1
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Cicenas J, Simkus J. CDK Inhibitors and FDA: Approved and Orphan. Cancers (Basel) 2024; 16:1555. [PMID: 38672637 PMCID: PMC11049492 DOI: 10.3390/cancers16081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The protein kinases are a large family of enzymes which catalyze protein phosphorylation at certain amino acids [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland;
- Secondary School “Varnų sala”, Baltupio g. 14, LT-08304 Vilnius, Lithuania
| | - Jokubas Simkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland;
- Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| |
Collapse
|
3
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
4
|
Song KX, Wang JX, Huang D. Therapy-induced senescent tumor cells in cancer relapse. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:273-278. [PMID: 39036667 PMCID: PMC11256611 DOI: 10.1016/j.jncc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 07/23/2024] Open
Abstract
Cellular senescence is characterized by a generally irreversible cell cycle arrest and the secretion of bioactive factors known as the senescence-associated secretory phenotype (SASP). In an oncogenic context, senescence is considered a tumor suppressive mechanism as it prevents cell proliferation and inhibits the progression from pre-malignant to malignant disease. However, recent studies have demonstrated that senescent tumor cells, which could spontaneously exist within cancer tissues or arise in response to various cancer interventions (the so-called therapy-induced senescence, TIS), can acquire pro-tumorigenic properties and are capable of driving local and metastatic relapse. This highlights the complex and multifaceted nature of cellular senescence in cancer biology. Here, we summarize the current knowledge of the pathological function of therapy-induced senescent tumor cells and discuss possible mechanisms by which tumor cell senescence contributes to cancer relapse. We also discuss implications for future studies toward targeting these less appreciated cells.
Collapse
Affiliation(s)
- Ke-Xin Song
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun-Xian Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - De Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Hasanvand Z, Oghabi Bakhshaiesh T, Peytam F, Firoozpour L, Hosseinzadeh E, Motahari R, Moghimi S, Nazeri E, Toolabi M, Momeni F, Bijanzadeh H, Khalaj A, Baratte B, Josselin B, Robert T, Bach S, Esmaeili R, Foroumadi A. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies. Bioorg Chem 2023; 133:106383. [PMID: 36764231 DOI: 10.1016/j.bioorg.2023.106383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Tyrosine protein kinases (TKs) have been proved to play substantial roles on many cellular processes and their overexpression tend to be found in various types of cancers. Therefore, over recent decades, numerous tyrosine protein kinase inhibitors particularly epidermal growth factor receptor (EGFR) inhibitors have been introduced to treat cancer. Present study describes a novel series of imidazo[1,2-a]quinazolines 18 as potential -inhibitors. These imidazoquinazolines (18a and 18o, in particular) had great anti-proliferative activities with IC50 values in the micromolar (µM) range against PC3, HepG2, HeLa, and MDA-MB-231 comparing with Erlotinib as reference marketed drug. Further evaluations on some derivatives revealed their potential to induce apoptotic cell death and cell growth arrest at G0 phase of the cell cycle. Afterwards, the kinase assay on the most potent compounds 18a and 18o demonstrated their inhibitory potencies and selectivity toward EGFR (with EGFR-IC50 values of 82.0 µM and 12.3 µM, respectively). Additionally, western blot analysis on these compounds 18a and 18o exhibited that they inhibited the phosphorylation of EGFR and its downstream molecule extracellular signal-regulated kinase (ERK1/2). However, the level of B-Actin phosphorylation was not changed. Finally, density functional theory calculations, docking study, and independent gradient model (IGM) were performed to illustrate the structure-activity relationship (SAR) and to assess the interactions between proteins and ligands. The results of molecular docking studies had great agreement with the obtained EGFR inhibitory results through in vitro evaluations.
Collapse
Affiliation(s)
- Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Hosseinzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Momeni
- Department of Pharmacognosy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lőrincz A, Mihály J, Wacha A, Németh C, Besztercei B, Gyulavári P, Varga Z, Peták I, Bóta A. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112481. [PMID: 34857267 DOI: 10.1016/j.msec.2021.112481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
A sterically stabilized unilamellar nanocarrier vesicle (SSV) system containing dipalmitoylphosphatidylcholine, cholesterol, ursolic acid and PEGylated phospholipid has been developed by exploiting the structural advantages of ursolic acid: by spontaneously attaching to the lipid head groups, it induces curvature at the outer side of the bilayers, allowing the preparation of size-limited vesicles without extrusion. Ursolic acid (UA) also interacts with the PEG chains, supporting steric stabilization even when the amount of PEGylated phospholipid is reduced. Using fluorescence immunohistochemistry, vesicles containing ursolic acid (UA-SSVs) were found to accumulate in the tumor in 3 h on xenografted mouse, suggesting the potential use of these vesicles for passive tumor targeting. Further on, mono- and combination therapy with UA and six different kinase inhibitors (crizotinib, erlotinib, foretinib, gefitinib, refametinib, trametinib) was tested on seven cancer cell-lines. In most combinations synergism was observed, in the case of trametinib even at very low concentration (0.001 μM), which targets the MAPK pathway most often activated in human cancers. The coupled intercalation of UA and trametinib (2:1 molar ratio) into vesicles causes further structural advantageous molecular interactions, promoting the formation of small vesicles. The high drug:lipid molar ratio (~0.5) in the novel type of co-delivery vesicles enables their direct medical application, possibly also overcoming the multidrug resistance effect.
