Yiyi Lu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Qin He
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Yunsheng Xu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| |
Collapse
|
12
|
Zhong C, Mai Y, Gao H, Zhou W, Zhou D. Mitochondrial targeting of TR3 is involved in TPA induced apoptosis in breast cancer cells. Gene 2019; 693:61-68. [PMID: 30641217 DOI: 10.1016/j.gene.2018.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
Abstract
TPA is considered to be a tumor promoting molecule that induces the expression of COX-2 protein. However, it is contradictory to find that TPA can induce tumor cell apoptosis and exert antitumor activity. Therefore, the role of TPA in tumorigenesis and development has not yet been elucidated. Here we show that TPA can promote the apoptosis of breast cancer cells and increase the ratio of Bax/Bcl-2. It is suggested that TPA may induce apoptosis of breast cancer cells through mitochondrial apoptosis pathway. Further studies showed that TPA could cause mitochondrial dysfunction and trigger mitochondrial apoptotic pathway. In mechanism, the mitochondrial targeting of TR3 is involved in TPA induced apoptosis in breast cancer cells. In conclusion, our findings suggest that TPA can play a role in inhibiting cancer by inducing apoptosis and TR3 is expected to be a new target for cancer treatment.
Collapse
Affiliation(s)
- Caineng Zhong
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China.
| | - Yuchang Mai
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Hengyuan Gao
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Wenbin Zhou
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Dongxian Zhou
- Department of Breast Surgery, The Second Affiliated Hospital of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2. Oncol Lett 2018; 15:8926-8934. [PMID: 29805627 PMCID: PMC5958717 DOI: 10.3892/ol.2018.8502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/15/2018] [Indexed: 01/27/2023] Open
Abstract
Despite the availability of multiple therapeutic methods for patients with cancer, the long-term prognosis is not satisfactory in a number of different cancer types. Vitamin K2 (VK2), which exerts anticancer effects on a number of cancer cell lines, is considered to be a prospective novel agent for the treatment of cancer. The present review aims to summarize the results of studies in which VK2 was administered either to patients with cancer or animals inoculated with cancerous cells, particularly investigating the inhibitory effects of VK2 on cancerous cells, primarily involving cell-cycle arrest, cell differentiation, apoptosis, autophagy and invasion. The present review summarizes evidence stating that treatment with VK2 could positively inhibit the growth of cancer cells, making it a potentially useful approach for the prevention and clinical treatment of cancer. Additionally, the combination treatment of VK2 and established chemotherapeutics may achieve better results, with fewer side effects. Therefore, more attention should be paid to the effects of micronutrients on tumors.
Collapse
Affiliation(s)
- Fan Xv
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
14
|
Dasari S, Ali SM, Zheng G, Chen A, Dontaraju VS, Bosland MC, Kajdacsy-Balla A, Munirathinam G. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget 2017; 8:57782-57799. [PMID: 28915711 PMCID: PMC5593683 DOI: 10.18632/oncotarget.17997] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Syed M Ali
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | | | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| |
Collapse
|
15
|
Hu H, Lin C, Ao M, Ji Y, Tang B, Zhou X, Fang M, Zeng J, Wu Z. Synthesis and biological evaluation of 1-(2-(adamantane-1-yl)-1H-indol-5-yl)-3-substituted urea/thiourea derivatives as anticancer agents. RSC Adv 2017. [DOI: 10.1039/c7ra08149a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 2,5-disubstituted indole derivatives were synthesized. Compounds 7n, 7s, and 7w induced Nur77-expression in a time- and dose- dependent manner in H460 cells. Furthermore, Nur77 served as a critical mediator for the anticancer action of 7s.
Collapse
Affiliation(s)
- Hongyu Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Chunrong Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Yufen Ji
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Bowen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Xiaoxiao Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Jinzhang Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Sciences
- Xiamen University
- Xiamen
- China
| |
Collapse
|
16
|
Won HY, Hwang ES. Transcriptional modulation of regulatory T cell development by novel regulators NR4As. Arch Pharm Res 2016; 39:1530-1536. [PMID: 27778276 DOI: 10.1007/s12272-016-0803-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells with high expression of both CD25 and Foxp3 are developed in the thymus and also peripheral tissues. Treg cells suppress the activation and functions of effector T cells raised against specific antigens and are crucial for maintaining immune homeostasis. Treg cell development is associated with the induction of and epigenetic alterations of forkhead transcription factor Foxp3. Foxp3 expression is increased by the activation of several transcription factors including nuclear factor-kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and Smad3 in response to various signals such as TGFβ, retinoic acid, and rapamycin. Recently, the orphan nuclear receptor 4A proteins (NR4As) including NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) are reported to regulate Treg cell development through activation of Foxp3 and have therapeutic potentials in treating immune disorders. This review summarizes the function and regulatory mechanisms of Treg cells and also implicates current advances in immunomodulatory functions of NR4As and their therapeutic potentials in inflammation and cancer.
