1
|
Narwal E, Choudhary J, Kumar M, Amarowicz R, Kumar S, Radha, Chandran D, Dhumal S, Singh S, Senapathy M, Rajalingam S, Muthukumar M, Mekhemar M. Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review. Crit Rev Microbiol 2025; 51:84-107. [PMID: 38546272 DOI: 10.1080/1040841x.2024.2321489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 01/28/2025]
Abstract
The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.
Collapse
Affiliation(s)
- Ekta Narwal
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Jairam Choudhary
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sunil Kumar
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Sodo, Ethiopia
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
2
|
Alam MK, Alqhtani NR, Alnufaiy B, Alqahtani AS, Elsahn NA, Russo D, Di Blasio M, Cicciù M, Minervini G. A systematic review and meta-analysis of the impact of resveratrol on oral cancer: potential therapeutic implications. BMC Oral Health 2024; 24:412. [PMID: 38575921 PMCID: PMC10993553 DOI: 10.1186/s12903-024-04045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
The present study aimed to investigate the impact of resveratrol on oral neoplastic parameters through a systematic review and meta-analysis. Resveratrol, a naturally occurring polyphenol, has shown promising potential as a therapeutic agent in various cancer types, including oral neoplasms. Understanding the collective findings from existing studies can shed light on the efficacy and mechanisms of resveratrol in oral cancer management. The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was performed to identify relevant studies from various databases, registers, websites, and citation searches. The inclusion criteria encompassed in-vivo studies investigating the impact of resveratrol on oral neoplastic parameters in animal models. After screening and assessment, a total of five eligible studies were included in the meta-analysis. The meta-analysis of the selected studies revealed that resveratrol treatment exhibited a potential impact on reducing oral neoplastic proliferation and promoting neoplastic apoptosis. The combined analysis showed a statistically significant decrease in neoplastic parameters with an overall effect size (ES) of 0.85 (95% CI: [0.74, 0.98]). Subgroup analyses were conducted to explore potential variations among different cellular types and exposure compounds, providing further insights into the efficacy of resveratrol in specific contexts. This systematic review and meta-analysis support the potential of resveratrol as a promising therapeutic agent in oral cancer management. The findings indicate that resveratrol may effectively modulate neoplastic proliferation and apoptosis in various cellular types within animal models of oral cancer. However, further well-controlled studies and clinical trials are warranted to validate these observations and elucidate the underlying mechanisms of resveratrol's actions. Resveratrol holds promise as a complementary therapeutic approach in the prevention and treatment of oral neoplastic conditions.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, 72345, Sakaka, Saudi Arabia.
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, 600077, India.
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Nasser Raqe Alqhtani
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Banna Alnufaiy
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Abdullah Saad Alqahtani
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdullaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Nesrine A Elsahn
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman, UAE
- Center of Medical and Bioallied Health Sciences Research, Ajman University, Ajman, UAE
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| | - Marco Di Blasio
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, 43126, Parma, Italy.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123, Catania, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy.
