1
|
Xie Y, Qi J, Liu J. Curcumin suppresses the malignant phenotype of laryngeal squamous cell carcinoma through downregulating E2F1 to inhibit FLNA. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6929-6939. [PMID: 38592439 DOI: 10.1007/s00210-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Curcumin is a kind of polyphenol substance extracted from the rhizome of Curcuma longa. Because of its good biological activity and pharmacological effects, it has been used in anti-tumor research. The aim of this study was to investigate the anti-cancer mechanism of curcumin on laryngeal squamous cell carcinoma (LSCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to check the expression level of transcription factor E2F1 (E2F1) and filamin A (FLNA) mRNA. E2F1 and FLNA protein and proliferation-associated protein were detected through western blot. Cell viability was showed by MTT assay, and flow cytometry was used to exhibit cell cycle distribution and cell apoptosis. Tube formation assay was used to detect the angiogenesis ability of cells. Transwell was used as a method to observe cell migration and invasion. The online website JASPAR predicted the binding site of E2F1 and FLNA promoter, and chromatin immunoprecipitation (ChIP) and dual-luciferase report experiment verified the combination. Curcumin treatment made LSCC cells viability reduce, cell cycle retardant, angiogenesis decrease, metastasis inhibition and apoptosis increase. And curcumin treatment could downregulate the expression of E2F1, and E2F1 overexpression would reverse the influence of curcumin treatment in LSCC cells. Moreover, E2F1 could bind to FLAN promoter and promote FLNA expression. The expression level of FLNA was higher in LSCC tissue and cells compared with normal tissue and cells. E2F1 knockdown inhibited malignant phenotype of LSCC cells, which would be reversed by FLNA addition. In addition, FLNA had high level in LSCC tissue and cells. Curcumin regulated FLNA expression via inhibiting E2F1. Finally, in vivo assay showed that curcumin inhibition restrained LSCC tumor formation. Curcumin downregulated FLNA expression through inhibiting E2F1, thereby suppressing the malignant phenotype and angiogenesis of LSCC cells, which was a new regulatory pathway in LSCC.
Collapse
Affiliation(s)
- Yuanchun Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen People's Hospital, Jingmen, China.
| | - Jingjing Qi
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No.2 People's Hospital, No.39, Xiangshan Avenue, Jingmen City, 448000, Hubei, China.
| | - Ju Liu
- Department of Operating Theatre, Jingmen No.2 People's Hospital, Jingmen City, 448000, Hubei, China
| |
Collapse
|
2
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
3
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
4
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
5
|
Catalano R, Altieri B, Angelousi A, Arosio M, Bravi F, Canu L, Croci GA, Detomas M, Esposito E, Ferrante E, Ferrero S, Fuss CT, Kaltsas G, Kimpel O, Landwehr LS, Luconi M, Morelli V, Nesi G, Nozza E, Sbiera S, Serban AL, Ronchi CL, Mantovani G, Peverelli E. High Filamin a Expression in Adrenocortical Carcinomas Is Associated with a Favourable Tumour Behaviour: A European Multicentric Study. Int J Mol Sci 2023; 24:16573. [PMID: 38068896 PMCID: PMC10706064 DOI: 10.3390/ijms242316573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.
Collapse
Affiliation(s)
- Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Anna Angelousi
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Giorgio A. Croci
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Stefano Ferrero
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Gregory Kaltsas
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Valentina Morelli
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Gabriella Nesi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Andreea L. Serban
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Cristina L. Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| |
Collapse
|
6
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
7
|
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol 2022; 13:988246. [PMID: 36105798 PMCID: PMC9465173 DOI: 10.3389/fimmu.2022.988246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the available treatment approaches have limited therapeutic benefits. Therefore, understanding the underlying mechanisms of occurrence and development is particularly crucial. Increasing attention has been paid to the pathophysiological role of cancer-associated fibroblasts (CAFs) in the heterogeneous tumour microenvironment. CAFs play a crucial role in tumorigenesis, tumour progression and treatment response. However, routine tissue sequencing cannot adequately reflect the heterogeneity of tumours. In this study, single-cell sequencing was used to examine the fibroblast population in CRC. After cluster analysis, the fibroblast population was divided into four subgroups. The distribution and role of these four subgroups in CRC were found to be different. Based on differential gene expression and lasso regression analysis of the main marker genes in these subgroups, four representative genes were obtained, namely, TCF7L1, FLNA, GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk groups using the prognostic risk model established based on the expression of these four genes. The prognosis of patients in different risk groups varied significantly; patients with low-risk scores had a greater response to PDL1 inhibitors, significant clinical benefits and significantly prolonged overall survival. These effects may be attributed to inhibition of the function of T cells in the immune microenvironment and promotion of the function of tumour-associated macrophages.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
- *Correspondence: Ying Chen,
| |
Collapse
|
8
|
LUZP1: A new player in the actin-microtubule cross-talk. Eur J Cell Biol 2022; 101:151250. [PMID: 35738212 DOI: 10.1016/j.ejcb.2022.151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
LUZP1 (leucine zipper protein 1) was first described as being important for embryonic development. Luzp1 null mice present defective neural tube closure and cardiovascular problems, which cause perinatal death. Since then, LUZP1 has also been implicated in the etiology of diseases like the 1p36 and the Townes-Brocks syndromes, and the molecular mechanisms involving this protein started being uncovered. Proteomics studies placed LUZP1 in the interactomes of the centrosome-cilium interface, centriolar satellites, and midbody. Concordantly, LUZP1 is an actin and microtubule-associated protein, which localizes to the centrosome, the basal body of primary cilia, the midbody, actin filaments and cellular junctions. LUZP1, like its interactor EPLIN, is an actin-stabilizing protein and a negative regulator of primary cilia formation. Moreover, through the regulation of actin, LUZP1 has been implicated in the regulation of cell cycle progression, cell migration and epithelial cell apical constriction. This review discusses the latest findings concerning LUZP1 molecular functions and implications in disease development.