Collapse
Affiliation(s)
- Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
17
|
Dhakshinamoorthy S, Dinh NT, Skolnick J, Styczynski MP. Metabolomics identifies the intersection of phosphoethanolamine with menaquinone-triggered apoptosis in an in vitro model of leukemia. MOLECULAR BIOSYSTEMS 2016; 11:2406-16. [PMID: 26175011 DOI: 10.1039/c5mb00237k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Altered metabolism is increasingly acknowledged as an important aspect of cancer, and thus serves as a potentially fertile area for the identification of therapeutic targets or leads. Our recent work using transcriptional data to predict metabolite levels in cancer cells led to preliminary evidence of the antiproliferative role of menaquinone (vitamin K2) in the Jurkat cell line model of acute lymphoblastic leukemia. However, nothing is known about the direct metabolic impacts of menaquinone in cancer, which could provide insights into its mechanism of action. Here, we used metabolomics to investigate the process by which menaquinone exerts antiproliferative activity on Jurkat cells. We first validated the dose-dependent, semi-selective, pro-apoptotic activity of menaquinone treatment on Jurkat cells relative to non-cancerous lymphoblasts. We then used mass spectrometry-based metabolomics to identify systems-scale changes in metabolic dynamics that are distinct from changes induced in non-cancerous cells or by other chemotherapeutics. One of the most significantly affected metabolites was phosphoethanolamine, which exhibited a two-fold increase in menaquinone-treated Jurkat cells compared to vehicle-treated cells at 24 h, growing to a five-fold increase at 72 h. Phosphoethanolamine elevation was observed prior to the induction of apoptosis, and was not observed in menaquinone-treated lymphoblasts or chemotherapeutic-treated Jurkat cells. We also validated the link between menaquinone and phosphoethanolamine in an ovarian cancer cell line, suggesting potentially broad applicability of their relationship. This metabolomics-based work is the first detailed characterization of the metabolic impacts of menaquinone treatment and the first identified link between phosphoethanolamine and menaquinone-induced apoptosis.
Collapse
|
18
|
Agostini-Dreyer A, Jetzt AE, Stires H, Cohick WS. Endogenous IGFBP-3 Mediates Intrinsic Apoptosis Through Modulation of Nur77 Phosphorylation and Nuclear Export. Endocrinology 2015; 156:4141-51. [PMID: 26340041 DOI: 10.1210/en.2015-1215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In nontransformed bovine mammary epithelial cells, the intrinsic apoptosis inducer anisomycin (ANS) induces IGFBP-3 expression and nuclear localization and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. Others have shown in prostate cancer cells that exogenous IGFBP-3 induces apoptosis by facilitating nuclear export of the orphan nuclear receptor Nur77 and its binding partner, retinoid X receptor-α (RXRα). The goal of the present work was to determine whether endogenous IGFBP-3 plays a role in ANS-induced apoptosis by facilitating nuclear transport of Nur77 and/or RXRα in nontransformed cells. Knockdown of Nur77 with siRNA decreased ANS-induced cleavage of caspase-3 and -7 and their downstream target, PARP, indicating a role for Nur77 in ANS-induced apoptosis. In cells transfected with IGFBP-3, IGFBP-3 associated with RXRα but not Nur77 under basal conditions, however, IGFBP-3 co-precipitated with phosphorylated forms of both proteins in ANS-treated cells. Indirect immunofluorescence and cell fractionation techniques showed that ANS induced phosphorylation and transport of Nur77 from the nucleus to the cytoplasm and these effects were attenuated by knockdown of IGFBP-3. These data suggest that endogenous IGFBP-3 plays a role in intrinsic apoptosis by facilitating phosphorylation and nuclear export of Nur77 to the cytoplasm where it exerts its apoptotic effect. Whether this mechanism involves a physical association between endogenous IGFBP-3 and Nur77 or RXRα remains to be determined.
