1
|
Hsu LS, Lin CL, Pan MH, Chen WJ. Intervention of a Communication Between PI3K/Akt and β-Catenin by (-)-Epigallocatechin-3-Gallate Suppresses TGF-β1-Promoted Epithelial-Mesenchymal Transition and Invasive Phenotype of NSCLC Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:848-859. [PMID: 39865447 DOI: 10.1002/tox.24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear. Here, we found that EGCG, similar to LY294002 (a specific inhibitor of phosphatidylinositol 3-kinase [PI3K]), downregulated Akt activation and restored the action of glycogen synthase kinase-3β (GSK-3β), accompanied by TGF-β1-caused changes in hallmarks of EMT such as N-cadherin, E-cadherin, vimentin, and Snail in A549 cells. EGCG inhibited β-catenin expression and its nuclear localization caused by TGF-β1, suggesting that EGCG blocks the crosstalk between the PI3K/Akt/GSK-3β route and β-catenin. Furthermore, it was shown that EGCG suppressed TGF-β1-elicited invasive phenotypes of A549 cells, including invading and migrating activities, matrix metalloproteinase-2 (MMP-2) secretion, cell adhesion, and wound healing. In summary, we suggest that EGCG inhibits the induction of EMT by TGF-β1 in NSCLC not only through a Smad-dependent pathway, but also through the regulation of the PI3K/Akt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Jen Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Ahmed ZSO, Khan E, Elias N, Elshebiny A, Dou Q. Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management. Biomolecules 2025; 15:629. [PMID: 40427522 DOI: 10.3390/biom15050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Polyphenols, naturally occurring compounds found exclusively in plants, have gained significant attention for their potential in cancer prevention and treatment. These compounds are known for their antioxidant properties and are abundant in various plant-based foods, such as vegetables, fruits, grains, and beverages. Recent studies have highlighted the broad spectrum of health benefits of polyphenols, including their antiviral, anti-inflammatory, and anticancer properties. In addition, these naturally derived compounds are increasingly important for drug discovery due to their high molecular diversity and novel biofunctionalities. This review provides an in-depth analysis of the current research and knowledge on the potential use of dietary polyphenols as bioactive compounds for the prevention and treatment of various cancers. This review aims to provide valuable insights into the mechanisms underlying the anticancer properties of phenolic compounds in both laboratory and clinical settings. Furthermore, this review highlights the positive clinical outcomes associated with the use of polyphenols as anticancer agents and offers guidance for future research to advance this promising field.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Elyas Khan
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Nathan Elias
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Alhussein Elshebiny
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Qingping Dou
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
4
|
Cianciosi D, Forbes-Hernandez T, Armas Diaz Y, Elexpuru-Zabaleta M, Quiles JL, Battino M, Giampieri F. Manuka honey's anti-metastatic impact on colon cancer stem-like cells: unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct 2024; 15:7200-7213. [PMID: 38896046 DOI: 10.1039/d4fo00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Tamara Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Cui J, Wu B, Zhou J. Changes in amino acids, catechins and alkaloids during the storage of oolong tea and their relationship with antibacterial effect. Sci Rep 2024; 14:10424. [PMID: 38710752 DOI: 10.1038/s41598-024-60951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.
Collapse
Affiliation(s)
- Jilai Cui
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China.
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China
| |
Collapse
|
6
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
8
|
Fujiki H, Sueoka E, Watanabe T, Komori A, Suganuma M. Cancer progression by the okadaic acid class of tumor promoters and endogenous protein inhibitors of PP2A, SET and CIP2A. J Cancer Res Clin Oncol 2023; 149:9425-9433. [PMID: 37097392 PMCID: PMC10374699 DOI: 10.1007/s00432-023-04800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Okadaic acid class of tumor promoters are transformed into endogenous protein inhibitors of PP2A, SET, and CIP2A in human cancers. This indicates that inhibition of PP2A activity is a common mechanism of cancer progression in humans. It is important to study the roles of SET and CIP2A vis-à-vis their clinical significance on the basis of new information gathered from a search of PubMed. RESULTS AND DISCUSSION The first part of this review introduces the carcinogenic roles of TNF-α and IL-1, which are induced by the okadaic acid class of compounds. The second part describes unique features of SET and CIP2A in cancer progression for several types of human cancer: (1) SET-expressing circulating tumor cells (SET-CTCs) in breast cancer, (2) knockdown of CIP2A and increased PP2A activity in chronic myeloid leukemia, (3) CIP2A and epidermal growth factor receptor (EGFR) activity in erlotinib sensitive- and resistant-non-small cell lung cancer, (4) SET antagonist EMQA plus radiation therapy against hepatocellular carcinoma, (5) PP2A inactivation as a common event in colorectal cancer, (6) prostate cancer susceptibility variants, homeobox transcription factor (HOXB13 T) and CIP2A T, and (7) SET inhibitor OP449 for pre-clinical investigation of pancreatic cancer. In the Discussion, the binding complex of SET is briefly introduced, and overexpression of SET and CIP2A proteins is discussed in relation to age-associated chronic inflammation (inflammaging). CONCLUSION This review establishes the concept that inhibition of PP2A activity is a common mechanism of human cancer progression and activation of PP2A activity leads to effective anticancer therapy.