Collapse
Affiliation(s)
- A Lőrincz
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - J Mihály
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| | - A Wacha
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - Cs Németh
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - B Besztercei
- Semmelweis University, Institute of Clinical Experimental Research, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - P Gyulavári
- Semmelweis University, Pathobiochemistry Research Group, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Z Varga
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - I Peták
- University of Illinois at Chicago, Department of Biopharmaceutical Sciences, 833 S. Wood street, Chicago, IL 60612, USA; Oncompass Medicine Ltd., Retek street 34, 1024 Budapest, Hungary; Semmelweis University, Department of Pharmacology and Pharmacotherapy, Nagyvárad square 4, 1089 Budapest, Hungary
| | - A Bóta
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| |
Collapse
|
7
|
Luan Y, Li M, Zhao Y, Li Q, Wen J, Gao S, Yang Y. Centrosomal-associated Proteins: Potential therapeutic targets for solid tumors? Biomed Pharmacother 2021; 144:112292. [PMID: 34700231 DOI: 10.1016/j.biopha.2021.112292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The centrosome is a special organelle in human cells and an organizing unit for microtubules and signaling molecules. In addition, the centrosome is tightly restricted during the cell cycle and forms the basal body of the cilia in ciliated cells. Centrosome abnormality is frequently observed in malignant tumors. The dysregulation of centrosome-associated proteins leads to multipolar mitosis, aneuploidy, and nondirected cell migration, and therefore promotes cancer progression. The overduplication of primary centrosome and the accumulation of chromosome, comprise the majority cause of chromosomal mis-segregation in cancer cells. This review discusses the structure and function of the centrosome and the role of its associated proteins in the progression of solid tumors. We summarized the effects of centrosome amplification abnormalities and other centrosome-related phenotypes on tumors. The mechanism of the delineation of centrosome amplification with tumor malignancy remains to be decided. A better understanding of centrosome abnormality in tumorigenesis may be useful to screen novel therapeutic strategies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mingli Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Qianqian Li
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jia Wen
- Department of Osteology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Siqi Gao
- Institute of Microcirculation, Hebei North University, Zhangjiakou 075000, China.
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Machado CB, DA Silva EL, Dias Nogueira BM, DA Silva JBS, DE Moraes Filho MO, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. The Relevance of Aurora Kinase Inhibition in Hematological Malignancies. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:111-126. [PMID: 35399305 DOI: 10.21873/cdp.10016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
Aurora kinases are a family of serine/threonine protein kinases that play a central role in eukaryotic cell division. Overexpression of aurora kinases in cancer and their role as major regulators of the cell cycle quickly inspired the idea that their inhibition might be a potential pathway when treating oncologic patients. Over the past couple of decades, the search for designing and testing of molecules capable of inhibiting aurora activities fueled many pre-clinical and clinical studies. In this study, data from the past 10 years of in vitro and in vivo investigations, as well as clinical trials, utilizing aurora kinase inhibitors as therapeutics for hematological malignancies were compiled and discussed, aiming to highlight potential uses of these inhibitors as a novel monotherapy model or alongside conventional chemotherapies. While there is still much to be elucidated, it is clear that these kinases play a key role in oncogenesis, and their manageable toxicity and potentially synergistic effects still render them a focus of interest for future investigations in combinatorial clinical trials.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emerson Lucena DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jean Breno Silveira DA Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico DE Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM),Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur J Med Chem 2021; 221:113495. [PMID: 34020340 DOI: 10.1016/j.ejmech.2021.113495] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases that play a crucial role in cell proliferation through the regulation of mitotic spindles. These kinases are the regulatory proteins localized in the various phases of the cell cycle and are involved in centrosome maturation, chromosome alignment, chromosomal segregation, and cytokinesis. They have emerged as one of the validated drug targets for anticancer drug discovery as their overexpression has been implicated in the pathogenesis of various carcinomas. Inhibitors of Aurora kinases induce growth inhibition and apoptosis in a variety of tumor cells. Hence, the design and development of Aurora kinase inhibitors have been widely explored in recent years by the scientific community as potential anticancer agents. Various Aurora kinase inhibitors have been under preclinical and clinical investigations as antitumor agents. This review summarizes the recent strategies of various researchers for the design and development of Aurora kinase inhibitors belonging to different structural classes. Their bioactivity, SARs, molecular modelling, and mechanistic studies have also been described. The comprehensive compilation of research work carried out in the field will provide inevitable scope for the design and development of novel drug candidates with better selectivity and efficacy. The review is constructed after the exhaustive research in this discipline and includes the papers from 2011 to 2020.
Collapse
|
10
|
Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther 2021; 225:107860. [PMID: 33895188 DOI: 10.1016/j.pharmthera.2021.107860] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Heterocyclic scaffolds are widely utilized for drug design by taking into account the molecular structure of therapeutic targets that are related to a broad spectrum of ailments, including tumors. Such compounds display various covalent and non-covalent interactions with the specific residues of the target proteins while causing their inhibition. There is a substantial number of heterocyclic compounds approved for cancer treatment, and these compounds function by interacting with different therapeutic targets involved in tumorogenesis. In this review, we trace and emphasize the privileged heterocyclic pharmacophores that have immense potency against several essential chemotherapeutic tumor targets: microtubules, kinases and carbonic anhydrases. Potent compounds currently undergoing pre-clinical and clinical studies have also been assessed for ascertaining the effective class of chemical scaffolds that have significant therapeutic potential against multiple malignancies. In addition, we also describe briefly the role of heterocyclic compounds in various chemotherapy regimens. The optimized molecular hybridization of delineated motifs may result in the discovery of more active anticancer therapeutics and circumvent the development of resistance by specific targets in the future.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Amir Azam
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
11
|
Differential reprogramming of breast cancer subtypes in 3D cultures and implications for sensitivity to targeted therapy. Sci Rep 2021; 11:7259. [PMID: 33790333 PMCID: PMC8012355 DOI: 10.1038/s41598-021-86664-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Screening for effective candidate drugs for breast cancer has shifted from two-dimensional (2D) to three-dimensional (3D) cultures. Here we systematically compared the transcriptomes of these different culture conditions by RNAseq of 14 BC cell lines cultured in both 2D and 3D conditions. All 3D BC cell cultures demonstrated increased mitochondrial metabolism and downregulated cell cycle programs. Luminal BC cells in 3D demonstrated overall limited reprogramming. 3D basal B BC cells showed increased expression of extracellular matrix (ECM) interaction genes, which coincides with an invasive phenotype not observed in other BC cells. Genes downregulated in 3D were associated with metastatic disease progression in BC patients, including cyclin dependent kinases and aurora kinases. Furthermore, the overall correlation of the cell line transcriptome to the BC patient transcriptome was increased in 3D cultures for all TNBC cell lines. To define the most optimal culture conditions to study the oncogenic pathway of interest, an open source bioinformatics strategy was established.