Collapse
|
9
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
10
|
Tamura Y, Nakamizo Y, Watanabe Y, Kimura I, Katoh H. Filamin A forms a complex with EphA2 and regulates EphA2 serine 897 phosphorylation and glioblastoma cell proliferation. Biochem Biophys Res Commun 2022; 597:64-70. [PMID: 35124461 DOI: 10.1016/j.bbrc.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
EphA2 is phosphorylated on serine 897 (S897) in response to growth factors such as epidermal growth factor (EGF) and on tyrosine 588 (Y588) in response to its ligand ephrinA1, causing different cellular responses. In this study, we show that the actin-binding protein Filamin A forms a complex with EphA2 and promotes its S897 phosphorylation and glioblastoma cell proliferation. Suppression of Filamin A expression by siRNAs inhibited glioblastoma cell proliferation induced by EGF stimulation or overexpression of EphA2. Knockdown of Filamin A inhibited EGF-induced S897 phosphorylation of EphA2, whereas it had little effect on ephrinA1-induced Y588 phosphorylation of EphA2. Furthermore, Filamin A expression affected the subcellular localization of EphA2. This study suggests that Filamin A selectively promotes EphA2 S897 phosphorylation and plays an important role in glioblastoma cell proliferation.
Collapse
Affiliation(s)
- Yuho Tamura
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuta Nakamizo
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Pulzová LB, Roška J, Kalman M, Kliment J, Slávik P, Smolková B, Goffa E, Jurkovičová D, Kulcsár Ľ, Lešková K, Bujdák P, Mego M, Bhide MR, Plank L, Chovanec M. Screening for the Key Proteins Associated with Rete Testis Invasion in Clinical Stage I Seminoma via Label-Free Quantitative Mass Spectrometry. Cancers (Basel) 2021; 13:cancers13215573. [PMID: 34771736 PMCID: PMC8583098 DOI: 10.3390/cancers13215573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rete testis invasion (RTI) is an unfavourable prognostic factor for the risk of relapse in clinical stage I (CS I) seminoma patients. Notably, no evidence of difference in the proteome of RTI-positive vs. -negative CS I seminomas has been reported yet. Here, a quantitative proteomic approach was used to investigate RTI-associated proteins. 64 proteins were differentially expressed in RTI-positive compared to -negative CS I seminomas. Of them, 14-3-3γ, ezrin, filamin A, Parkinsonism-associated deglycase 7 (PARK7), vimentin and vinculin, were validated in CS I seminoma patient cohort. As shown by multivariate analysis controlling for clinical confounders, PARK7 and filamin A expression lowered the risk of RTI, while 14-3-3γ expression increased it. Therefore, we suggest that in real clinical biopsy specimens, the expression level of these proteins may reflect prognosis in CS I seminoma patients.
Collapse
Affiliation(s)
- Lucia Borszéková Pulzová
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Jan Roška
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Ján Kliment
- Clinic of Urology, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia;
| | - Pavol Slávik
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Božena Smolková
- Biomedical Research Center, Department of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Eduard Goffa
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Dana Jurkovičová
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Ľudovít Kulcsár
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
| | - Katarína Lešková
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Peter Bujdák
- Department of Urology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia;
| | - Michal Mego
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenová 1, 833 10 Bratislava, Slovakia
| | - Mangesh R. Bhide
- Department of Microbiology and Immunology, University of Veterinary Medicine, Komenského 73, 041 81 Košice, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lukáš Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Malá Hora 4A, 036 01 Martin, Slovakia; (M.K.); (P.S.); (K.L.); (L.P.)
| | - Miroslav Chovanec
- Biomedical Research Center, Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; (L.B.P.); (J.R.); (E.G.); (D.J.); (Ľ.K.); (M.M.)