Collapse
Affiliation(s)
- Hirota Fujiki
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501 Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center and Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Nagasaki 856-8562 Japan
| | - Masami Suganuma
- Department of Strategic Research, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| |
Collapse
|
9
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
10
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
11
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
12
|
Lo Iacono M, Gaggianesi M, Bianca P, Brancato OR, Muratore G, Modica C, Roozafzay N, Shams K, Colarossi L, Colarossi C, Memeo L, Turdo A, Veschi V, Di Franco S, Todaro M, Stassi G. Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy. J Clin Med 2022; 11:6996. [PMID: 36498571 PMCID: PMC9737492 DOI: 10.3390/jcm11236996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxicity and low costs for large-scale production could accelerate the use of NPs in clinical settings. In this review, we will summarize the most relevant studies regarding the effects of NPs derived from major natural sources, e.g., food, botanical, and marine species, on CSCs, elucidating their use in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Giampaolo Muratore
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Kimiya Shams
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
13
|
Money ME, Matthews CM, Tan-Shalaby J. Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers (Basel) 2022; 14:4780. [PMID: 36230703 PMCID: PMC9563303 DOI: 10.3390/cancers14194780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Patients and providers may not be aware that several adjunctive measures can significantly improve the quality of life, response to treatment, and possibly outcomes for cancer patients. This manuscript presents a review of practical under-recognized adjunctive therapies that are effective including exercise; stress-reduction techniques such as mindfulness, massage, yoga, Tai Chi, breathing exercises; importance of sleep quality; diet modifications such as calorie restriction at the time of chemotherapy and avoidance of high carbohydrate foods; supplements such as aspirin, green tea, turmeric, and melatonin; and repurposed prescription medications such as metformin and statins. Each recommendation should be tailored to the individual patient to assure no contraindications.
Collapse
Affiliation(s)
- Mary E. Money
- Department of Medicine, University of Maryland School of Medicine, 665 W Baltimore Street S, Baltimore, MD 21201, USA
- Meritus Medical Center, 11116 Medical Campus Rd., Hagerstown, MD 21742, USA
| | - Carolyn M. Matthews
- Texas Oncology, PA and Charles A. Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
- Gynecologic Oncology, Baylor Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
| | - Jocelyn Tan-Shalaby
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15213, USA
- Department of Medicine, Veteran Affairs Pittsburgh Healthcare System, 4100 Allequippa St., Pittsburgh, PA 15240, USA
| |
Collapse
|
14
|
Lopez-Martinez LX, Campos-Gonzalez N, Zamora-Gasga VM, Domínguez-Avila JA, Pareek S, Villegas-Ochoa MA, Sáyago Ayerdi SG, Gonzalez-Aguilar GA. Optimization of Ultrasound Treatment of Beverage from Mango and Carrot with Added Turmeric Using Response Surface Methodology. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
17
|
Ke DYJ, El-Sahli S, Wang L. The Potential of Natural Products in the Treatment of Triple-Negative Breast Cancer. Curr Cancer Drug Targets 2021; 22:388-403. [PMID: 34970954 DOI: 10.2174/1568009622666211231140623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products, specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds were reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/β-catenin, and YAP. Clinicals trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Danny Yu Jia Ke
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
18
|
Cytoprotective roles of epigallocatechin gallate and resveratrol on staurosporine-treated mesenchymal stem cells in in vitro culture. HERBA POLONICA 2021. [DOI: 10.2478/hepo-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: There are many scientific reports on the beneficial effects of epigallocatechin gallate and resveratrol on the human body, e.g. antioxidant properties, a protective effect on the circulatory system and reduction of inflammation.
Objective: The aim of the study was to evaluate the effect of these substances on the survival of mesenchymal stem cells (MSC) in the presence of the pro-apoptotic factor staurosporine.
Methods: Cell viability WST-1 colorimetric assay.
Results: It was confirmed that both 25 µM/ml and 50 µM/ml of epigallocatechin and 50 µM/ml of resveratrol statistically significantly increased the MSC survival rate.
Conclusion: An excess supply of epigallocatechin gallate (50 µM/ml and higher) has a cytotoxic effect on MSC, which may have a negative impact on the body’s auto-regenerative capacity. Under toxic and stressful conditions, resveratrol and epigallocatechin gallate perform cytoprotective functions, thereby reducing the negative impact of toxic environmental conditions on the mesenchymal stem cells.