| |
Collapse
|
3
|
Angellotti G, Di Prima G, Belfiore E, Campisi G, De Caro V. Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:275. [PMID: 36678905 PMCID: PMC9866019 DOI: 10.3390/pharmaceutics15010275] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevailing and aggressive head and neck cancers, featuring high morbidity and mortality. The available conventional treatments suffer from several adverse effects and are often inefficient in terms of their survival rates. Thus, seeking novel therapeutic agents and adjuvants is of the utmost importance for modern society. Natural polyphenolic compounds have recently emerged as promising chemopreventive and anticancer agents. Specifically, the natural compound resveratrol (RSV) has recently gained momentum for this purpose. RSV is useful for treating OSCC due to its antiproliferative, antimetastatic, and proapoptotic effects. Additionally, RSV acts against tumor cells while synergically cooperating with chemotherapeutics, overcoming drug resistance phenomena. Despite these wide-spectrum effects, there are few specific investigations regarding RSV's effects against OSCC animal models that consider different routes and vehicles for the administration of RSV. Interestingly, an injectable RSV-loaded liposome-based formulation was proven to be effective against both in vitro and in vivo OSCC models, demonstrating that the development of RSV-loaded drug delivery systems for systemic and/or loco-regional applications may be the turning point in oral cancer treatment, leading to benefits from both RSV's properties as well as from targeted delivery. Given these premises, this review offers a comprehensive overview of the in vitro and in vivo effects of RSV and its main derivative, polydatin (PD), against OSCC-related cell lines and animal models, aiming to guide the scientific community in regard to RSV and PD use in the treatment of oral precancerous and cancerous lesions.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
4
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|
5
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
7
|
Prakash S, Radha, Kumar M, Kumari N, Thakur M, Rathour S, Pundir A, Sharma AK, Bangar SP, Dhumal S, Singh S, Thiyagarajan A, Sharma A, Sharma M, Changan S, Sasi M, Senapathy M, Pradhan PC, Garg NK, Ilakiya T, Nitin M, Abdel-Daim MM, Puri S, Natta S, Dey A, Amarowicz R, Mekhemar M. Plant-Based Antioxidant Extracts and Compounds in the Management of Oral Cancer. Antioxidants (Basel) 2021; 10:1358. [PMID: 34572990 PMCID: PMC8466097 DOI: 10.3390/antiox10091358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Oral cancer continues to be a leading cause of death worldwide, and its prevalence is particularly high in developing countries, where people chew tobacco and betel nut on a regular basis. Radiation-, chemo-, targeted-, immuno-, and hormone-based therapies along with surgery are commonly used as part of a treatment plan. However, these treatments frequently result in various unwanted short- to long-term side effects. As a result, there is an urgent need to develop treatment options for oral cancer that have little or no adverse effects. Numerous bioactive compounds derived from various plants have recently attracted attention as therapeutic options for cancer treatment. Antioxidants found in medicinal plants, such as vitamins E, C, and A, reduce damage to the mucosa by neutralizing free radicals found in various oral mucosal lesions. Phytochemicals found in medicinal plants have the potential to modulate cellular signalling pathways that alter the cellular defence mechanisms to protect normal cells from reactive oxygen species (ROS) and induce apoptosis in cancer cells. This review aims to provide a comprehensive overview of various medicinal plants and phytoconstituents that have shown the potential to be used as oral cancer therapeutics.
Collapse
Affiliation(s)
- Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Mamta Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Sonia Rathour
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Sneh Punia Bangar
- Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India;
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Anitha Thiyagarajan
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, India;
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India;
| | - Munisha Sharma
- Sri Shankara Cancer Hospital and Research Centre, Bengaluru 560004, India;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India;
| | - Minnu Sasi
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia;
| | - Prakash Chandra Pradhan
- Division of Agricultural Chemicals, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Nitin Kumar Garg
- Division of Biochemistry, Sri Karan Narendra Agriculture University, Jobner 303329, India;
| | - Tamilselvan Ilakiya
- Department of Vegetable Science, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Mukesh Nitin
- Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi 834001, India;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Phamaceutical Sciences, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (S.P.); (N.K.); (M.T.); (S.R.); (S.P.)
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India;
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
8
|
Resveratrol effects in oral cancer cells: a comprehensive review. Med Oncol 2021; 38:97. [PMID: 34273003 DOI: 10.1007/s12032-021-01548-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Oral cancer is a very common tumor worldwide with high incidence and mortality. The treatment of oral cancer involves surgery, radio- and chemotherapy; however, high failure rates and toxicity are noticed. Thus, the search of new drugs aiming a more effective treatment is welcomed. Natural products present chemopreventive and anti-cancer effects. Resveratrol is a naturally occurring antioxidant that contains several health benefits, including anti-inflammatory and antiproliferative activities. This review discusses the different action mechanisms of resveratrol related in the in vitro and in vivo studies using models of oral cancer.