Collapse
Affiliation(s)
- Allyson Agostini-Dreyer
- Graduate Program in Nutritional Sciences (A.A.-D., W.S.C.), Department of Animal Sciences, Rutgers (A.E.J., W.S.C.), and Graduate Program in Endocrinology and Animal Biosciences (H.S., W.S.C.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520
| | - Amanda E Jetzt
- Graduate Program in Nutritional Sciences (A.A.-D., W.S.C.), Department of Animal Sciences, Rutgers (A.E.J., W.S.C.), and Graduate Program in Endocrinology and Animal Biosciences (H.S., W.S.C.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520
| | - Hillary Stires
- Graduate Program in Nutritional Sciences (A.A.-D., W.S.C.), Department of Animal Sciences, Rutgers (A.E.J., W.S.C.), and Graduate Program in Endocrinology and Animal Biosciences (H.S., W.S.C.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520
| | - Wendie S Cohick
- Graduate Program in Nutritional Sciences (A.A.-D., W.S.C.), Department of Animal Sciences, Rutgers (A.E.J., W.S.C.), and Graduate Program in Endocrinology and Animal Biosciences (H.S., W.S.C.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520
| |
Collapse
|
19
|
Kiely M, Hodgins SJ, Merrigan BA, Tormey S, Kiely PA, O'Connor EM. Real-time cell analysis of the inhibitory effect of vitamin K2 on adhesion and proliferation of breast cancer cells. Nutr Res 2015; 35:736-43. [PMID: 26082424 DOI: 10.1016/j.nutres.2015.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most prevalent cancer type worldwide. Continued efforts to improve treatment strategies for patients with breast cancer will be instrumental in reducing the death rates associated with this disease. In particular, the triple-negative breast cancer subtype of breast cancer has no targeted therapy available so it is essential to continue to work on any potential therapies. Vitamin K (VK) is known for its essential role in the clotting cascade. The antitumor properties of VK derivatives have been reported in both hepatocellular carcinoma and glioblastoma. Our hypothesis was that menaquinone-4, the most common form of vitamin K2 (VK2), is an effective anticancer agent against breast cancer cell types. In this study, we used a novel impedance-based live cell monitoring platform (xCELLigence) to determine the effects of VK derivatives on the triple-negative breast cancer cell line, MDA-MB-231, and the HER2+ breast cancer cell line, MDA-MB-453. Cells were treated with varying concentrations of menaquinone-4 (VK2) previously reported to have an antiproliferative effect on human glioblastoma cells. After initial testing, these concentrations were adjusted to 100, 125, and 150 μmol/L. A significant dose-dependent, growth inhibitory effect was found when cells were treated at these concentrations. These effects were seen in both adhesion and proliferation phases and show a dramatic reduction in cell growth. Additional analysis of MDA-MB-231 cells treated with VK2 (100 μmol/L) in combination with a low-glucose nutrient media showed a further decrease in adhesion and viability. This is the first study of its kind showing the real-time effects of VK derivatives on breast cancer cells and suggests that dietary factors may be an important consideration for patients.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, University of Limerick, Limerick, Ireland; Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Stokes Institute, University of Limerick, Limerick, Ireland
| | - Spencer J Hodgins
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - B Anne Merrigan
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Shona Tormey
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland; Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Patrick A Kiely
- Department of Life Sciences, University of Limerick, Limerick, Ireland; Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; Stokes Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
20
|
Masuda Y, Asada K, Satoh R, Takada K, Kitajima J. Capillin, a major constituent of Artemisia capillaris Thunb. flower essential oil, induces apoptosis through the mitochondrial pathway in human leukemia HL-60 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:545-552. [PMID: 25981920 DOI: 10.1016/j.phymed.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Natural products are one of the most important sources of drugs used in pharmaceutical therapeutics. Screening of several natural products in the search for novel anticancer agents against human leukemia HL-60 cells led us to identify potent apoptosis-inducing activity in the essential oil fraction from Artemisia capillaris Thunb. flower. METHODS The cytotoxic effects of extracts were assessed on human leukemia HL-60 cells by XTT assay. Induction of apoptosis was assessed by analysis of DNA fragmentation and nuclear morphological change. The plant name was checked with the plant list website (http://www.theplantlist.org). RESULTS A purified compound from the essential oil fraction from Artemisia capillaris Thunb. flower that potently inhibited cell growth in human leukemia HL-60 cells was identified as capillin. The cytotoxic effect of capillin in cells was associated with apoptosis. When HL-60 cells were treated with 10(-6) M capillin for 6 h, characteristic features of apoptosis such as DNA fragmentation and nuclear fragmentation were observed. Moreover, activation of c-Jun N-terminal kinase (JNK) was detected after treatment with capillin preceding the appearance of characteristic properties of apoptosis. Release of cytochrome c from mitochondria was also observed in HL-60 cells that had been treated with capillin. CONCLUSION Capillin induces apoptosis in HL-60 cells via the mitochondrial apoptotic pathway, which might be controlled through JNK signaling. Our results indicate that capillin may be a potentially useful anticancer drug that could enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Yutaka Masuda
- Laboratory of Clinical Pharmacy, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan.