Collapse
|
19
|
Pan T, Han D, Xu Y, Peng W, Bai L, Zhou X, He H. LC-MS Based Metabolomics Study of the Effects of EGCG on A549 Cells. Front Pharmacol 2021; 12:732716. [PMID: 34650434 PMCID: PMC8505700 DOI: 10.3389/fphar.2021.732716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) is the main bioactive catechin in green tea. The antitumor activity of EGCG has been confirmed in various types of cancer, including lung cancer. However, the precise underlying mechanisms are still largely unclear. In the present study, we investigated the metabolite changes in A549 cells induced by EGCG in vitro utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The result revealed 33 differentially expressed metabolites between untreated and 80 μM EGCG-treated A549 cells. The altered metabolites were involved in the metabolism of glucose, amino acid, nucleotide, glutathione, and vitamin. Two markedly altered pathways, including glycine, serine and threonine metabolism and alanine, aspartate and glutamate metabolism, were identified by MetaboAnalyst 5.0 metabolic pathway analysis. These results may provide potential clues for the intramolecular mechanisms of EGCG’s effect on A549 cells. Our study may contribute to future molecular mechanistic studies of EGCG and the therapeutic application of EGCG in cancer management.
Collapse
Affiliation(s)
- Tingyu Pan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenpan Peng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hailang He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States
| |
Collapse
|
20
|
Suganuma M, Rawangkan A, Wongsirisin P, Kobayashi N, Matsuzaki T, Yoshikawa HY, Watanabe T. Stiffening of Cancer Cell Membranes Is a Key Biophysical Mechanism of Primary and Tertiary Cancer Prevention with Green Tea Polyphenols. Chem Pharm Bull (Tokyo) 2021; 68:1123-1130. [PMID: 33268644 DOI: 10.1248/cpb.c20-00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past 30 years, research of green tea polyphenols, especially (-)-epigallocatechin gallate (EGCG), has revealed that consumption of green tea is a practical and effective primary cancer prevention method for the general population. More recently, we believe that green tea polyphenols are beneficial for tertiary cancer prevention using green tea alone or combined with anticancer drugs because EGCG has the potential to inhibit metastatic progression and stemness, and enhance antitumor immunity. In an effort to identify a common underlying mechanism responsible for EGCG's multifunctional effects on various molecular targets, we studied the biophysical effects of EGCG on cell stiffness using atomic force microscopy. We found that EGCG acts to stiffen the membranes of cancer cells, leading to inhibition of signaling pathways of various receptors. Stiffening of membranes with EGCG inhibited AXL receptor tyrosine kinase, a stimulator of cell softening, motility and stemness, and expression of programmed cell death-ligand 1. This review covers the following: i) primary cancer prevention using EGCG or green tea, ii) tertiary cancer prevention by combining EGCG and anticancer drugs, iii) inhibition of metastasis with EGCG by stiffening the cell membrane, iv) inhibition of AXL receptor tyrosine kinase, a stimulator of cell softening and motility, with EGCG, v) inhibition of stemness properties with EGCG, and vi) EGCG as an alternative chemical immune checkpoint inhibitor. Development of new drugs that enhance stiffening of cancer cell membranes may be an effective strategy for tertiary cancer prevention and treatment.
Collapse
Affiliation(s)
- Masami Suganuma
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | | | | | | | | |
Collapse
|
21
|
Gairola K, Gururani S, Bahuguna A, Garia V, Pujari R, Dubey SK. Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics. J Food Biochem 2021; 45:e13772. [PMID: 34028051 DOI: 10.1111/jfbc.13772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer, being the leading cause of death in the globe, has been one of the major thrust areas of research worldwide. In a new paradigm about neoplastic transformations, the initiation and recurrence of disease is attributed to few mutated cells in bulk of tumor called cancer stem cells (CSCs). CSCs have capacity of self-renewal and differentiation, which are known for resistance to radio and chemotherapy leading to recurrence of the disease even after treatment. Most of traditional drugs implicated in cancer therapy targeting primary tumors have substantial toxicity to the physiological system and have not been efficient in targeting these CSCs leading to poor prognosis. Targeting these CSCs in bulk of tumor might be novel strategy for cancer chemoprevention and therapeutics. Diet-derived interventions and diverse natural products are known to target these CSCs and related signaling pathways, namely, Wnt, Notch, and Hedgehog pathways, which are implicated for CSC self-renewal. PRACTICAL APPLICATIONS: Cancer remains a global challenge even in this century. Poor prognosis, survival rate, and recurrence of the disease have been the major concerns in traditional cancer therapy regimes. Targeting cancer stem cells might be novel strategy for elimination and cure of the chronic disease as they are known to modulate all stages of carcinogenesis and responsible for recurrence and resistance to chemotherapy and radiotherapy. The evidence support that natural products might inhibit, delay, or reverse the process of tumorigenesis and modulate the different signaling pathways implicated for cancer stem cells self-renewal and differentiation. Natural products have minimal toxicity compared to traditional cancer therapy drugs since they have long been utilized in our food habits without any major side effects reported. Thus, targeting cancer stem cells with natural product might be a novel strategy for drug development in cancer chemoprevention and therapeutics.