- Correspondence:
| |
Collapse
|
12
|
Sheng F, Chen KX, Liu J, Li JX, Liang GH, Xu Y, Du E, Zhang ZH. Chromium (VI) promotes EMT by regulating FLNA in BLCA. ENVIRONMENTAL TOXICOLOGY 2021; 36:1694-1701. [PMID: 33978285 DOI: 10.1002/tox.23165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr (VI)), which is a recognized human carcinogen, is widely used in industrial production of raw materials. Evidence verifies that environmental contaminants in the urine can induce malignant transformation in the urinary bladder tract, and our data indicate that Cr (VI) could promote the proliferation and migration and inhibit the apoptosis of bladder cancer (BLCA) cells. However, the molecular mechanism remains ambiguous. We find that Filamin A (FLNA) is overexpressed in BLCA, and Cr (VI) promotes epithelial-to-mesenchymal transition by regulating FLNA in BLCA. Thus, inhibiting the expression of FLNA may be a prospective method for limiting the BLCA progression caused by Cr (VI) exposure.
Collapse
Affiliation(s)
- Fei Sheng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ke-Xin Chen
- Department of Reproduction, The Child Healthcare Hospital, Shenzhen, China
| | - Jian Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing-Xian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ge-Hong Liang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi-Hong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Cheng L, Tong Q. Interaction of FLNA and ANXA2 promotes gefitinib resistance by activating the Wnt pathway in non-small-cell lung cancer. Mol Cell Biochem 2021; 476:3563-3575. [PMID: 34018148 DOI: 10.1007/s11010-021-04179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Lung cancer is still a main cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancers, and gefitinib is an effective targeted drug for NSCLC. It is important to explore the underlying molecular mechanisms of gefitinib resistance to provide new treatment strategies and to improve the prognosis of gefitinib-resistant NSCLC patients. This study aimed to examine the role of filamin A (FLNA) in acquired resistance to gefitinib in NSCLC, and identify ANXA2 (annexin A2), one of calcium-dependent phospholipid-binding proteins, as its corresponding regulatory factor. First, we established resistant cells via long-term exposure to gefitinib to analyse the association between FLNA and gefitinib resistance. Through quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blotting (WB), and flow cytometry assays, we evaluated the role of FLNA. The effect of FLNA knockdown or overexpression was analysed not only in cell lines but also in mouse models. We verified the FLNA-interacting protein through coimmunoprecipitation (CoIP) experiments and found that the downstream signalling pathway was regulated by FLNA and its interacting protein. Finally, the upstream transcription factor was identified by chromatin immunoprecipitation (ChIP). Increased FLNA expression induced gefitinib resistance. Knockdown of FLNA restored gefitinib sensitivity and induced apoptosis in vivo and in vitro. FLNA and ANXA2 cooperatively led to the activation of the Wnt pathway, which was closely linked to gefitinib resistance. Subsequently, SP1 promoted transcriptional activation of FLNA to regulate gefitinib resistance. We determined that FLNA serves as a regulator of gefitinib resistance in NSCLC and found that FLNA and ANXA2 together induced gefitinib resistance by activating the Wnt pathway.
Collapse
Affiliation(s)
- Lifang Cheng
- Department of Oncology, Shenzhen Samii Medical Center, No. 1, Jinniu West Road, Pingshan District, Shenzhen, 518118, Guangdong, People's Republic of China
| | - Qin Tong
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Welter H, Herrmann C, Fröhlich T, Flenkenthaler F, Eubler K, Schorle H, Nettersheim D, Mayerhofer A, Müller-Taubenberger A. Filamin A Orchestrates Cytoskeletal Structure, Cell Migration and Stem Cell Characteristics in Human Seminoma TCam-2 Cells. Cells 2020; 9:E2563. [PMID: 33266100 PMCID: PMC7761120 DOI: 10.3390/cells9122563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Filamins are large dimeric F-actin cross-linking proteins, crucial for the mechanosensitive properties of a number of cell types. Due to their interaction with a variety of different proteins, they exert important regulatory functions. However, in the human testis the role of filamins has been insufficiently explored. Immunohistochemical staining of human testis samples identified filamin A (FLNA) in spermatogonia and peritubular myoid cells. Investigation of different testicular tumor samples indicated that seminoma also express FLNA. Moreover, mass spectrometric analyses identified FLNA as one of the most abundant proteins in human seminoma TCam-2 cells. We therefore focused on FLNA in TCam-2 cells, and identified by co-immunoprecipitation LAD1, RUVBL1 and DAZAP1, in addition to several cytoskeletal proteins, as interactors of FLNA. To study the role of FLNA in TCam-2 cells, we generated FLNA-deficient cells using the CRISPR/Cas9 system. Loss of FLNA causes an irregular arrangement of the actin cytoskeleton and mechanical instability, impaired adhesive properties and disturbed migratory behavior. Furthermore, transcriptional activity of typical stem cell factors is increased in the absence of FLNA. In summary, our data suggest that FLNA is crucially involved in balancing stem cell characteristics and invasive properties in human seminoma cells and possibly human testicular germ cells.