| | - Keisuke Asada
- Laboratory of Clinical Pharmacy, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Rei Satoh
- Laboratory of Kampo Medicinal Education, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Kimihiko Takada
- Laboratory of Clinical Pharmacy, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Junichi Kitajima
- Laboratory of Kampo Medicinal Education, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
21
|
Luan J, Yang X, Chu L, Xi Y, Zhai G. PEGylated long circulating nanostructured lipid carriers for Amoitone B: Preparation, cytotoxicity and intracellular uptake. J Colloid Interface Sci 2014; 428:49-56. [DOI: 10.1016/j.jcis.2014.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022]
|
22
|
Niu G, Lu L, Gan J, Zhang D, Liu J, Huang G. Dual roles of orphan nuclear receptor TR3/Nur77/NGFI-B in mediating cell survival and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:219-58. [PMID: 25376494 DOI: 10.1016/b978-0-12-800177-6.00007-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a transcriptional factor, Nur77 has sparked interests across different research fields in recent years. A number of studies have demonstrated the functional complexity of Nur77 in mediating survival/apoptosis in a variety of cells, including tumor cells. Conflicting observations also exist in clinical reports, in that TR3 behaves like an oncogene in tumors of the GI tract, lung, and breast, that is negatively associated with tumor stage and patient prognosis; while functions as a tumor suppressor gene in malignancies of the hematological and lymphatic system, skin, and ovary whose malfunction results in carcinogenesis. This chapter summarizes the apparent opposing effects of Nur77 on cells and explicates the mechanisms that determine the functional preference of Nur77. We conclude that in addition to cell type and agent context, other factors such as cellular localization, signaling pathway, and posttranslational modification also determine the final effects of Nur77 on cells.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Lu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jun Gan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zhang
- Main Library, Shanghai Jiao Tong University, Shanghai, China
| | - Jingzheng Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Luan J, Zhang D, Hao L, Qi L, Liu X, Guo H, Li C, Guo Y, Li T, Zhang Q, Zhai G. Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers. Colloids Surf B Biointerfaces 2013; 114:255-60. [PMID: 24211416 DOI: 10.1016/j.colsurfb.2013.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
Abstract
Amoitone B, chemically synthesized as the derivative of Cytosporone B, is a powerful agonist for Nur77 receptor. It has outstanding anticancer activity in vivo. However, the water-insolubility and short biological half-life lead to poor bioavailability, which limits its application. The aim of this study was to develop polyethylene glycol-coated Amoitone B-loaded nanostructured lipid carriers (AmB-PEG-NLC) for parenteral delivery of Amoitone B to prolong drug circulation time in body and enhance the bioavailability. AmB-PEG-NLC were prepared by emulsion-evaporation and low temperature-solidification method, while Amoitone B-loaded NLC (AmB-NLC) were also prepared as control. The characteristics of AmB-PEG-NLC and AmB-NLC such as particle size, zeta potential, entrapment efficiency and drug loading were investigated in detail. The mean particle size was about 200 nm and the zeta potential value was about -15 mV. The X-ray diffraction analysis demonstrated that Amoitone B was not in crystalline state in NLC (AmB-PEG-NLC and AmB-NLC). Drug release pattern with burst release initially and prolonged release afterwards was obtained in vitro for AmB-PEG-NLC. Furthermore, AmB-PEG-NLC exhibited prolonged MRT (mean residence time) and higher AUC (area under drug concentration-time curve) compared with AmB-NLC as well as Amoitone B solution. These results indicated that AmB-PEG-NLC could be a promising delivery system for Amoitone B to prolong the circulation time in body and thus improve its bioavailability.