Collapse
Affiliation(s)
- Kanchan Gairola
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shriya Gururani
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Ananya Bahuguna
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Vaishali Garia
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rohit Pujari
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shiv K Dubey
- Department of Biochemistry, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
22
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
23
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Chao X, Yi L, Lan LL, Wei HY, Wei D. Long-term PM 2.5 exposure increases the risk of non-small cell lung cancer (NSCLC) progression by enhancing interleukin-17a (IL-17a)-regulated proliferation and metastasis. Aging (Albany NY) 2020; 12:11579-11602. [PMID: 32554855 PMCID: PMC7343463 DOI: 10.18632/aging.103319] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/28/2020] [Indexed: 05/03/2023]
Abstract
PM2.5 is a class of airborne particles and droplets with sustained high levels in many developing countries. Epidemiological studies have indicated that PM2.5 is closely associated with the increased morbidity and mortality of lung cancer in the world. Unfortunately, the effects of PM2.5 on lung cancer are largely unknown. In the present study, we attempted to explore the role of PM2.5 in the etiology of NSCLC. Here, we found that long-term PM2.5 exposure led to significant pulmonary injury. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties were highly induced by PM2.5 exposure. EMT was evidenced by the significant up-regulation of MMP2, MMP9, TGF-β1, α-SMA, Fibronectin and Vimentin. Lung cancer progression was associated with the increased expression of Kras, c-Myc, breast cancer resistance protein BCRP (ABCG2), OCT4, SOX2 and Aldh1a1, but the decreased expression of p53 and PTEN. Importantly, mice with IL-17a knockout (IL-17a-/-) showed significantly alleviated lung injury and CSC properties following PM2.5 exposure. Also, IL-17a-/--attenuated tumor growth was recovered in PM2.5-exposed mice injected with recombinant mouse IL-17a, accompanied with significantly restored lung metastasis. Taken together, these data revealed that PM2.5 could promote the progression of lung cancer by enhancing the proliferation and metastasis through IL-17a signaling.
Collapse
Affiliation(s)
- Xie Chao
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P.R. China
| | - Liu Yi
- Centers of Disease Control and Prevention of Shandong Province, Jinan 250014, Shandong Province, P.R. China
| | - Li Lan Lan
- Affiliated Hospital of Binzhou Medical College, Binzhou 256603, Shandong Province, P.R. China
| | - Han Yun Wei
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Shihuan Province, P.R. China
| | - Dong Wei
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P.R. China
| |
Collapse
|
25
|
Mitra T, Bhattacharya R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J Cell Physiol 2020; 235:7696-7708. [PMID: 32324275 DOI: 10.1002/jcp.29703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Cancer is referred to as the "Emperor of all maladies" accounting for the second-highest mortality rates worldwide. Major factors associated with cancer lethality are uncontrolled proliferation, metastasis, and frequent recurrence. The conventional therapeutic drugs used in cancer therapy have been associated with numerous damaging side-effects that call for the use of alternative therapeutic options. The natural plant compounds (NPCs) have been found to be effective against diverse groups of diseases including cancer. Among the different types, the polyphenolic phytochemicals like curcumin, (-)epigallocatechin-3-gallate, Resveratrol, and nimbolide which are predominant parts of daily dietary intake have proved their potency in reducing the aggressive properties of cancer. Here, we have highlighted the mechanisms through which these NPCs influence growth, metastatic potential, and the drug-resistant behavior of different cancer types. Moreover, we have also emphasized on their function as modulators of the immune system as well as the metabolic properties of the tumor. The role of these phytochemicals in reducing cancer progression has been highlighted when administered unaided or in combination with similar group of compounds. Moreover, their ability to enhance the drug-sensitivity of cancer cells which accounts for their use in combination with conventional chemotherapeutics has also been discussed in this article. Therefore, co-administration of these phytochemicals with chemically similar group members or with conventional chemotherapeutics may prove to be an effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rahul Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Chiodi I, Mondello C. Life style factors, tumor cell plasticity and cancer stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108308. [PMID: 32430096 DOI: 10.1016/j.mrrev.2020.108308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Cancers are heterogeneous tissues and a layer of heterogeneity is determined by the presence of cells showing stemness traits, known as cancer stem cells (CSCs). Evidence indicates that CSCs are important players in tumor development, progression and relapse. Oncogenic transformation of normal stem cells can give rise to CSCs, but CSCs can also originate from de-differentiation of bulk tumor cells. Thus, factors promoting the increase of normal stem cell pools or stimulating the acquisition of stemness features by tumor cells can have serious consequences on cancer origin and progression. In this review, we will first give an overview of the CSC model of cancer development and we will then discuss the role of life style factors, such as high caloric diet, alcohol drinking and smoking, on the widening of stem cell pools and the induction of CSC features in tumors. Finally, we will discuss some healthy life style factors that can help to prevent cancer.