Collapse
|
9
|
Hamada H, Hamada H, Shimoda K, Kuboki A, Iwaki T, Kiriake Y, Ishihara K. Resveratrol Oligosaccharides (Gluco-Oligosaccharides) Effectively Inhibit SARS-CoV-2 Infection: Glycoside (Polysaccharide) Approach for Treatment of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211012903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To examine the anti-SARS-CoV-2 effects of resveratrol oligosaccharides, human MRC5 lung cells, which had been infected with SARS-CoV-2, were incubated with different concentrations of resveratrol oligosaccharides. These suppressed the cell death induced by SARS-CoV-2 infection, more efficiently, at 0.1% concentration, than resveratrol itself. Resveratrol oligosaccharides effectively inhibited SARS-CoV-2 infection in the 5% to 10% concentration range, which indicates that these compounds could be useful anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Hiroki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Hatsuyuki Hamada
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Kei Shimoda
- Department of Biomedical Chemistry, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Atsuhito Kuboki
- Department of Biochemistry, Okayama University of Science, Kita-ku, Okayama, Japan
| | - Takafumi Iwaki
- Department of Biophysics, Oita University, Hasama-machi, Oita, Japan
| | - Yuya Kiriake
- Faculty of Medicine and Health Sciences, Yamaguchi University, Minamikogushi, Ube-shi, Japan
| | - Kohji Ishihara
- Department of Life Science, Okayama University of Science, Kita-ku, Okayama, Japan
| |
Collapse
|
10
|
Wine Consumption and Oral Cavity Cancer: Friend or Foe, Two Faces of Janus. Molecules 2020; 25:molecules25112569. [PMID: 32486484 PMCID: PMC7321235 DOI: 10.3390/molecules25112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
The health benefits of moderate wine consumption have been extensively studied during the last few decades. Some studies have demonstrated protective associations between moderate drinking and several diseases including oral cavity cancer (OCC). However, due to the various adverse effects related to ethanol content, the recommendation of moderate wine consumption has been controversial. The polyphenolic components of wine contribute to its beneficial effects with different biological pathways, including antioxidant, lipid regulating and anti-inflammatory effects. On the other hand, in the oral cavity, ethanol is oxidized to form acetaldehyde, a metabolite with genotoxic properties. This review is a critical compilation of both the beneficial and the detrimental effects of wine consumption on OCC.
Collapse
|
11
|
Shao B, Fu X, Li X, Li Y, Gan N. RP11-284F21.9 promotes oral squamous cell carcinoma development via the miR-383-5p/MAL2 axis. J Oral Pathol Med 2019; 49:21-29. [PMID: 31397491 DOI: 10.1111/jop.12946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increasing evidence suggests that dysregulated long non-coding RNAs (lncRNAs) are involved in tumorigenesis and progression. RP11-284F21.9, one of the temporally expressed S-phase lncRNAs in cancer cells, was recently identified by nascent RNA capture sequencing. METHODS Cal-27, Tca8113, SCC-9, HB56, and oral squamous cell carcinoma (OSCC) tissues were used in the experiment. RNA extraction, qRT-PCR, plasmid construction, cell proliferation, EdU labeling, Transwell migration, luciferase reporter, and western blotting were used to investigate the exact role and function of RP11-284F21.9 in cancer. RESULTS RP11-284F21.9 was upregulated in human OSCC samples and cell lines. RP11-284F21.9 depletion suppressed the proliferation, migration, and invasion of OSCC cell lines. There was interaction between RP11-284F21.9, miR-383-5p, and MAL2. Increased MAL2 and decreased miR-383-5p expression were also detected in OSCC tissues and cell lines. In addition, RP11-284F21.9 knockdown could reduce MAL2 expression, while miR-383-5p inhibitors abolished this repressive effect. RP11-284F21.9 acted as a competing endogenous RNA (ceRNA) of miR-383-5p, leading to MAL2 upregulation, and subsequently promoted OSCC progression. CONCLUSION RP11-284F21.9/miR-383-5p represents a novel and potential therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Bingyi Shao
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Fu
- Department of General Dentistry, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Gan