Collapse
Affiliation(s)
- Jingjing Luan
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Dianrui Zhang
- College of Pharmacy, Shandong University, Jinan 250012, PR China.
| | - Leilei Hao
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Lisi Qi
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Xinquan Liu
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Hejian Guo
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Caiyun Li
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Yuanyuan Guo
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Tingting Li
- College of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100083, PR China
| | - Guangxi Zhai
- College of Pharmacy, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
24
|
Luan J, Zhang D, Hao L, Li C, Qi L, Guo H, Liu X, Zhang Q. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release. Drug Deliv 2013; 20:324-30. [DOI: 10.3109/10717544.2013.835007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Vitamin k2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:287358. [PMID: 24062781 PMCID: PMC3767046 DOI: 10.1155/2013/287358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
Abstract
In recent years, several studies have shown that vitamin k2 (VK2) has anticancer activity in a variety of cancer cells. The antitumor effects of VK2 in prostate cancer are currently not known. In the present study, we sought to characterize the anticancer potential of VK2 in both androgen-dependent and -independent prostate cancer cells. Our investigations show that VK2 is able to suppress viability of androgen-dependent and androgen-independent prostate cancer cells via caspase-3 and -8 dependent apoptosis. We also show that VK2 treatment reduces androgen receptor expression and PSA secretion in androgen-dependent prostate cancer cells. Our results also implicate VK2 as a potential anti-inflammatory agent, as several inflammatory genes are downregulated in prostate cancer cells following treatment with VK2. Additionally, AKT and NF-kB levels in prostate cancer cells are reduced significantly when treated with VK2. These findings correlated with the results of the Boyden chamber and angiogenesis assay, as VK2 treatment reduced cell migration and angiogenesis potential of prostate cancer cells. Finally, in a nude mice model, VK2 administration resulted in significant inhibition of both androgen-dependent and androgen-independent tumor growth. Overall, our results suggest that VK2 may be a potential therapeutic agent in the treatment of prostate cancer.
Collapse
|
26
|
Wilson AJ, Liu AY, Roland J, Adebayo OB, Fletcher SA, Slaughter JC, Saskowski J, Crispens MA, Jones HW, James S, Fadare O, Khabele D. TR3 modulates platinum resistance in ovarian cancer. Cancer Res 2013; 73:4758-69. [PMID: 23720056 DOI: 10.1158/0008-5472.can-12-4560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In metastatic ovarian cancer, resistance to platinum chemotherapy is common. Although the orphan nuclear receptor TR3 (nur77/NR4A1) is implicated in mediating chemotherapy-induced apoptosis in cancer cells, its role in ovarian cancer has not been determined. In an ovarian cancer tissue microarray, TR3 protein expression was elevated in stage I tumors, but downregulated in a significant subset of metastatic tumors. Moreover, TR3 expression was significantly lower in platinum-resistant tumors in patients with metastatic disease, and low TR3 staining was associated with poorer overall and progression-free survival. We have identified a direct role for TR3 in cisplatin-induced apoptosis in ovarian cancer cells. Nucleus-to-cytoplasm translocation of TR3 was observed in cisplatin-sensitive (OVCAR8, OVCAR3, and A2780PAR) but not cisplatin-resistant (NCI/ADR-RES and A2780CP20) ovarian cancer cells. Immunofluorescent analyses showed clear overlap between TR3 and mitochondrial Hsp60 in cisplatin-treated cells, which was associated with cytochrome c release. Ovarian cancer cells with stable shRNA- or transient siRNA-mediated TR3 downregulation displayed substantial reduction in cisplatin effects on apoptotic markers and cell growth in vitro and in vivo. Mechanistic studies showed that the cisplatin-induced cytoplasmic TR3 translocation required for apoptosis induction was regulated by JNK activation and inhibition of Akt. Finally, cisplatin resistance was partially overcome by ectopic TR3 overexpression and by treatment with the JNK activator anisomycin and Akt pathway inhibitor, wortmannin. Our results suggest that disruption of TR3 activity, via downregulation or nuclear sequestration, likely contributes to platinum resistance in ovarian cancer. Moreover, we have described a treatment strategy aimed at overcoming platinum resistance by targeting TR3.
Collapse
Affiliation(s)
- Andrew J Wilson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, B1100 Medical Center North, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 2012; 27:1358-68. [PMID: 23247046 DOI: 10.1038/leu.2012.366] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77(-/-)nor1(-/-) mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34(+)/38(-) AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins.