Collapse
|
12
|
Cicenas J, Račienė A. Anti-Cancer Drugs Targeting Protein Kinases Approved by FDA in 2020. Cancers (Basel) 2021; 13:cancers13050947. [PMID: 33668248 PMCID: PMC7956733 DOI: 10.3390/cancers13050947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cancers are a large group of diseases that mostly emerge because of the uncontrollable action of many different genes in human cells [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland
- Correspondence: ; Tel.: +43-6645875822 or +37-066704267
| | - Asta Račienė
- Vilnius University Hospital, Santariskiu Klinikos Santariskiu str. 2, LT-08661 Vilnius, Lithuania;
| |
Collapse
|
13
|
Ekebergh A, Mårtensson J, Ekebergh CL. Cyclopenta[ b]indole Derivative Inhibits Aurora B in Primary Cells. ACS OMEGA 2020; 5:33455-33460. [PMID: 33403307 PMCID: PMC7774273 DOI: 10.1021/acsomega.0c05491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The Aurora family of kinases is closely involved in regulating cell division. Inhibition of Aurora A and B with small molecules is currently being investigated in clinical trials for the treatment of different cancers. It has also been evaluated as a treatment option against different autoimmune diseases in preclinical studies. Here, we present a cyclopenta[b]indole derivative capable of inhibiting Aurora B selectively in kinase assays. To evaluate the Aurora B inhibition capacity of the compound, we used a kinase IC50 assay as well as a suppression assay of proliferating primary cells. In addition, we examined if the cells had gained a phenotype characteristic for Aurora B inhibition after treatment with the compound. We found that the compound selectively inhibited Aurora B (IC50 = 1.4 μM) over Aurora A (IC50 > 30 μM). Moreover, the compound inhibited proliferating PBMCs with an IC50 = 4.2 μM, and the cells displayed reduced phosphorylation of histone H3 as well as tetraploidy, consistent with Aurora B inhibition.
Collapse
Affiliation(s)
- Andreas Ekebergh
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Jerker Mårtensson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Christine Lingblom Ekebergh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg 413 46, Sweden
| |
Collapse
|
14
|
Morahan BJ, Abrie C, Al-Hasani K, Batty MB, Corey V, Cowell AN, Niemand J, Winzeler EA, Birkholtz LM, Doerig C, Garcia-Bustos JF. Human Aurora kinase inhibitor Hesperadin reveals epistatic interaction between Plasmodium falciparum PfArk1 and PfNek1 kinases. Commun Biol 2020; 3:701. [PMID: 33219324 PMCID: PMC7679417 DOI: 10.1038/s42003-020-01424-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
Mitosis has been validated by numerous anti-cancer drugs as being a druggable process, and selective inhibition of parasite proliferation provides an obvious opportunity for therapeutic intervention against malaria. Mitosis is controlled through the interplay between several protein kinases and phosphatases. We show here that inhibitors of human mitotic kinases belonging to the Aurora family inhibit P. falciparum proliferation in vitro with various potencies, and that a genetic selection for mutant parasites resistant to one of the drugs, Hesperadin, identifies a resistance mechanism mediated by a member of a different kinase family, PfNek1 (PF3D7_1228300). Intriguingly, loss of PfNek1 catalytic activity provides protection against drug action. This points to an undescribed functional interaction between Ark and Nek kinases and shows that existing inhibitors can be used to validate additional essential and druggable kinase functions in the parasite. Morahan et al. investigate inhibitors of human mitotic kinases in P. falciparum and show a resistance mechanism to the drug Hesperadin through an epistatic interaction between the PfArk1 and PfNek1 kinases. This study demonstrates that existing inhibitors can be used to validate additional essential and druggable kinase functions in the parasite.