Collapse
Affiliation(s)
- Harald Welter
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Carola Herrmann
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Katja Eubler
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Artur Mayerhofer
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Annette Müller-Taubenberger
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| |
Collapse
|
15
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
17
|
Calpain suppresses cell growth and invasion of glioblastoma multiforme by producing the cleavage of filamin A. Int J Clin Oncol 2020; 25:1055-1066. [PMID: 32103382 DOI: 10.1007/s10147-020-01636-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Filamin A is the most widely expressed isoform of filamin in mammalian tissues. It can be hydrolyzed by Calpain, producing a 90-kDa carboxyl-terminal fragment (ABP90). Calpeptin is a chemical inhibitor of Calpain, which can inhibit this effect. It has been shown that ABP90 acts as a transcription factor which is involved in mediating cell signaling. However, the significance of ABP90 and its clinical signature with underlying mechanisms have not been well studied in glioblastoma multiforme (GBM). METHODS ABP90 protein was measured in 36 glioma patients by Western blot. Human GBM cell lines U87 and A172 were used to clarify the precise role of ABP90. CCK-8 assay was used to analyze the cell viability. Transwell invasion assay and wound healing assay were used to analyze the migration and invasion. Expression of matrix metalloproteinase 2/tissue inhibitors of metalloproteinase 2 (MMP2/TIMP2) protein was analyzed by Western blot. RESULTS ABP90 protein expression was lower in GBM tissues. The patients with low ABP90 protein expression had a shorter OS time (p = 0.046). After being treated with Calpain, the expression of ABP90 was upregulated, which led to a decline of cell viability, enhanced the efficacy of temozolomide and restrained the cell invasion. Calpeptin could inhibit the effect. The mechanism might be involved in the balance of MMP2/TIMP2. CONCLUSIONS Our present data suggest that ABP90 expression is a significant prognostic factor and may play an important role in cell viability, chemotherapeutic sensitivity and invasion of GBM.
Collapse
|
18
|
Cheng M, Jiang Y, Yang H, Zhao D, Li L, Liu X. FLNA promotes chemoresistance of colorectal cancer through inducing epithelial-mesenchymal transition and smad2 signaling pathway. Am J Cancer Res 2020; 10:403-423. [PMID: 32195017 PMCID: PMC7061762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023] Open
Abstract
Chemoresistance is a leading cause of tumor relapse and treatment failure in colorectal cancer (CRC) patients and is correlated with epithelial-mesenchymal transition (EMT). This study was aimed to explore the mechanism of EMT in chemoresistant CRC. Bioinformatic method was used to screen differentially expressed genes between 5-FU sensitive and resistant CRC cells. Immunohistochemistry staining was utilized to analyze the expression of FLNA in CRC tissues. The roles of FLNA in chemoresistance were validated via loss-of-function and gain-of-function experiments in vitro and in an orthotopic CRC animal model. The regulation of c-Met signaling by FLNA was explored via Co-Immunoprecipitation and luciferase reporter assays. Our results suggested FLNA directly regulated the metastasis and EMT of chemoresistant CRC cells. Moreover, c-Met-AKT mediated ser2152 phosphorylation of FLNA was demonstrated to be correlated with EMT. In turn, FLNA enhanced c-Met promoter activity by its interaction with smad2. Clinically, the expression of FLNA was significantly associated with c-Met protein levels in CRC tissues. These data established that FLNA could be a novel and reliable CRC marker and a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Yannan Jiang
- Key Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhou, China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityNo. 1 Jianshe East, Zhengzhou, Henan, China
| | - Dongyao Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou UniversityNo. 1 Jianshe East, Zhengzhou, Henan, China
| | - Longyu Li
- Department of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan UniversityZhengzhou 450003, Henan, China
| | - Xinyu Liu
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou UniversityNo. 1 Jianshe East, Zhengzhou, Henan, China
| |
Collapse
|
19
|
High filamin-C expression predicts enhanced invasiveness and poor outcome in glioblastoma multiforme. Br J Cancer 2019; 120:819-826. [PMID: 30867563 PMCID: PMC6474268 DOI: 10.1038/s41416-019-0413-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma multiforme (GBM), the most common brain malignancy in adults, is generally aggressive and incurable, even with multiple treatment modalities and agents. Filamins (FLNs) are a group of actin-binding proteins that regulate the actin cytoskeleton in cells. However, the role of FLNs in malignancies—particularly in GBM—is unclear. Methods The relation between FLNC expression and overall survival in GBM was evaluated by the Kaplan−Meier analysis using GBM patients from the Kagoshima University Hospital (n = 90) and data from the Cancer Genome Atlas (TCGA) (n = 153). To assess FLNC function in GBM, cell migration and invasion were examined with Transwell and Matrigel invasion assays using FLNC-overexpressing U251MG and LN299 GBM cells, and ShRNA-mediated FLNC knocked-down KNS81 and U87MG cells. The gelatin zymography assay was used to estimate matrix metalloproteinase (MMP) 2 activity. Results In silico analysis of GBM patient data from TCGA and immunohistochemical analyses of clinical GBM specimens revealed that increased FLNC expression was associated with poor patient prognosis. FLNC overexpression in GBM cell lines was positively correlated with enhanced invasiveness, but not migration, and was accompanied by upregulation of MMP2. Conclusions FLNC is a potential therapeutic target and biomarker for GBM progression.