Collapse
|
28
|
Hao L, Wang X, Zhang D, Xu Q, Song S, Wang F, Li C, Guo H, Liu Y, Zheng D, Zhang Q. Studies on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharm 2012; 433:157-64. [PMID: 22579996 DOI: 10.1016/j.ijpharm.2012.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022]
Abstract
Amoitone B, as a new derivative of cytosporone B, has been proved to be a natural agonist for Nur77. It exhibits remarkable anticancer activity in vivo and has the potential to be a therapeutic agent for cancer treatment. However, the poor solubility and dissolution rate result in low therapeutic index for injection and low bioavailability for oral administration, therefore limiting its application. In order to magnify the clinical use of Amoitone B, nanocrystal was selected as an application technology to solve the above problems. In this study, the optimized Amoitone B nanocrystals with small and uniform particle size were successfully prepared by microfluidization method and investigated by morphology, size distribution, and zeta potential. The differential scanning calorimetry (DSC) and X-ray diffraction (XRD) confirmed there was no crystalline state changed in the size reduction process. For Amoitone B nanocrystals, an accelerated dissolution velocity and increased saturation solubility were achieved in vitro and a markedly different pharmacokinetic property in vivo was exhibited with retarded clearance and magnified AUC compared with Amoitone B solution. These results implied that developing Amoitone B as nanocrystals is a promising choice for intravenous delivery and further application for cancer therapy.
Collapse
Affiliation(s)
- Leilei Hao
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC, Murphy EP. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res 2012; 18:3223-8. [PMID: 22566377 DOI: 10.1158/1078-0432.ccr-11-2953] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A/CREB, NF-κB, phosphoinositide 3-kinase/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Helen M Mohan
- UCD Veterinary Sciences Centre, University College Dublin, Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
30
|
Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway. Mol Cell Biochem 2010; 342:125-31. [PMID: 20449638 DOI: 10.1007/s11010-010-0476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/17/2010] [Indexed: 01/13/2023]
Abstract
Vitamin K(2) (VK(2)) can exert cell growth inhibitory effects in various human cancer cells. In this study, we investigated the cell growth inhibitory effects of VK(2) in hepatocellular carcinoma Smmc-7721 cells and the mechanisms involved. We found that VK(2)-inhibited cell proliferation in Smmc-7721 cells in a dose-dependent manner, and the IC50 of VK(2) in Smmc-7721 cells was 9.73 microM at 24 h. The data from flow cytometric analyses, DNA fragmentation assays, and caspase 3 activity assays revealed that apoptosis was the determining factor in VK(2) activity. Furthermore, a significant increase in p53 phosphorylation and protein level was exhibited in apoptotic cells treated with VK(2), although there were no changes in p53 mRNA expression. Bax expression was unaffected by VK(2) in Smmc-7721 cells. In addition, our study showed that caspase 3 was activated by caspase 8, not caspase 9, in Smmc-7721 cells treated with VK(2). In summary, these data suggested that VK(2) can inhibit the growth of Smmc-7721 cells by induction of apoptosis involving caspase 8 activation and p53. This apoptotic process was not mediated by the intrinsic apoptotic pathway.
Collapse
|
31
|
Xu D, Huang YJ, Li Y, Yin W, Yan GM. Orphan nuclear receptor Nur77 is required for the differentiation of C6 glioma cells induced by cholera toxin. Acta Pharmacol Sin 2009; 30:1543-9. [PMID: 19890361 DOI: 10.1038/aps.2009.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM To investigate a possible regulator gene involved in the cholera toxin-induced differentiation of rat C6 glioma cells. METHODS The global changes in the mRNA expression pattern induced by cholera toxin were analyzed using gene chip microarray. The selected gene was then silenced by RNA interference or overexpressed with an ORF plasmid to determine its necessity in this process. RESULTS Nur77, a member of the orphan nuclear receptor family (NR4A), was markedly up-regulated during the process of differentiation. Furthermore, RNAi of nur77 attenuated the induction effect of cholera toxin on C6 cells, whereas overexpression of nur77 led to similarly differentiated behavior, including morphologic and biomarker changes, as well as cell cycle arrest. CONCLUSION Nur77 participated actively and essentially as an important regulator in the cholera toxin-induced differentiation of C6 cells.