Collapse
Affiliation(s)
- Belinda J Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Clarissa Abrie
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Keith Al-Hasani
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.,Department of Diabetes, Monash University Central Clinical School, Alfred Centre, Melbourne, VIC, 3004, Australia
| | - Mitchell B Batty
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.,Department of Diabetes, Monash University Central Clinical School, Alfred Centre, Melbourne, VIC, 3004, Australia
| | - Victoria Corey
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.,Illumina, 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Anne N Cowell
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.,Department of Medicine, University of California San Diego School of Medicine, 9444 Medical Center Drive, MC 0879, La Jolla, CA, 92093-0879, USA
| | - Jandeli Niemand
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA
| | - Lyn-Marie Birkholtz
- Faculty of Natural and Agricultural Sciences, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia. .,School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| | - Jose F Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
15
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Carlos JAEG, Lima K, Coelho-Silva JL, de Melo Alves-Paiva R, Moreno NC, Vicari HP, de Souza Santos FP, Hamerschlak N, Costa-Lotufo LV, Traina F, Machado-Neto JA. Reversine exerts cytotoxic effects through multiple cell death mechanisms in acute lymphoblastic leukemia. Cell Oncol (Dordr) 2020; 43:1191-1201. [PMID: 32857324 DOI: 10.1007/s13402-020-00551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is an aggressive hematological cancer with limited therapeutic options for adult patients. Aurora kinases have drawn attention as potential targets in hematological neoplasms due to their high expression and biological functions. Aurora kinase A (AURKA) and AURKB are essential for a successful mitosis, acting in spindle mitotic organization and cytokinesis. Reversine is a synthetic purine analog that acts as a multi-kinase inhibitor with anti-neoplastic activity by targeting AURKA and AURKB. METHODS ALL patient gene expression data were retrieved from the Amazonia! DATABASE For functional assays, Jurkat (T-ALL) and Namalwa (B-ALL) cells were exposed to increasing concentrations of reversine and submitted to various cellular and molecular assays. RESULTS We found that AURKB expression was higher in ALL patient samples compared to normal lymphocytes (p < 0.0001). The ALL cell lines tested displayed aberrant AURKA and AURKB expression. In Jurkat and Namalwa cells, reversine reduced cell viability in a dose- and time-dependent manner (p < 0.05). Reversine also significantly reduced the viability of primary ALL cells. Reversine induced apoptosis and autophagy, and reduced cell proliferation in both cell lines (p < 0.05). Mitotic catastrophe markers, including cell cycle arrest at G2/M, increased cell size and DNA damage, were observed upon reversine exposure. Short- and long-term treatment with reversine inhibited autonomous clonogenicity (p < 0.05). At the molecular level, reversine reduced AURKB activity, induced SQSTM1/p62 consumption, and increased LC3BII and γ-H2AX levels. In Namalwa cells, reversine modulated 25 out of 84 autophagy-related genes, including BCL2, BAD, ULK1, ATG10, IRGM and MAP1LC3B, which indicates that reversine acts by initiating and sustaining autophagy signals in ALL cells. CONCLUSIONS From our data we conclude that reversine reduces the viability of ALL cells by triggering multiple cell death mechanisms, including apoptosis, mitotic catastrophe, and autophagy. Our findings highlight reversine as a potential anticancer agent for ALL.
Collapse
Affiliation(s)
- Jorge Antonio Elias Godoy Carlos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | | | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | | | - Nelson Hamerschlak
- Einstein's Teaching and Research Institute, Albert Einstein Hospital, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| |
Collapse
|
17
|
Epigenetics, HIV, and Cardiovascular Disease Risk. Curr Probl Cardiol 2020; 46:100615. [PMID: 32507271 DOI: 10.1016/j.cpcardiol.2020.100615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) is currently considered a risk factor for cardiovascular disease (CVD). With the advent of antiretroviral treatment and prevention, HIV-related morbidity and mortality rates have decreased significantly. Prolonged life expectancy heralded higher prevalence of diseases of aging, including CVD-associated morbidity and mortality, having an earlier onset in people living with HIV (PLHIV) compared to their noninfected counterparts. Several epigenetic biomarkers are now available as predictors of health and disease, with DNA methylation being one of the most widely studied. Epigenetic biomarkers are changes in gene expression without alterations to the intrinsic DNA sequence, with the potential to predict risk of future CVD, as well as the outcome and response to therapy among PLHIV. We sought to review the available literature referencing epigenetic markers to determine underlying biomechanism predisposing high-risk PLHIV to CVD, elucidating areas of possible intervention.
Collapse
|
18
|
The therapeutic potential of Aurora kinases targeting in glioblastoma: from preclinical research to translational oncology. J Mol Med (Berl) 2020; 98:495-512. [PMID: 32219470 DOI: 10.1007/s00109-020-01895-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common aggressive primary brain tumor. Standard care includes maximal safe surgical resection, radiation, and chemotherapy with temozolomide. However, the impact of this therapeutic approach on patient survival is disappointing and poor outcomes are frequently observed. Therefore, new therapeutic targets are needed to treat this potentially deadly tumor. Aurora kinases are one of today's most sought-after classes of therapeutic targets to glioblastoma therapy. They are a family of proteins composed of three members: Aurora-A, Aurora-B, and Aurora-C that play different roles in the cell division through regulation of chromosome segregation. Deregulation of these genes has been reported in glioblastoma and a progressive number of studies have shown that inhibition of these proteins could be a promising strategy for the treatment of this tumor. This review discusses the preclinical and early clinical findings on the potential use of the Aurora kinases as new targets for the treatment of glioblastoma. KEY MESSAGES: GBM is a very aggressive tumor with limited therapeutic options. Aurora kinases are a family of serine/threonine kinases implicated in GBM pathology. Aurora kinases are critical for glioblastoma cell growth, apoptosis, and chemoresistance. Inhibition of Aurora kinases has a synergistic or sensitizing effect with chemotherapy drugs, radiotherapy, or with other targeted molecules in GBM. Several Aurora kinase inhibitors are currently in clinical trials.
Collapse
|
19
|
Casari I, Domenichini A, Sestito S, Capone E, Sala G, Rapposelli S, Falasca M. Dual PDK1/Aurora Kinase A Inhibitors Reduce Pancreatic Cancer Cell Proliferation and Colony Formation. Cancers (Basel) 2019; 11:cancers11111695. [PMID: 31683659 PMCID: PMC6896057 DOI: 10.3390/cancers11111695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023] Open
Abstract
Deregulation of different intracellular signaling pathways is a common feature in cancer. Numerous studies indicate that persistent activation of the phosphoinositide 3-kinase (PI3K) pathway is often observed in cancer cells. 3-phosphoinositide dependent protein kinase-1 (PDK1), a transducer protein that functions downstream of PI3K, is responsible for the regulation of cell proliferation and migration and it also has been found to play a key role in different cancers, pancreatic and breast cancer amongst others. As PI3K is being described to be aberrantly expressed in several cancer types, designing inhibitors targeting various downstream molecules of PI3K has been the focus of anticancer agent development for a long time. In particular, dual inhibitory drugs targeting key signaling molecules in the PI3K pathway have attracted the attention of scientists. Several drugs have progressed to clinical trials, with limited success due to toxicity and bioavailability concerns. Very few anticancer drugs targeting the PI3K pathway have been approved for clinical use and their efficacy is particularly limited towards certain tumors such as pancreatic cancer. Here, we tested two drugs displaying dual inhibitory activity towards PDK1 and Aurora kinase A in a panel of pancreatic cancer cell lines and in two in vivo models of pancreatic cancer. Our data show that both inhibitors are able to impair cell proliferation and clonogenic potential in pancreatic cancer cells. However, the limited activity of both compounds in vivo indicates that further optimization of the pharmacokinetics properties is required.