Collapse
Affiliation(s)
- Ilaria Chiodi
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Mondello
- Istituto di Genetica Molecolare L. L. Cavalli-Sforza, CNR, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
27
|
Involvement of MicroRNA-296 in the Inhibitory Effect of Epigallocatechin Gallate against the Migratory Properties of Anoikis-Resistant Nasopharyngeal Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12040973. [PMID: 32326395 PMCID: PMC7226234 DOI: 10.3390/cancers12040973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023] Open
Abstract
Short noncoding endogenous RNAs, including microRNAs (miRNAs), are associated with the development and metastasis of multiple cancers. Epigallocatechin gallate (EGCG), the most active and abundant polyphenol in green tea, plays a crucial role in the modulation of miRNA expression, which is related to changes in cancer progression. In the present study, we explore whether EGCG exerts its suppressive effects on nasopharyngeal carcinoma (NPC) cells through miRNA regulation. The anoikis-resistant sphere-forming NPC cells grown under anchorage-independent conditions exhibit enhanced migratory properties, which were inhibited by EGCG treatment. The miR-296 level was lower in the anoikis-resistant cells than in the monolayer parental cells; however, miR-296 was significantly upregulated after EGCG treatment. We demonstrate that miR-296 is involved in the inhibitory effects of EGCG on the anoikis-resistant NPC cells through the downregulation of signal transducer and activator of transcription 3 (STAT3) activation. Our study is the first to demonstrate that EGCG inhibited the migratory properties of anoikis-resistant cells by modulating the expression of miRNA in NPC cells. Our results indicate the novel effects of EGCG on miRNA regulation to inhibit an invasive phenotype of NPC as well as the regulatory role of miR-296.
Collapse
|
28
|
Belitskiy GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. BIOCHEMISTRY (MOSCOW) 2020; 85:S79-S107. [PMID: 32087055 DOI: 10.1134/s0006297920140059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The review summarizes the data on the role of metabolic and repair systems in the mechanisms of therapy-related carcinogenesis and the effect of their polymorphism on the cancer development risk. The carcinogenic activity of different types of drugs, from the anticancer agents to analgesics, antipyretics, immunomodulators, hormones, natural remedies, and non-cancer drugs, is described. Possible approaches for the prevention of drug-related cancer induction at the initiation and promotion stages are discussed.
Collapse
Affiliation(s)
- G A Belitskiy
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia. .,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - E A Lesovaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
29
|
Namiki K, Wongsirisin P, Yokoyama S, Sato M, Rawangkan A, Sakai R, Iida K, Suganuma M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep 2020; 10:2444. [PMID: 32051483 PMCID: PMC7016176 DOI: 10.1038/s41598-020-59281-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young’s modulus value of 1.52 kPa for H1299-sdCSCs, which showed low stiffness compared with that of H1299 cells, with a Young’s modulus value of 2.24 kPa. (−)-Epigallocatechin gallate (EGCG) reversed the average Young’s modulus value of H1299-sdCSCs to that of H1299 cells. EGCG treatment inhibited tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. AXL receptor tyrosine kinase is highly expressed in H1299-sdCSCs and AXL knockdown with siAXLs significantly reduced tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. An AXL-high population of H1299-sdCSCs was similarly reduced by treatment with EGCG and siAXLs. Transplantation of an AXL-high clone isolated from H1299 cells into SCID/Beige mice induced faster development of bigger tumour than bulk H1299 cells, whereas transplantation of the AXL-low clone yielded no tumours. Oral administration of EGCG and green tea extract (GTE) inhibited tumour growth in mice and reduced p-AXL, ALDH1A1, and SLUG in tumours. Thus, EGCG inhibits the stemness and tumourigenicity of human lung cancer cells by inhibiting AXL.
Collapse
Affiliation(s)
- Kozue Namiki
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Shota Yokoyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Motoi Sato
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,School of Medical Science, University of Phayao, Phayao, Thailand, 56000
| | - Ryo Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan. .,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.
| |
Collapse
|
30
|
Das S, Sarmah S, Hazarika Z, Rohman MA, Sarkhel P, Jha AN, Singha Roy A. Targeting the heme protein hemoglobin by (−)-epigallocatechin gallate and the study of polyphenol–protein association using multi-spectroscopic and computational methods. Phys Chem Chem Phys 2020; 22:2212-2228. [DOI: 10.1039/c9cp05301h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
(−)-Epigallocatechin gallate binds to BHb and exhibits anti-glycating as well as antioxidant behaviors towards glycation and photo-oxidation of BHb.