Collapse
|
32
|
Camacho CP, Latini FRM, Oler G, Hojaij FC, Maciel RMB, Riggins GJ, Cerutti JM. Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clin Endocrinol (Oxf) 2009; 70:475-83. [PMID: 18727708 PMCID: PMC2742303 DOI: 10.1111/j.1365-2265.2008.03349.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The identification of follicular thyroid adenoma-associated transcripts will lead to a better understanding of the events involved in pathogenesis and progression of follicular tumours. Using Serial Analysis of Gene Expression, we identified five genes that are absent in a malignant follicular thyroid carcinoma (FTC) library, but expressed in follicular adenoma (FTA) and normal thyroid libraries. METHODS NR4A1, one of the five genes, was validated in a set of 27 normal thyroid tissues, 10 FTAs and 14 FTCs and three thyroid carcinoma cell lines by real time PCR. NR4A1 can be transiently increased by a variety of stimuli, including lithium, which is used as adjuvant therapy of thyroid carcinoma with (131)I. We tested if lithium could restore NR4A1 expression. The expression of other genes potentially involved in the same signalling pathway was tested. To this end, lithium was used at different concentration (10 mm or 20 mm) and time (2 h and 24 h) and the level of expression was tested by quantitative PCR. We next tested if Lithium could affect cell growth and apoptosis. RESULTS We observed that NR4A1 expression was under-expressed in most of the FTCs investigated, compared with expression in normal thyroid tissues and FTAs. We also found a positive correlation between NR4A1 and FOSB gene expression. Lithium induced NR4A1 and FOSB expression, reduced CCDN1 expression, inhibited cell growth and triggered apoptosis in a FTC cell line. CONCLUSIONS NR4A1 is under-expressed in most of FTCs. The loss of expression of both NR4A1 and the Wnt pathway gene FOSB was correlated with malignancy. This is consistent with the hypothesis that its loss of expression is part of the transformation process of FTCs, either as a direct or indirect consequence of Wnt pathway alterations. Lithium restores NR4A1 expression, induces apoptosis and reduces cell growth. These findings may explain a possible molecular mechanism of lithium's therapeutic action.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/drug therapy
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Adenoma/drug therapy
- Adenoma/metabolism
- Adenoma/pathology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chemotherapy, Adjuvant
- Cyclin D1/genetics
- Cyclin D1/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Humans
- Lithium Compounds/pharmacology
- Lithium Compounds/therapeutic use
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Signal Transduction/drug effects
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Cléber P Camacho
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu J, Zhou W, Li SS, Sun Z, Lin B, Lang YY, He JY, Cao X, Yan T, Wang L, Lu J, Han YH, Cao Y, Zhang XK, Zeng JZ. Modulation of orphan nuclear receptor Nur77-mediated apoptotic pathway by acetylshikonin and analogues. Cancer Res 2008; 68:8871-80. [PMID: 18974131 DOI: 10.1158/0008-5472.can-08-1972] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shikonin derivatives, which are the active components of the medicinal plant Lithospermum erythrorhizon, exhibit many biological effects including apoptosis induction through undefined mechanisms. We recently discovered that orphan nuclear receptor Nur77 migrates from the nucleus to the mitochondria, where it binds to Bcl-2 to induce apoptosis. Here, we report that certain shikonin derivatives could modulate the Nur77/Bcl-2 apoptotic pathway by increasing levels of Nur77 protein and promoting its mitochondrial targeting in cancer cells. Structural modification of acetylshikonin resulted in the identification of a derivative 5,8-diacetoxyl-6-(1'-acetoxyl-4'-methyl-3'-pentenyl)-1,4-naphthaquinones (SK07) that exhibited improved efficacy and specificity in activating the pathway. Unlike other Nur77 modulators, shikonins increased the levels of Nur77 protein through their posttranscriptional regulation. The apoptotic effect of SK07 was impaired in Nur77 knockout cells and suppressed by cotreatment with leptomycin B that inhibited Nur77 cytoplasmic localization. Furthermore, SK07 induced apoptosis in cells expressing the COOH-terminal half of Nur77 protein but not its NH(2)-terminal region. Our data also showed that SK07-induced apoptosis was associated with a Bcl-2 conformational change and Bax activation. Together, our results show that certain shikonin derivatives act as modulators of the Nur77-mediated apoptotic pathway and identify a new shikonin-based lead that targets Nur77 for apoptosis induction.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|