Collapse
Affiliation(s)
- Ilaria Casari
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy.
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy.
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
20
|
Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M. Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells. Cancers (Basel) 2019; 11:E972. [PMID: 31336714 PMCID: PMC6678540 DOI: 10.3390/cancers11070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.
Collapse
Affiliation(s)
- Dalius Kuciauskas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Nadezda Dreize
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Marija Ger
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Kristijonas Zemaitis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
- MAP Kinase Resource, 3027 Bern, Switzerland
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania.
| |
Collapse
|
21
|
Mitotic Catastrophe Induced in HeLa Tumor Cells by Photodynamic Therapy with Methyl-aminolevulinate. Int J Mol Sci 2019; 20:ijms20051229. [PMID: 30862116 PMCID: PMC6429057 DOI: 10.3390/ijms20051229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) constitutes a cancer treatment modality based on the administration of a photosensitizer, which accumulates in tumor cells. The subsequent irradiation of the tumoral area triggers the formation of reactive oxygen species responsible for cancer cell death. One of the compounds approved in clinical practice is methyl-aminolevulinate (MAL), a protoporphyrin IX (PpIX) precursor intermediate of heme synthesis. We have identified the mitotic catastrophe (MC) process after MAL-PDT in HeLa human carcinoma cells. The fluorescence microscopy revealed that PpIX was located mainly at plasma membrane and lysosomes of HeLa cells, although some fluorescence was also detected at endoplasmic reticulum and Golgi apparatus. Cell blockage at metaphase-anaphase transition was observed 24 h after PDT by phase contrast microscopy and flow cytometry. Mitotic apparatus components evaluation by immunofluorescence and Western blot indicated: multipolar spindles and disorganized chromosomes in the equatorial plate accompanied with dispersion of centromeres and alterations in aurora kinase proteins. The mitotic blockage induced by MAL-PDT resembled that induced by two compounds used in chemotherapy, taxol and nocodazole, both targeting microtubules. The alterations in tumoral cells provided evidence of MC induced by MAL-PDT, resolving mainly by apoptosis, directly or through the formation of multinucleate cells.
Collapse
|
22
|
Zhao Z, Jin G, Yao K, Liu K, Liu F, Chen H, Wang K, Gorja DR, Reddy K, Bode AM, Guo Z, Dong Z. Aurora B kinase as a novel molecular target for inhibition the growth of osteosarcoma. Mol Carcinog 2019; 58:1056-1067. [PMID: 30790360 DOI: 10.1002/mc.22993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
Abstract
Osteosarcoma is the primary human malignant tumor affecting bone. This cancer most frequently arises in children and adolescents, with a second peak in those over the age of 50. Currently, surgery followed by radiotherapy and chemotherapy are the main treatments, but long-term positive effects are very poor. Aurora B kinase is a serine/threonine kinase that is a key regulator of cell cycle and mitosis. Tissue array analysis revealed that Aurora B kinase is overexpressed in osteosarcoma compared with normal bone tissue. We developed a compound, HOI-07 (i.e., (E)-3-((E)-4-(benzo[d] [1,3]dioxol-5-yl)-2-oxobut-3-en-1-ylidene)indolin-2-one), as a specific Aurora B kinase inhibitor and examined its effectiveness against osteosarcoma cell growth in this study. This compound inhibited Aurora B kinase activity in osteosarcoma and induced apoptosis, caused G2-M phase arrest, and attenuated osteosarcoma anchorage-independent cell growth. Moreover, knocking down the expression of Aurora B effectively reduced the sensitivity of osteosarcoma to HOI-07. Results of a xenograft mouse study indicated that HOI-07 treatment effectively suppressed the growth of 143B and KHOS xenografts, without affecting the body weight of mice. The expression of phosphorylated histone H3 (Ser10) was reduced in mice treated with HOI-07. Overall, we identified HOI-07 as a specific Aurora B kinase inhibitor for osteosarcoma treatment and this compound warrants further investigation.
Collapse
Affiliation(s)
- Zhenjiang Zhao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Henan Provincial Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
| | - Guoguo Jin
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Henan Provincial Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Henan Provincial Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
| | - Kangdong Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,Henan Provincial Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| | - Dhilli Rao Gorja
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| | - Kanamata Reddy
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zhiping Guo
- Henan Provincial Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
23
|
Fusco P, Esposito MR, Tonini GP. Chromosome instability in neuroblastoma. Oncol Lett 2018; 16:6887-6894. [PMID: 30546420 PMCID: PMC6256707 DOI: 10.3892/ol.2018.9545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a neural crest-derived tumor that accounts for 7-10% of all malignancies in children and ~15% of all childhood cancer-associated mortalities. Approximately 50% of patients are characterized as high-risk (HR) and have an overall survival of <40% at 5 years from diagnosis. HR patients with unfavorable prognosis exhibit several structural copy number variations (CNVs), whereas localized tumors belonging to patients in the low- and intermediate-risk classes, have favorable outcomes and display several numerical CNVs. Taken together these results are indicative of chromosome instability (CIN) in neuroblastoma tumor cells. The present review discusses multiple aspects of CIN including methods of measuring CIN, CIN targeting as a therapeutic strategy in cancer and the effects of CIN in neuroblastoma development and aggressiveness with particular emphasis on the CIN gene signature associated with HR neuroblastoma patients.