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry
- National Institute of Technology Meghalaya
- Shillong-793003
- India
| | - Sharat Sarmah
- Department of Chemistry
- National Institute of Technology Meghalaya
- Shillong-793003
- India
| | - Zaved Hazarika
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur 784028
- India
| | - Mostofa Ataur Rohman
- Centre for Advanced Studies
- Department of Chemistry
- North-Eastern Hill University
- Shillong 793022
- India
| | - Pallavi Sarkhel
- Department of Chemistry
- Birla Institute of Technology Mesra
- Jharkhand 835215
- India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur 784028
- India
| | - Atanu Singha Roy
- Department of Chemistry
- National Institute of Technology Meghalaya
- Shillong-793003
- India
| |
Collapse
|
31
|
Wang L, Li X, Mu Y, Lu C, Tang S, Lu K, Qiu X, Wei A, Cheng Y, Wei W. The iron chelator desferrioxamine synergizes with chemotherapy for cancer treatment. J Trace Elem Med Biol 2019; 56:131-138. [PMID: 31466045 DOI: 10.1016/j.jtemb.2019.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cisplatin (CDDP) resistance remains a major obstacle for treatment of ovarian cancer. Iron contributes to the growth and reproduction of malignant cells, thus iron chalators can inhibit the growth of tumor cells by depleting the intracellular iron pool. The iron chelator, desferrioxamine (DFO), has performed anticancer in previous study. The aim of our study is to determine the correlation between iron-deprivation and tumor chemosensitivity in ovarian cancer. METHODS To investigate the prognostic value of ferritin light (FTL), ferroportin (FPN), hepcidin (HAMP) and divalent metal-ion transporter-1 (DMT1) in ovarian cancer, the Kaplan-Meier analysis and the Gene Expression Profiling Interactive Analysis (GEPIA) were used. The ovarian cancer cell lines (SKOV-3 and OVCAR-3) were exposed to a gradient concentration of DFO (10, 20, 50, 100, 200 μM) and CDDP (1, 5, 10, 50,100 μM) for 24 h. The protein expression of FTL was tested. The expression of cancer stem cell (CSC) markers, including Sox2, Nanog and C-myc, were downregulated with treatment of DFO. Also, the mamosphere formation and the plation of CD44+/high/CD133+/high and Aldehyde dehydrogenase (ALDH)+/high SKOV-3 cells were reduced after treatment for 7d. Furthermore, we detected the expression of p53, BCL-2, BAX, and caspase-8. RESULTS The survival analysis revealed that high expression of FTL, DMT1, HAMP, showed poor overall survival (OS) in ovarian cancer patients. Our combined data found that DFO could effectively inhibit CSCs, improve the resistance to chemotherapy, and significantly enhanced the efficacy of CDDP therapy in vitro in promoting apoptosis. Besides, targeting molecular targets, including BAX, BCL-2, p53 and caspase-8 could serve as the clinical biomarkers to evaluate the effects of ovarian cancer. It is reasonable to believe that DFO adjuvant therapy in combination with CDDP chemotherapy can promote the improvement of treatment response in ovarian cancer patients. CONCLUSION Our research suggests the experimental evidence for DFO and CDDP as a new effective combination therapy to enhance the efficacy of chemical therapy in ovarian cancer.