Collapse
|
20
|
Zhao Y, Fang X, Fang H, Feng Y, Chen F, Xia Q. ATPR-induced G 0 /G 1 phase arrest in gastric cancer cells by regulating the binding of 14-3-3ε and filamin A. Cancer Med 2018; 7:3373-3384. [PMID: 29862660 PMCID: PMC6051145 DOI: 10.1002/cam4.1583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 01/01/2023] Open
Abstract
4‐amino‐2‐trifluoromethyl‐phenyl retinate (ATPR) was able to induce the G0/G1 phase arrest in gastric cancer SGC‐7901 cells by downregulating 14‐3‐3ε. However, the mechanisms underlying this effect have not been fully elucidated. Because 14‐3‐3ε functions as a molecular chaperone on cell cycle regulation, the interaction between 14‐3‐3ε and the target proteins is worth an in‐depth study. In this study, the use of targeting proteomics identified 352 14‐3‐3ε‐binding proteins in SGC‐7901 cells. Analysis of gene ontology (GO) was performed using PANTHER to annotate the biological processes, protein classes, and pathways of these proteins. In 25 cell cycle‐related proteins, filamin A was reduced following ATPR treatment, and this change was validated by immunoprecipitation. The cell cycle was arrested at the G0/G1 phase following ATPR treatment or filamin A silencing in SGC‐7901 cells. Furthermore, subcellular expression analysis showed that 14‐3‐3ε and filamin A were transferred from the cytoplasm to the nucleus after ATPR treatment. On the other hand, overexpression of 14‐3‐3ε, in SGC‐7901 cells, resulted in an increase in the total cellular level of filamin A and an increase in the subcellular localization of filamin A in the cytoplasm. ATPR treatment of the 14‐3‐3ε overexpression cells decreased the total level of filamin A and redistributed filamin A protein from the cytoplasm to the nucleus. Immunohistochemical analysis showed that the expression levels of 14‐3‐3ε and filamin A in gastric cancer tissues were significantly higher, with a predominant localization in the cytoplasm, compared to the levels in matched tissues. Taken together, our results suggest that ATPR can induce nuclear localization of filamin A by reducing the binding of 14‐3‐3ε and filamin A, which may be the mechanism of ATPR‐induced G0/G1 phase arrest.
Collapse
Affiliation(s)
- Yingli Zhao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yubin Feng
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Feihu Chen
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Perico ME, Grasso S, Brunelli M, Martignoni G, Munari E, Moiso E, Fracasso G, Cestari T, Naim HY, Bronte V, Colombatti M, Ramarli D. Prostate-specific membrane antigen (PSMA) assembles a macromolecular complex regulating growth and survival of prostate cancer cells "in vitro" and correlating with progression "in vivo". Oncotarget 2018; 7:74189-74202. [PMID: 27713116 PMCID: PMC5342045 DOI: 10.18632/oncotarget.12404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively. Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients.
Collapse
Affiliation(s)
- Maria Elisa Perico
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Grasso
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy.,Current address: Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, Section of Pathology, University of Verona, Verona Italy
| | - Guido Martignoni
- Department of Pathology and Diagnostics, Section of Pathology, University of Verona, Verona Italy.,Current address: Department of Pathology, Pederzoli Hospital, Verona, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, Section of Pathology, University of Verona, Verona Italy
| | - Enrico Moiso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulio Fracasso
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy
| | - Tiziana Cestari
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine of Hannover, Hannover, Germany
| | - Vincenzo Bronte
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy
| | - Marco Colombatti
- Department of Pathology and Diagnostics, Section of Immunology, University of Verona, Verona, Italy
| | - Dunia Ramarli
- Department of Diagnostic Pathology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
22
|
Wang Z, Li C, Jiang M, Chen J, Yang M, Pu J. Filamin A (FLNA) regulates autophagy of bladder carcinoma cell and affects its proliferation, invasion and metastasis. Int Urol Nephrol 2017; 50:263-273. [PMID: 29288417 DOI: 10.1007/s11255-017-1772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE This research intended to explore the effect of FLNA on cell proliferation, invasion and migration in bladder carcinoma (BC). METHODS Microarray analysis was performed with the TCGA data, and the results were confirmed on 20 paired BC tissues and adjacent tissues using qRT-PCR and immunohistochemistry. Transmission electron microscope (TEM) and cell fluorescence assay were used to observe the quantity of autophagosomes. The expression of autophagy-related protein (LC3-I/II, p62) was detected by western blot. Cell proliferation was detected using CCK-8 and colony formation. The invasion and migration ability of the cell were tested by transwell and wound-healing assay. Tumor xenograft in BALB/c nude mice and HE staining were utilized to probe into the effects of FLNA-induced regulation of volume, weight and metastasis of tumors. RESULTS We confirmed that FLNA was down-regulated in BC tissues. TEM and fluorescence analysis proved that FLNA overexpression promoted autophagy in BC cells. Colony formation assay and CCK-8 experiment showed that FLNA overexpression suppressed the proliferation of BC cells. In addition, FLNA blocked cell cycle and promoted apoptosis of BC cell. Transwell assay and wound-healing assay further proved that FLNA suppressed invasion and migration ability in BC cell. Meanwhile, in vivo study indicated that FLNA inhibited the tumor growth. CONCLUSION Overexpression of FLNA suppressed the proliferation, migration and invasion of the BC cell, suggesting the potential role of FLNA in clinical treatment.