Collapse
Affiliation(s)
- Pina Fusco
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| | - Maria Rosaria Esposito
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| |
Collapse
|
24
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
25
|
Ryu J, Pyo J, Lee CW, Kim JE. An Aurora kinase inhibitor, AMG900, inhibits glioblastoma cell proliferation by disrupting mitotic progression. Cancer Med 2018; 7:5589-5603. [PMID: 30221846 PMCID: PMC6246935 DOI: 10.1002/cam4.1771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
The Aurora kinase family of serine/threonine protein kinases comprises Aurora A, B, and C and plays an important role in mitotic progression. Several inhibitors of Aurora kinase have been developed as anti‐cancer therapeutics. Here, we examined the effects of a pan‐Aurora kinase inhibitor, AMG900, against glioblastoma cells. AMG900 inhibited proliferation of A172, U‐87MG, and U‐118MG glioblastoma cells by upregulating p53 and p21 and subsequently inducing cell cycle arrest and senescence. Abnormal cell cycle progression was triggered by dysregulated mitosis. Mitosis was prolonged due to a defect in mitotic spindle assembly. Despite the presence of an unattached kinetochore, BubR1, a component of the spindle assembly checkpoint, was not recruited. In addition, Aurora B was not recruited to central spindle at anaphase. Abnormal mitotic progression resulted in accumulation of multinuclei and micronuclei, a type of chromosome missegregation, and ultimately inhibited cell survival. Therefore, the data suggest that AMG900‐mediated inhibition of Aurora kinase is a potential anti‐cancer therapy for glioblastoma.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
26
|
Carducci M, Shaheen M, Markman B, Hurvitz S, Mahadevan D, Kotasek D, Goodman OB, Rasmussen E, Chow V, Juan G, Friberg GR, Gamelin E, Vogl FD, Desai J. A phase 1, first-in-human study of AMG 900, an orally administered pan-Aurora kinase inhibitor, in adult patients with advanced solid tumors. Invest New Drugs 2018; 36:1060-1071. [PMID: 29980894 DOI: 10.1007/s10637-018-0625-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022]
Abstract
Background Aurora kinase overexpression or amplifications are associated with high proliferation, poor prognosis, and therapeutic resistance in human tumors. AMG 900 is an investigational, oral, selective pan-Aurora kinase inhibitor. Methods This first-in-human trial included dose-escalation and dose-expansion phases ( ClinicalTrials.gov : NCT00858377). Dose escalation evaluated the safety, tolerability, and pharmacokinetics of AMG 900 in advanced solid tumors and determined the maximum tolerated dose (MTD) with/without granulocyte colony-stimulating factor (G-CSF) prophylaxis. Dose expansion evaluated clinical activity in three tumor types: taxane- and platinum-resistant ovarian cancer, taxane-resistant triple-negative breast cancer (TNBC), and castration-resistant and taxane- or cisplatin/etoposide-resistant prostate cancer (CRPC). AMG 900 was administered 4 days on/10 days off at 1-50 mg/day during escalation and at the MTD with G-CSF during expansion. Results AMG 900 showed rapid absorption with fast clearance, supporting once-daily dosing. The MTD was 25 mg/day, increasing to 40 mg/day with G-CSF. Grade ≥ 3 treatment-related adverse events included neutropenia (37%), anemia (23%), leukopenia (14%), and thrombocytopenia (12%). During dose expansion, 3/29 (10.3%, 95% CI: 2.0%-28.0%) evaluable patients with ovarian cancer experienced partial response by central imaging per RECIST 1.1; median duration of response was 24.1 weeks (95% CI: 16.1-34.1). Seven patients (24.1%, 95% CI: 10.3%-43.5%) experienced partial response per Gynecologic Cancer InterGroup criteria; 5/9 patients positive for p53 expression responded to treatment. No objective responses were observed in patients with TNBC or CRPC per RECIST 1.1. Conclusions AMG 900 40 mg/day with G-CSF had manageable toxicity and demonstrated single-agent activity in patients with heavily pretreated, chemotherapy-resistant ovarian cancer.
Collapse
Affiliation(s)
- Michael Carducci
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1M59 Bunting Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | | | | | - Sara Hurvitz
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Dusan Kotasek
- Adelaide Cancer Centre, Kurralta Park, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | - Jayesh Desai
- Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
27
|
Yu J, Zhou J, Xu F, Bai W, Zhang W. High expression of Aurora-B is correlated with poor prognosis and drug resistance in non-small cell lung cancer. Int J Biol Markers 2018; 33:215-221. [PMID: 29707994 DOI: 10.1177/1724600817753098] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Aurora kinase B (Aurora-B) is a crucial regulator of accurate mitosis. Abnormal Aurora-B expression is associated with aneuploidy and has been implicated in the pathogenesis and drug resistance in a variety of human cancers. However, little evidence is available regarding the role of Aurora-B in regulating drug response in non-small cell lung cancer (NSCLC), which is the most common type of lung cancer, and is characterized with poor prognosis and high mortality. Method: In the current study, we investigated the association of Aurora-B with the prognosis of NSCLC patients, and we also used the latest CRISPR/Cas9 system to explore the regulatory role of Aurora-B in NSCLC cells developing resistance to cisplatin (CDDP) and paclitaxel. Results: We found that Aurora-B was correlated with significantly reduced overall survival and disease-free survival in NSCLC patients. Aurora-B overexpression was also observed in NSCLC cells developing impaired response to both CDDP and paclitaxel. Moreover, we found, for the first time, that Aurora-B may impair NSCLC drug response by disturbing cell proliferation and inhibiting p53-related DNA damage response and apoptotic pathway, while the knockout of Aurora-B resensitized NSCLC cells to chemo drugs by ensuring correct chromosome segregation and restoring p53 expression. Conclusions: Our results demonstrated the association of Aurora-B with chemoresistance in NSCLC, which may finally contribute to the poor prognosis of NSCLC patients. We also suggested Aurora-B as a promising therapeutic target in NSCLC treatment.