Collapse
Affiliation(s)
- Lingjuan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaoqing Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Yanxi Mu
- Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Shiqian Tang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Kun Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoming Qiu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Aili Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China
| | - Yongjiu Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
32
|
Bonuccelli G, Sotgia F, Lisanti MP. Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging (Albany NY) 2019; 10:1867-1883. [PMID: 30153655 PMCID: PMC6128439 DOI: 10.18632/aging.101483] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Matcha green tea (MGT) is a natural product that is currently used as a dietary supplement and may have significant anti-cancer properties. However, the molecular mechanism(s) underpinning its potential health benefits remain largely unknown. Here, we used MCF7 cells (an ER(+) human breast cancer cell line) as a model system, to systematically dissect the effects of MGT at the cellular level, via i) metabolic phenotyping and ii) unbiased proteomics analysis. Our results indicate that MGT is indeed sufficient to inhibit the propagation of breast cancer stem cells (CSCs), with an IC-50 of ~0.2 mg/ml, in tissue culture. Interestingly, metabolic phenotyping revealed that treatment with MGT is sufficient to suppress both oxidative mitochondrial metabolism (OXPHOS) and glycolytic flux, shifting cancer cells towards a more quiescent metabolic state. Unbiased label-free proteomics analysis identified the specific mitochondrial proteins and glycolytic enzymes that were down-regulated by MGT treatment. Moreover, to discover the underlying signalling pathways involved in this metabolic shift, we subjected our proteomics data sets to bio-informatics interrogation via Ingenuity Pathway Analysis (IPA) software. Our results indicate that MGT strongly affected mTOR signalling, specifically down-regulating many components of the 40S ribosome. This raises the intriguing possibility that MGT can be used as inhibitor of mTOR, instead of chemical compounds, such as rapamycin. In addition, other key pathways were affected, including the anti-oxidant response, cell cycle regulation, as well as interleukin signalling. Our results are consistent with the idea that MGT may have significant therapeutic potential, by mediating the metabolic reprogramming of cancer cells.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
33
|
Pellenz NL, Barbisan F, Azzolin VF, Santos Marques LP, Mastella MH, Teixeira CF, Ribeiro EE, da Cruz IBM. Healing activity of Stryphnodendron adstringens (Mart.), a Brazilian tannin-rich species: A review of the literature and a case series. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2019.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Khan S, Ullah MW, Siddique R, Liu Y, Ullah I, Xue M, Yang G, Hou H. Catechins-Modified Selenium-Doped Hydroxyapatite Nanomaterials for Improved Osteosarcoma Therapy Through Generation of Reactive Oxygen Species. Front Oncol 2019; 9:499. [PMID: 31263675 PMCID: PMC6585473 DOI: 10.3389/fonc.2019.00499] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common bone cancer with limited therapeutic options. It can be treated by selenium-doped hydroxyapatite owing to its known antitumor potential. However, a high concentration of Se is toxic toward normal and stem cells whereas its low concentration cannot effectively remove cancer cells. Therefore, the current study was aimed to improve the anticancer activity of Se-HAp nanoparticles through catechins (CC) modification owing to their high cancer therapeutic value. The sequentially developed catechins modified Se-HAp nanocomposites (CC/Se-HAp) were characterized for various physico-chemical properties and antitumor activity. Structural analysis showed the synthesis of small rod-like single phase HAp nanoparticles (60 ± 15 nm), which effectively interacted with Se and catechins and formed agglomerated structures. TEM analysis showed the internalization and degradation of CC/Se-HAp nanomaterials within MNNG/HOS cells through a non-specific endocytosis process. Cell toxicity analysis showed that catechins modification improved the antitumor activity of Se-HAp nanocomposites by inducing apoptosis of human osteosarcoma MNNG/HOS cell lines, through generation of reactive oxygen species (ROS) which in turn activated the caspase-3 pathway, without significantly affecting the growth of human normal bone marrow stem cells (hBMSCs). qPCR and western blot analyses revealed that casp3, p53, and bax genes were significantly upregulated while cox-2 and PTK-2 were slightly downregulated as compared to control in CC/Se-HAp-treated MNNG/HOS cell lines. The current study of combining natural biomaterial (i.e., catechins) with Se and HAp, can prove to be an effective therapeutic approach for bone cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Rabeea Siddique
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die/Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Hou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Comprehensive Investigation of the Effects of Brewing Conditions in Sample Preparation of Green Tea Infusions. Molecules 2019; 24:molecules24091735. [PMID: 31060206 PMCID: PMC6539062 DOI: 10.3390/molecules24091735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/17/2022] Open
Abstract
Chemical and biological investigation of green tea has been generally performed while using different infusions that are prepared without consideration of the effects of sample preparation conditions. In this study, for the first time, the effects of green tea brewing conditions on the antioxidant activity and chemical profiles of metabolome and catechin compounds were examined at 60 °C and 95 °C for a period of 5-300 min. The antioxidant capacities of the tea infusions, which were assessed as per 2,2-diphenyl-1-picryl-hydrazyl hydrate (DPPH) radical scavenging activity, depended more on temperature than time. Metabolomics study that was based on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF/MS) revealed that the metabolic profiles, including 33 differential metabolites, were significantly changed by temperature and time, with the effects of time being more evident at 95 °C starting after 30 min. Infusions that were brewed at 95 °C for greater than 30 min yielded distinct profiles in the hierarchical clustering analysis. The quantification of eight catechins by UHPLC-QqQ/MS showed that the total catechin level peaked at 95 °C brewing at 10 min, after which the levels of four epi-forms of catechins decreased and those of four non-epi-forms increased, implying the epimerization of catechins over time. These results suggest that the brewing conditions for sample preparation of green tea should be put into careful consideration in studies where green tea extracts are applied as aqueous infusions.