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Liu X, Shang W, Zheng F. Long non-coding RNA NEAT1 promotes migration and invasion of oral squamous cell carcinoma cells by sponging microRNA-365. Exp Ther Med 2018; 16:2243-2250. [PMID: 30186464 PMCID: PMC6122307 DOI: 10.3892/etm.2018.6493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) has been demonstrated to serve key roles in numerous human cancer types, but its function in oral squamous cell carcinoma (OSCC) and underlying regulatory mechanism have not been evaluated. The present study demonstrated that expression of NEAT1 was significantly higher in OSCC tissue and cell lines compared with adjacent non-tumour tissue and normal oral keratinocytes, respectively. Additionally, upregulation of NEAT1 was significantly associated with advanced clinical stage and shorter survival time in patients with OSCC. Bioinformatics analysis and luciferase reporter gene assay data confirmed the interaction between NEAT1 and miR-365, and it was revealed that NEAT1 may downregulate microRNA (miR)-365 expression in OSCC cells. Furthermore, inhibition of NEAT1 expression led to a significant reduction in OSCC cell migration and invasion, which was accompanied by reduced matrix metalloproteinase (MMP)-2 and MMP9 protein expression. By contrast, inhibition of miR-365 eliminated suppressive effects of NEAT1 knockdown on OSCC cell migration and invasion. miR-365 was significantly downregulated in OSCC tissue and cell lines and an inverse correlation between miR-365 and NEAT1 expression in OSCC tissue was observed. To conclude, the present study demonstrated that NEAT1 promoted migration and invasiveness of OSCC cells by sponging miR-365. The current study suggests that NEAT1 may serve as a novel therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Wenzhi Shang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Fuju Zheng
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
13
|
Kim JY, Cho KH, Lee HY. Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.17135/jdhs.2018.18.3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jin Young Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
14
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr 2018; 58:1428-1447. [DOI: 10.1080/10408398.2016.1263597] [Citation(s) in RCA: 431] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, Agriculture University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Dennis G. Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
15
|
Zhu M, Zhang Q, Wang X, Kang L, Yang Y, Liu Y, Yang L, Li J, Yang L, Liu J, Li Y, Zu L, Shen Y, Qi Z. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget 2018; 7:84190-84200. [PMID: 27705937 PMCID: PMC5356654 DOI: 10.18632/oncotarget.12391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022] Open
Abstract
Our previous study showed that resveratrol (RSV) exhibited not only anti-tumor effect, but also had potential tumor promotion effect on pancreatic cancer (Paca) cells through up-regulation of VEGF-B. We determined whether metformin (MET) could potentiate the anti-tumor effect of RSV on PaCa in this study. Combination of RSV (100 μmol/l) and MET (20 mmol/l) significantly inhibited tumor growth and increased apoptosis of human PaCa in comparison with RSV or MET alone treatment in PaCa cell lines (Miapaca-2, Panc-1 and Capan-2). Combination of RSV (60 mg/kg, gavage) and MET (250 mg/kg, i.p.) significantly inhibited tumor growth in PaCa bearing nude mice (subcutaneous injection of 5 × 106 Miapaca-2 cells) in comparison with RSV or MET alone treatment on day 40. Combination treatment significantly decreased VEGF-B expression and inhibited activity of GSK-3β when compared to the RSV alone treatment. Up-regulated expressions of Bax, cleaved caspase-3 and down-regulated expression of Bcl-2 were observed in RSV+ MET group in comparison with RSV group either in vitro or in vivo. Inhibition of VEGF-B by VEGF-B small interfering RNA (siRNA) mimicked the effects of MET on PaCa cells. These results suggested that MET, a potential pharmacological inhibitor of VEGF-B signaling pathway, potentiated the anti-tumor effect of RSV on PaCa, and combination of MET and RSV would be a promising modality for clinical PaCa therapy.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Qiong Zhang