Collapse
Affiliation(s)
- JingJing Yu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi - P.R. China
| | - Jing Zhou
- Departments of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi - P.R. China
| | - Fei Xu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi - P.R. China
| | - Wei Bai
- Departments of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi - P.R. China
| | - Wei Zhang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi - P.R. China
| |
Collapse
|
28
|
Cicenas J, Zalyte E, Bairoch A, Gaudet P. Kinases and Cancer. Cancers (Basel) 2018; 10:cancers10030063. [PMID: 29494549 PMCID: PMC5876638 DOI: 10.3390/cancers10030063] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Egle Zalyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Amos Bairoch
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
- Faculty of Medicine; University of Geneva; 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | - Pascale Gaudet
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
29
|
Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 Inhibitors in Cancer. Cancers (Basel) 2017; 10:cancers10010001. [PMID: 29267206 PMCID: PMC5789351 DOI: 10.3390/cancers10010001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAP kinases) are a family of kinases that regulates a range of biological processes implicated in the response to growth factors like latelet-derived growth factor (PDGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and stress, such as ultraviolet irradiation, heat shock, and osmotic shock. The MAP kinase family consists of four major subfamilies of related proteins (extracellular regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and extracellular regulated kinase 5 (ERK5)) and regulates numerous cellular activities, such as apoptosis, gene expression, mitosis, differentiation, and immune responses. The deregulation of these kinases is shown to be involved in human diseases, such as cancer, immune diseases, inflammation, and neurodegenerative disorders. The awareness of the therapeutic potential of the inhibition of MAP kinases led to a thorough search for small-molecule inhibitors. Here, we discuss some of the most well-known MAP kinase inhibitors and their use in cancer research.
Collapse
Affiliation(s)
- Jonas Cicenas
- Department for Microbiology, Immunbiology und Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna AT-1030, Austria.
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland.
| | - Egle Zalyte
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
| | - Arnas Rimkus
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania.
| | - Dalius Dapkus
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Remigijus Noreika
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Sigitas Urbonavicius
- Cardiovascular Research Centre, Viborg Hospital, Heibergs Alle 4, 8800 Viborg, Denmark.
| |
Collapse
|
30
|
Peter B, Bibi S, Eisenwort G, Wingelhofer B, Berger D, Stefanzl G, Blatt K, Herrmann H, Hadzijusufovic E, Hoermann G, Hoffmann T, Schwaab J, Jawhar M, Willmann M, Sperr WR, Zuber J, Sotlar K, Horny HP, Moriggl R, Reiter A, Arock M, Valent P. Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia 2017; 32:1016-1022. [PMID: 29249817 PMCID: PMC6037300 DOI: 10.1038/leu.2017.338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Systemic mastocytosis (SM) is a mast cell (MC) neoplasm with complex pathology and a variable clinical course. In aggressive SM (ASM) and MC leukemia (MCL) responses to conventional drugs are poor and the prognosis is dismal. R763 is a multi-kinase inhibitor that blocks the activity of Aurora-kinase-A/B, ABL1, AKT and FLT3. We examined the effects of R763 on proliferation and survival of neoplastic MC. R763 produced dose-dependent inhibition of proliferation in the human MC lines HMC-1.1 (IC50 5-50 nM), HMC-1.2 (IC50 1-10 nM), ROSAKIT WT (IC50 1-10 nM), ROSAKIT D816V (IC50 50-500 nM) and MCPV-1.1 (IC50 100-1000 nM). Moreover, R763 induced growth inhibition in primary neoplastic MC in patients with ASM and MCL. Growth-inhibitory effects of R763 were accompanied by signs of apoptosis and a G2/M cell cycle arrest. R763 also inhibited phosphorylation of KIT, BTK, AKT and STAT5 in neoplastic MC. The most sensitive target appeared to be STAT5. In fact, tyrosine phosphorylation of STAT5 was inhibited by R763 at 10 nM. At this low concentration, R763 produced synergistic growth-inhibitory effects on neoplastic MC when combined with midostaurin or dasatinib. Together, R763 is a novel promising multi-kinase inhibitor that blocks STAT5 activation and thereby overrides drug-resistance in neoplastic MC.