Collapse
Affiliation(s)
- Zhenfan Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Chen Li
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Minjun Jiang
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Jianchun Chen
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Min Yang
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Wang S, Chen G, Lin X, Xing X, Cai Z, Liu X, Liu J. Role of exosomes in hepatocellular carcinoma cell mobility alteration. Oncol Lett 2017; 14:8122-8131. [PMID: 29250190 PMCID: PMC5727617 DOI: 10.3892/ol.2017.7257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
Exosomes have gained increased research focus due to their key roles as messengers. The components of exosomes include proteins and RNAs that may be horizontally transferred between adjacent or distant cells. Hepatocellular carcinoma (HCC) is among the most malignant types of cancer worldwide, with exosomes implicated to play a crucial role in its regulation; however, the possible function of exosomes in modulating the motile ability of tumor cells and key molecules in HCC remain largely unknown. To investigate the regulatory effect of exosomes on the motile ability of HCC cells, exosomes from the culture medium of different HCC origins (high metastatic MHCC97-H and low metastatic MHCC97-L cells) were isolated for in vitro migration and invasion assays. The results indicated that the motile ability of MHCC97-L cells was significantly increased by pretreatment with MHCC97-H-derived exosomes when compared with MHCC97-L-exosome pretreatment (P<0.05). To further characterize the function of exosomes at the molecular level, protein profiling of exosomes from different cell origins was performed, which identified 129 proteins. Among these, adenylyl cyclase-associated protein 1, a protein implicated in HCC metastasis, was significantly enriched in exosomes from cells with high motile ability (P<0.05). The results of the present study validated the regulatory effect of exosomes on the motile ability of HCC cells. Furthermore, systematic analysis of the protein profiles of exosomes from different origins identified potential factors correlated with HCC metastasis, which may provide a basis for future functional analysis of exosomes regarding their involvement in cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Sen Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiao Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350007, P.R. China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
24
|
Wang Y, Cui R, Zhang X, Qiao Y, Liu X, Chang Y, Yu Y, Sun F, Wang J. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma. Oncotarget 2017; 7:11284-98. [PMID: 26824501 PMCID: PMC4905473 DOI: 10.18632/oncotarget.7022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Both oncoprotein and tumor-suppressor activity have been reported for SIRTUIN1 (SIRT1) and p38 in many types of cancer. The effect of SIRT1 on p38 phosphorylation (p-p38) remains controversial and may be organ- and cell-specific. We found that SIRT1 is essential for maintaining liver size and weight in mice. SIRT1 levels were elevated in human HCC compared to adjacent normal liver tissue, and its expression correlated positively with p-p38 levels. Additionally, SIRT1-activated p38 increased liver cancer malignancy. SIRT1 increased phosphorylation and nuclear accumulation of p38, possibly by increasing MKK3 expression. SIRT1 also induced YAP expression, which in turn increased MKK3 transcription. Positive correlations between SIRT1, YAP, MKK3, and p-p38 levels indicate that blocking their activity may prove helpful in treating HCC.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiangfan Liu
- Faculty of Medical Laboratory Science, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yefei Chang
- Department of Clinical Laboratory Medicine, Third People's Hospital of Yunnan Province, Kunming, 650011, Yunnan Province, China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai TCM University, Shanghai, 200071, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.,Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
25
|
Vitali E, Boemi I, Rosso L, Cambiaghi V, Novellis P, Mantovani G, Spada A, Alloisio M, Veronesi G, Ferrero S, Lania AG. FLNA is implicated in pulmonary neuroendocrine tumors aggressiveness and progression. Oncotarget 2017; 8:77330-77340. [PMID: 29100390 PMCID: PMC5652783 DOI: 10.18632/oncotarget.20473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Pulmonary neuroendocrine tumors (PNTs) comprise different neoplasms, ranging from low grade carcinoids to the highly malignant small cell lung cancers. Several studies identified the cytoskeleton protein Filamin A (FLNA) as determinant in cancer progression and metastasis, but the role of FLNA in PNT aggressiveness and progression is still unknown. We evaluated FLNA expression in PNTs with different grade of differentiation, the role of FLNA in cell proliferation, colony formation, angiogenesis, cell adhesion and migration in PNT cell line (H727 cells) and primary cultures and the possible interaction between FLNA and Rap1-GTPase. FLNA is highly expressed in PNTs with high malignant grade. FLNA silencing reduces cyclin D1 levels (-51±5, p<0.001) and cell proliferation in PNT cells (-37±4, p<0.05), colony formation and VEGF expression (-39±9%, p<0.01) in H727 cells. FLNA and Rap1 co-localize in cellular protrusions and FLNA silencing up-regulates Rap1 expression (+73±18%, p<0.01). Rap1 silencing prevents cell adhesion increase (+43%±18%, p<0.01) and cell migration decrease (-56±7%, p<0.01) induced by FLNA silencing, without affecting cell proliferation reduction. In conclusion, FLNA is implicated in PNT progression, in part through Rap1, thus providing a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy
| | - Ilena Boemi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cambiaghi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy
| | - Pierluigi Novellis
- Humanitas Clinical and Research Center, Thoracic Surgery Division, Milan, Italy
| | - Giovanna Mantovani
- Fondazione IRCCS Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Fondazione IRCCS Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marco Alloisio
- Humanitas Clinical and Research Center, Thoracic Surgery Division, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giulia Veronesi
- Humanitas Clinical and Research Center, Thoracic Surgery Division, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy.,Endocrinology Unit, Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
26
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
27
|
Nalla AK, Williams TF, Collins CP, Rae DT, Trobridge GD. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog 2016; 55:1761-1771. [PMID: 26512949 PMCID: PMC5393267 DOI: 10.1002/mc.22425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/24/2015] [Accepted: 10/18/2015] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PC) is the second leading cause of cancer related deaths in US men. Androgen deprivation therapy (ADT) improves clinical outcome, but tumors often recur and progress to androgen independent prostate cancer (AIPC) which no longer responds to ADT. The progression to AIPC is due to genetic alterations that allow PC cancer cells to grow in the absence of androgen. Here we performed an insertional mutagenesis screen using a replication-incompetent lentiviral vector (LV) to identify the genes that promote AIPC in an orthotopic mouse model. Androgen sensitive PC cells, LNCaP, were mutagenized with LV and injected into the prostate of male mice. After tumor development, mice were castrated to select for cells that proliferate in the absence of androgen. Proviral integration sites and nearby dysregulated genes were identified in tumors developed in an androgen deficient environment. Using publically available datasets, the expression of these candidate androgen independence genes in human PC tissues were analyzed. A total of 11 promising candidate AIPC genes were identified: GLYATL1, FLNA, OBSCN, STRA13, WHSC1, ARFGAP3, KDM2A, FAM83H, CLDN7, CNOT6, and B3GNT9. Seven out the 11 candidate genes; GLYATL1, OBSCN, STRA13, KDM2A, FAM83H, CNOT6, and B3GNT6, have not been previously implicated in PC. An in vitro clonogenic assay showed that knockdown of KDM2A, FAM83H, and GLYATL1 genes significantly inhibited the colony forming ability of LNCaP cells. Additionally, we showed that a combination of four genes, OBSCN, FAM83H, CLDN7, and ARFGAP3 could significantly predicted the recurrence risk in PC patients after prostatectomy (P = 5.3 × 10-5 ). © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun K Nalla
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Theodore F Williams
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Casey P Collins
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dustin T Rae
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington.
- School of Molecular Biosciences, Washington State University, Pullman, Washington.
| |
Collapse
|
28
|
Wang J, Zhao S, Wei Y, Zhou Y, Shore P, Deng W. Cytoskeletal Filamin A Differentially Modulates RNA Polymerase III Gene Transcription in Transformed Cell Lines. J Biol Chem 2016; 291:25239-25246. [PMID: 27738102 DOI: 10.1074/jbc.m116.735886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
Cytoskeletal filamin A (FLNA) is an important protein involved in multiple cellular processes. Previous studies have shown that FLNA can promote or inhibit cancer growth and development; however, the mechanisms underlying these events are not fully understood. Here we show that, in both 293T and SaOS2 cells, knockdown of FLNA significantly enhanced transcription of RNA polymerase (pol) III-transcribed genes except for a subset of tRNA genes. In contrast, re-expression of FLNA in an FLNA-deficient melanoma cell line (A7) repressed transcription of all pol III-transcribed genes, suggesting that FLNA inhibits pol III transcription in a cell type-specific manner. Chromatin immunoprecipitation assays revealed that the repression of pol III gene transcription by FLNA correlates with the decreased occupancy of the RNA pol III transcription machinery at promoters. Immunofluorescence microscopy and coimmunoprecipitation assays revealed that FLNA can associate with the RNA pol III transcription machinery through its actin-binding domain within nuclei. Mechanistic analysis revealed that FLNA suppresses pol III gene transcription by confining the recruitment of the RNA pol III transcription machinery at the promoters of the genes that are sensitive to the alteration of FLNA expression. These findings not only extend the understanding of FLNA function in cells but also provide novel insights into the mechanism by which FLNA represses cell proliferation.