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Xiaoling Wang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Licheng Kang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Yinan Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Yuansheng Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Lei Yang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Yin Li
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanna Shen
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Perrone D, Fuggetta MP, Ardito F, Cottarelli A, De Filippis A, Ravagnan G, De Maria S, Lo Muzio L. Resveratrol (3,5,4'-trihydroxystilbene) and its properties in oral diseases. Exp Ther Med 2017; 14:3-9. [PMID: 28672886 DOI: 10.3892/etm.2017.4472] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Health promotion strategies and lifestyle changes are important in disease prevention. Oral health has received a large amount of attention previously as it is a fundamental component of general health and it contributes to the quality of life. Therefore, the study of associations between diet, health and the presence of bioactive compounds in food is receiving a substantial amount of attention. In the present review the effects and targets of a natural polyohenolic stilbenoid compound; resveratrol (3,5,4'-trihydroxystilbene; RSV) is assessed, and the future prospects for RSV in promoting oral health are considered. RSV is a phytoalexin, synthesized by a wide range of plants and abundantly extracted in grape skin, it has been purported to exert a multiplicity of anti-inflammatory, anti-viral, anti-microbial, estrogenic, anticancer, cardioprotective, neuroprotective and immunomodulatory functions. In this review, following an introduction documenting the biochemistry of RSV and RSV glucosides, the bioavailability and pharmacokinetics of RSV are described. Considering its multiple properties, the present review has focused on the potential benefits of RSV as an antioxidant and chemopreventive agent.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, CNR-Area Torvergata, I-00133 Rome, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Andrea Cottarelli
- Institute of Translational Pharmacology, CNR-Area Torvergata, I-00133 Rome, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, Second University of Napoli, Napoli, I-80131 Naples, Italy
| | - Giampietro Ravagnan
- Glures srl. Operative Unit-Biochemical and Biophysical Department, I-80138 Naples, Italy
| | - Salvatore De Maria
- Glures srl. Operative Unit-Biochemical and Biophysical Department, I-80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
17
|
Ko SY, Ko HA, Shieh TM, Chi TC, Chen HI, Chen YT, Yu YH, Yang SH, Chang SS. Advanced glycation end products influence oral cancer cell survival via Bcl-xl and Nrf-2 regulation in vitro. Oncol Lett 2017; 13:3328-3334. [PMID: 28529569 DOI: 10.3892/ol.2017.5809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
An irreversible non-enzymatic reaction between carbohydrates and proteins results in the formation of advanced glycation end products (AGEs). AGEs have been demonstrated to be a risk factor of complications in patients with diabetes mellitus (DM). Previous studies have suggested that patients with DM exhibit a higher rate of metastasis of oral cancer and a lower cancer-associated survival rate. The receptor for AGEs (RAGE) has been associated with angiogenesis and an increase in cancer malignancy. Previous studies have suggested that AGE-RAGE regulates cell migration via extracellular signal-regulated kinase (ERK) phosphorylation. Nuclear factor-erythroid 2-related factor 2 (Nrf-2) is associated with the regulation of tumor protein p53 (p53) and the apoptotic response of oral cancer cells. AGEs are associated with oral cancer; however, the mechanism underlying this association remains to be elucidated. The present study hypothesized that AGEs regulate Nrf-2 and downstream pathways through ERK phosphorylation. The results of the current study demonstrated that AGEs inhibit the expression of Nrf-2, p53 and Bcl-2 associated × apoptosis regulator, and increase the expression of apoptosis regulator Bcl-x protein. The effect of AGEs was inhibited through the use of the PD98059. The present study demonstrated that AGEs regulate the downstream pathways Nrf-2 and Bcl-xl via ERK phosphorylation. It is suggested that AGEs regulate the survival of oral cancer cells via Nrf-2 and Bcl-xl through p53 regulation, which explains the poor prognosis of patients with DM who have oral cancer.