Collapse
Affiliation(s)
- B Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - S Bibi
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR 8113, Ecole Normale Superieure de Cachan, Cachan, France
| | - G Eisenwort
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - B Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - D Berger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - G Stefanzl
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - K Blatt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - H Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - E Hadzijusufovic
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Department for Companion Animals and Horses, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - G Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna,Austria
| | - T Hoffmann
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - J Schwaab
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Jawhar
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Willmann
- Department for Companion Animals and Horses, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - W R Sperr
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - J Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - K Sotlar
- University Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - H-P Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - R Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - A Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Arock
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR 8113, Ecole Normale Superieure de Cachan, Cachan, France.,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - P Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
32
|
The aurora kinase inhibitor AMG 900 increases apoptosis and induces chemosensitivity to anticancer drugs in the NCI-H295 adrenocortical carcinoma cell line. Anticancer Drugs 2017; 28:634-644. [PMID: 28410270 DOI: 10.1097/cad.0000000000000504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adrenocortical tumor (ACT) is a malignancy with a low incidence rate and the current therapy for advanced disease has a limited impact on overall patient survival. A previous study from our group suggested that elevated expression of aurora-A and aurora-B is associated with poor outcome in childhood ACT. Similar results were also reported for adult ACTs. The present in-vitro study shows that AMG 900 inhibits aurora kinases in adrenocortical carcinoma cells. AMG 900 inhibited cell proliferation in NCI-H295 cells as well as in the ACT primary cultures and caused apoptosis in the cell line NCI-H295. Furthermore, it potentialized the mitotane, doxorubicin, and etoposide effects on apoptosis induction and acted synergistically with mitotane and doxorubicin in the inhibition of proliferation. In addition, we found that AMG 900 activated Notch signaling and rendered the cells sensitive to the combination of AMG 900 and Notch signaling inhibition. Altogether, these data show that aurora kinases inhibition using AMG 900 may be an adjuvant therapy to treat patients with invasive or recurrent adrenocortical carcinomas.
Collapse
|
33
|
APIO-EE-9 is a novel Aurora A and B antagonist that suppresses esophageal cancer growth in a PDX mouse model. Oncotarget 2017; 8:53387-53404. [PMID: 28881819 PMCID: PMC5581118 DOI: 10.18632/oncotarget.18508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal cancer (EC) is one of the most aggressive malignancies of the upper aerodigestive tract. Over the past three decades, with advances in surgical techniques and treatment, the prognosis of esophageal cancer has only slowly improved. Thus identifying novel molecular targets and developing therapeutic agents are critical. Aurora kinases play a crucial role in mitosis and selective inhibitors might provide an effective therapeutic treatment for cancer. However, the role of Aurora kinases in EC is still inadequately studied. Here, we identified a novel compound, referred to as APIO-EE-9, which inhibits growth and colony formation and induces apoptosis of esophageal cancer cells. Using computer modeling, we found that APIO-EE-9 interacted with both Aurora A and B in the ATP-binding pocket. APIO-EE-9 inhibited both Aurora A and B kinase activities in a dose-dependent manner. Treatment with APIO-EE-9 substantially reduced the downstream Aurora kinase phosphorylation of histone H3 (Ser10), resulting in formation of multiple nuclei and centrosomes. Additionally, esophageal cancer cells expressing shAurora A or shAurora B kinase exhibited a dramatic reduction in proliferation and colony formation. Injection of these cells as xenografts in mice reduced tumor formation compared to wildtype cells. Importantly, APIO-EE-9 significantly decreased the size of esophageal patient-derived xenograft (PDX) tumors implanted in SCID mice. These results demonstrated that APIO-EE-9 is a specific Aurora kinase inhibitor that could be developed as a therapeutic agent against esophageal cancer.
Collapse
|
34
|
Yu MG, Zheng HY. Acute Myeloid Leukemia: Advancements in Diagnosis and Treatment. Chin Med J (Engl) 2017; 130:211-218. [PMID: 28091414 PMCID: PMC5282679 DOI: 10.4103/0366-6999.198004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Leukemia is the most common pediatric malignancy and a major cause of morbidity and mortality in children. Among all subtypes, a lack of consensus exists regarding the diagnosis and treatment of acute myeloid leukemia (AML). Patient survival rates have remained modest for the past three decades in AML. Recently, targeted therapy has emerged as a promising treatment. DATA SOURCES We searched the PubMed database for recently published research papers on diagnostic development, target therapy, and other novel therapies of AML. Clinical trial information was obtained from ClinicalTrials.gov. For the major purpose of this review that is to outline the latest therapeutic development of AML, we only listed the ongoing clinical trials for reference. However, the published results of complete clinical trials were also mentioned. STUDY SELECTION This article reviewed the latest developments related to the diagnosis and treatment of AML. In the first portion, we provided some novel insights on the molecular basis of AML, as well as provided an update on the classification of AML. In the second portion, we summarized the results of research on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/Fms-like tyrosine kinase 3 (FLT3) inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. We will also highlight ongoing research and clinical trials in pediatric AML. RESULTS We described clonal evolution and how it changes our view on leukemogenesis, treatment responses, and disease relapse. Pediatric-specific genomic mapping was discussed with a novel diagnostic method highlighted. In the later portion of this review, we summarized the researches on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/FLT3 inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. CONCLUSION Gene sequencing techniques should set the basis for next-generation diagnostic methods of AML, and target therapy should be the focus of future clinical research in the exploration of therapeutic possibilities.
Collapse
Affiliation(s)
- Meng-Ge Yu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- National Key Discipline of Pediatrics, Ministry of Education, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- National Key Discipline of Pediatrics, Ministry of Education, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
35
|
Cicenas J, Tamosaitis L, Kvederaviciute K, Tarvydas R, Staniute G, Kalyan K, Meskinyte-Kausiliene E, Stankevicius V, Valius M. KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med Oncol 2017; 34:26. [DOI: 10.1007/s12032-016-0879-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/29/2016] [Indexed: 01/13/2023]
|
36
|
Abstract
Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies.
Collapse
Affiliation(s)
- Jonas Cicenas
- University of Bern, Vetsuisse Faculty, Institute of Animal Pathology, 3012, Bern, Switzerland.
- MAP Kinase Resource, Melchiorstrasse 9, 3027, Bern, Switzerland.
- Proteomics Centre, Vilnius University Institute of Biochemistry, 08662, Vilnius, Lithuania.
- CALIPHO, Swiss Institute of Bioinformatics, CMU1, ru Michael Servet, 1211, Geneva, Switzerland.
| | - Erikas Cicenas
- Bethlehemacker Secondary School, 3027, Bern, Switzerland
| |
Collapse
|