Collapse
Affiliation(s)
- Juan Wang
- From the Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China and
| | - Shasha Zhao
- From the Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China and
| | - Yun Wei
- From the Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China and
| | - Ying Zhou
- From the Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China and
| | - Paul Shore
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Wensheng Deng
- From the Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China and
| |
Collapse
|
29
|
Jin YZ, Pei CZ, Wen LY. FLNA is a predictor of chemoresistance and poor survival in cervical cancer. Biomark Med 2016; 10:711-9. [PMID: 27347840 DOI: 10.2217/bmm-2016-0056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To investigate the expression of FLNA and its potential prognostic significance in cervical cancer. Patients & methods: Real-time PCR was performed to evaluate the expression levels of FLNA in 44 pairs of cervical cancer and matched normal adjacent tissues. Kaplan–Meier analysis and Cox proportional hazards model were used to examine the correlation between FLNA expression levels and overall survival in cervical cancer patients. Results & conclusion: FLNA was significantly upregulated in cervical cancer tissues. FLNA expression level was associated with lymph node metastasis, parametrial invasion and response to neoadjuvant chemotherapy and predicted poor survival in cervical cancer patients. FLNA may serve as a predictor of chemosensitivity and a prognostic biomarker of survival in cervical cancer.
Collapse
Affiliation(s)
- Yan-Ze Jin
- Department of Obstetrics & Gynecology, Yanbian University Hospital, 1327 Juzi-Road, Yanji 133000, Jilin Province, China
| | - Chang-Zhu Pei
- Department of Obstetrics & Gynecology, Yanbian University Hospital, 1327 Juzi-Road, Yanji 133000, Jilin Province, China
| | - Lan-Ying Wen
- Department of Obstetrics & Gynecology, Yanbian University Hospital, 1327 Juzi-Road, Yanji 133000, Jilin Province, China
| |
Collapse
|
30
|
Ioannou MS, McPherson PS. Regulation of Cancer Cell Behavior by the Small GTPase Rab13. J Biol Chem 2016; 291:9929-37. [PMID: 27044746 DOI: 10.1074/jbc.r116.715193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
31
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Shao QQ, Zhang TP, Zhao WJ, Liu ZW, You L, Zhou L, Guo JC, Zhao YP. Filamin A: Insights into its Exact Role in Cancers. Pathol Oncol Res 2015; 22:245-52. [DOI: 10.1007/s12253-015-9980-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
33
|
Chantaravisoot N, Wongkongkathep P, Loo JA, Mischel PS, Tamanoi F. Significance of filamin A in mTORC2 function in glioblastoma. Mol Cancer 2015; 14:127. [PMID: 26134617 PMCID: PMC4489161 DOI: 10.1186/s12943-015-0396-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/02/2015] [Indexed: 01/10/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these cellular processes. Methods To further investigate the significance of mTORC2 in GBM, we treated GBM cells with PP242, an ATP-competitive inhibitor of mTOR, and used RICTOR siRNA to knock down mTORC2 activity. Effects on actin cytoskeleton, focal adhesion, migration, and invasion of GBM cells were examined. To gain insight into molecular basis of the mTORC2 effects on cellular cytoskeletal arrangement and motility/invasion, we affinity purified mTORC2 from GBM cells and identified proteins of interest by mass spectrometry. Characterization of the protein of interest was performed. Results In addition to the inhibition of mTORC2 activity, we demonstrated significant alteration of actin distribution as revealed by the use of phalloidin staining. Furthermore, vinculin staining was altered which suggests changes in focal adhesion. Inhibition of cell migration and invasion was observed with PP242. Two major proteins that are associated with this mTORC2 multiprotein complex were found. Mass spectrometry identified one of them as Filamin A (FLNA). Association of FLNA with RICTOR but not mTOR was demonstrated. Moreover, in vitro, purified mTORC2 can phosphorylate FLNA likewise its known substrate, AKT. In GBM cells, colocalization of FLNA with RICTOR was observed, and the overall amounts of FLNA protein as well as phosphorylated FLNA are high. Upon treatments of RICTOR siRNA or PP242, phosphorylated FLNA levels at the regulatory residue (Ser2152) decreased. This treatment also disrupted colocalization of Actin filaments and FLNA. Conclusions Our results support FLNA as a new downstream effector of mTORC2 controlling GBM cell motility. This new mTORC2-FLNA signaling pathway plays important roles in motility and invasion of glioblastoma cells. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0396-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naphat Chantaravisoot
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.,UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer research, University of California, San Diego, CA, 92093, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
34
|
Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, Haga H. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct 2015; 40:61-7. [PMID: 25925610 DOI: 10.1247/csf.15001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Numerous types of cancer cells migrate into extracellular tissues. This phenomenon is termed invasion, and is associated with poor prognosis in cancer patients. In this study, we demonstrated that filamin B (FLNb), an actin-binding protein, is highly expressed in cancer cell lines that exhibit high invasiveness, with a spindle morphology, into 3D collagen matrices. In addition, we determined that knockdown of FLNb in invasive cancer cells converts cell morphology from spindle-shaped, which is associated with high invasiveness, to round-shaped with low invasiveness. Furthermore, di-phosphorylation of myosin regulatory light chain (MRLC) and phosphorylation of focal adhesion kinase (FAK) are inhibited in FLNb-knockdown cancer cells. These results suggest that FLNb enhances invasion of cancer cells through phosphorylation of MRLC and FAK. Therefore, FLNb may be a new therapeutic target for invasive cancers.
Collapse
Affiliation(s)
- Yuta Iguchi
- Faculty of Advanced Life Science, Hokkaido University
| | | | | | | | | | | | | |
Collapse
|