Collapse
Affiliation(s)
- Shun-Yao Ko
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Hshin-An Ko
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tzong-Cherng Chi
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Hong-I Chen
- Graduate Institute of Medical Sciences, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C.,Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Yi-Ting Chen
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Ya-Hui Yu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Shu-Han Yang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| | - Shu-Shing Chang
- Innovative Research Center of Medicine, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| |
Collapse
|
18
|
More NV, Kharat AS. Antifungal and Anticancer Potential of Argemone mexicana L. MEDICINES 2016; 3:medicines3040028. [PMID: 28930138 PMCID: PMC5456236 DOI: 10.3390/medicines3040028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/15/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Background: Medicinal plants are widely used to treat infectious diseases, metabolic disorders and cancer. Argemone mexicana L. (A. mexicana), commonly found on desolate land of Marathwada (Maharashtra, India) has been used to treat oral cavity infections. Methods: In this study, cold aqueous and methanolic extracts were prepared from A. mexicana stem and leaves. These extracts were tested for their antifungal and anticancer activities. The antifungal activity was tested using the agar well diffusion method, while the anticancer activity against immortalized cell lines was assessed by trypan blue assay. Results: It was observed that both cold aqueous and methanolic extracts of A. mexicana stem and leaves inhibited the growth of Mucor indicus, Aspergillus flavus, Aspergillus niger and Penicillum notatum. Antifungal activity of the extract was comparable to that of Amphoterecin-B. A. mexicana extracts had a cytotoxic effect on A549, SiHa and KB immortalized cell lines that were similar to that of berberine. Conclusion: The A. mexicana leaf and stems exhibit strong antifungal and anticancer potential.
Collapse
Affiliation(s)
- Nilesh V More
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus, Osmanabad 413501, Maharashtra, India.
- Department of Biotechnology, College of Computer Science and Information Technology, Latur 413512, Maharashtra, India.
| | - Arun S Kharat
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus, Osmanabad 413501, Maharashtra, India.
| |
Collapse
|
19
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Bundela S, Sharma A, Bisen PS. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLoS One 2015; 10:e0141719. [PMID: 26536350 PMCID: PMC4633227 DOI: 10.1371/journal.pone.0141719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.
Collapse
Affiliation(s)
- Saurabh Bundela
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Anjana Sharma
- Department of Postgraduate Studies & Research in Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | - Prakash S. Bisen
- Defence Research Development Establishment, Defence Research Development Organization, Ministry of Defence, Govt. of India, Gwalior, Madhya Pradesh, India
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
21
|
Shimoda K, Kubota N, Hamada H, Hamada H. Synthesis of Resveratrol Glycosides by Plant Glucosyltransferase and Cyclodextrin Glucanotransferase and Their Neuroprotective Activity. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Resveratrol was converted by glucosyltransferase from Phytolacca americana into its 3- and 4′- O-β-D-glucosides. On the other hand, further glycosylation of resveratrol 4′- O-β-D-glucoside by cyclodextrin glucanotransferase gave the 4′- O-β-maltoside, 4′- O-β-maltotrioside, 4′- O-β-maltotetraoside, and 4′- O-β-maltopentaoside of resveratrol. The six resveratrol glycosides synthesized here showed higher phosphodiesterase inhibitory activity than resveratrol.
Collapse
Affiliation(s)
- Kei Shimoda
- Department of Chemistry, Faculty of Medicine, Oita University, 1–1 Hasama-machi, Oita 879–5593, Japan
| | - Naoji Kubota
- Department of Chemistry, Faculty of Medicine, Oita University, 1–1 Hasama-machi, Oita 879–5593, Japan
| | - Hatsuyuki Hamada
- National Institute of Fitness and Sports in Kanoya, 1 Shiromizu-cho, Kagoshima 891–2390, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1–1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
22
|
DAI ZIXUN, LEI PENGFEI, XIE JIE, HU YIHE. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways. Mol Med Rep 2015; 12:3151-5. [DOI: 10.3892/mmr.2015.3683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
|
23
|
Li P, Yang S, Dou M, Chen Y, Zhang J, Zhao X. Synergic effects of artemisinin and resveratrol in cancer cells. J Cancer Res Clin Oncol 2014; 140:2065-75. [PMID: 25048878 DOI: 10.1007/s00432-014-1771-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/28/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE The aim of this study was to investigate whether resveratrol (Res) combined with artemisinin (ART) possess synergistic effect on different cancer cells. MATERIALS AND METHODS The viability of HepG2 and HeLa cells treated with ART and Res was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Combination index (CI) analysis and isobologram were used to assess the synergistic effect of ART and Res in different ratios. Wound-healing assay was used to investigate the migration rate. AO staining and fluorescent microscopy measurements were performed to detect the cell apoptosis. Reactive oxygen species (ROS) was measured with 2'7'-dichlorofluorescein diacetate (DCFH-DA). RESULTS MTT assay indicated that ART and Res inhibited the growth of HeLa and HepG2 cells in a dose-dependent manner. The combination of ART and Res exhibited the strongest anticancer effect at the ratio of 1:2 (ART to Res). The combination of the two drugs also markedly reduced the ability of cell migration. Apoptosis analysis showed that combination of ART and Res significantly increased the apoptosis and necrosis rather than use singly. Additionally, ROS levels were elevated by combining ART with Res. CONCLUSIONS Taken together, the present study suggested that ART and Res possessed the synergistic anti-tumor effect. ART in combination with Res could be an effective therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Peichun Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | | | | | | | | | | |
Collapse
|
24
|
Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, Middleton AM, Pratten J, Culshaw S, Ramage G. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014; 14:80. [PMID: 24972711 PMCID: PMC4080992 DOI: 10.1186/1472-6831-14-80] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 01/07/2023] Open
Abstract
Background Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties. Methods An in vitro multi-species biofilm containing S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level. Results CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA. Conclusions CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK.
| |
Collapse
|
25
|
Yang L, Yang L, Tian W, Li J, Liu J, Zhu M, Zhang Y, Yang Y, Liu F, Zhang Q, Liu Q, Shen Y, Qi Z. Resveratrol plays dual roles in pancreatic cancer cells. J Cancer Res Clin Oncol 2014; 140:749-55. [PMID: 24604347 DOI: 10.1007/s00432-014-1624-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/13/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Although the potential anticancer effect of resveratrol (RSV) on pancreatic cancer has been reported, its mechanism was not fully understood. The role of vascular endothelial growth factor B (VEGF-B) in cancer remains controversial. Herein, we aimed to examine whether the anticancer effect of RSV was related to the VEGF-B. METHODS The effect of RSV on pancreatic cancer cell line (capan-2 cells) was evaluated by CCK-8 assay, Hoechst 33342 staining, and flow cytometry. The mRNA level of VEGF-B was measured by real-time PCR. VEGF-B expression was knockdown by small interfering RNA (siRNA).The protein levels of VEGF-B, glycogen synthase kinase-3 beta (GSK-3β), and Bax were measured by Western blot. RESULTS Resveratrol treatment inhibited tumor growth, induced apoptosis, and up-regulated Bax expression in capan-2 cells. The mRNA and protein levels of VEGF-B were up-regulated after RSV treatment. However, VEGF-B siRNA treatment increased the apoptotic rate, and inhibited tumor activator GSK-3β, while Bax expression was not affected. The combination of RSV and VEGF-B siRNA showed significantly higher apoptotic rate in comparison with RSV or VEGF-B siRNA mono-treatment group. CONCLUSIONS Resveratrol plays dual roles in pancreatic cancer: as a tumor suppressor via the up-regulation of Bax; as a tumor activator via the up-regulation of VEGF-B; and the anticancer effect of RSV is much stronger than the cancer promotion effect. The combination of RSV with pharmacological inhibitor of VEGF-B might, therefore, be a promising modality for clinical pancreatic cancer therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Histology and Embryology, Nankai University School of Medicine, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|