Collapse
|
36
|
Jiang H, Yu F, Qin L, Zhang N, Cao Q, Schwab W, Li D, Song C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
EGCG-Derivative G28 Shows High Efficacy Inhibiting the Mammosphere-Forming Capacity of Sensitive and Resistant TNBC Models. Molecules 2019; 24:molecules24061027. [PMID: 30875891 PMCID: PMC6471537 DOI: 10.3390/molecules24061027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies showed that Fatty Acid Synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, plays an important role in drug resistance. Furthermore, the enrichment of Breast Cancer Stem Cell (BCSC) features has been found in breast tumors that progressed after chemotherapy. Hence, we used the triple negative breast cancer (TNBC) cell line MDA-MB-231 (231) to evaluate the FASN and BCSC population role in resistance acquisition to chemotherapy. For this reason, parental cell line (231) and its derivatives resistant to doxorubicin (231DXR) and paclitaxel (231PTR) were used. The Mammosphere-Forming Assay and aldehyde dehydrogenase (ALDH) enzyme activity assay showed an increase in BCSCs in the doxorubicin-resistant model. Moreover, the expression of some transcription factors involved in epithelial-mesenchymal transition (EMT), a process that confers BCSC characteristics, was upregulated after chemotherapy treatment. FASN inhibitors C75, (−)-Epigallocatechin 3-gallate (EGCG), and its synthetic derivatives G28, G56 and G37 were used to evaluate the effect of FASN inhibition on the BCSC-enriched population in our cell lines. G28 showed a noticeable antiproliferative effect in adherent conditions and, interestingly, a high mammosphere-forming inhibition capacity in all cell models. Our preliminary results highlight the importance of studying FASN inhibitors for the treatment of TNBC patients, especially those who progress after chemotherapy.
Collapse
|
38
|
Xu XY, Zhao CN, Cao SY, Tang GY, Gan RY, Li HB. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2019; 60:1693-1705. [PMID: 30869995 DOI: 10.1080/10408398.2019.1588223] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tea is a traditional and popular beverage worldwide, and the consumption of tea has been demonstrated to possess many health benefits, such as cardiovascular protection, anti-obesity, anti-diabetes, and anticancer. Epidemiological studies have shown that the consumption of tea is inversely associated with the risk of several cancers. In addition, experimental studies have revealed that the anticancer actions of tea are mainly attributed to tea polyphenols, such as epigallocatechin-3-gallate and theaflavins. Both in vitro and in vivo studies have demonstrated that the possible anticancer mechanisms are the inhibition on proliferation, anti-angiogenesis, induction of apoptosis, suppression on metastasis, inhibition on cancer stem cells, and modulation on gut microbiota. Its synergetic anticancer effects with drugs or other compounds could promote anticancer therapies. Furthermore, clinical trials have elucidated that intervention of tea phytochemicals is effective in the prevention of several cancers. This paper is an updated review for the prevention and management of cancers by tea based on the findings from epidemiological, experimental and clinical studies, and special attention is paid on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, Bielik T, Samuel SM, Zulli A, Kwon TK, Büsselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019; 24:molecules24050899. [PMID: 30836718 PMCID: PMC6429493 DOI: 10.3390/molecules24050899] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis leading to cancer progression, invasiveness, metastasis formation, and therapy resistance. Anticancer effects of phytochemicals are also directed to target CSCs. Here we provide a comprehensive review of dietary phytochemicals targeting CSCs. Moreover, we evaluate and summarize studies dealing with effects of dietary phytochemicals on CSCs of various malignancies in preclinical and clinical research. Dietary phytochemicals have a significant impact on CSCs which may be applied in cancer prevention and treatment. However, anticancer effects of plant derived compounds have not yet been fully investigated in clinical research.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Milos Mlyncek
- Department of Obstetrics and Gynecology Faculty Hospital Nitra Constantine the Philosopher University, 949 01 Nitra, Slovakia.
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Bratislava, Slovakia.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia.
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu 426 01, Korea.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha 24144, Qatar.
| |
Collapse
|
40
|
Abstract
Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.
Collapse
Affiliation(s)
- Hao-Feng Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
41
|
Villalaín J. Epigallocatechin-3-gallate location and interaction with late endosomal and plasma membrane model membranes by molecular dynamics. J Biomol Struct Dyn 2018; 37:3122-3134. [PMID: 30081748 DOI: 10.1080/07391102.2018.1508372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and it has been reported to have many beneficial properties against many different types of illnesses and infections. However, the exact mechanism/s underlying its biological effects are unknown. It has been previously shown that EGCG is capable of binding to and disrupting the membrane, so that some of its effects on biological systems could be ascribed to its capacity to incorporate into the biological membrane and modulate its structure. In this work, we have used atomistic molecular dynamics (MD) to discern the location and orientation of EGCG in model membranes and the possible existence of specific interactions with membrane lipids. For that goal, we have used in our simulation two complex model membranes, one resembling the plasma membrane (PM) and the other one the late endosome (LE) membrane. Our results support that EGCG tends to associate with the membrane and exists inside it in a relatively stable and steady location with a low propensity to be associated with other EGCG molecules. Interestingly, EGCG forms hydrogen bonds with POPC and POPE in the PM system but POPC and BMP and no POPE in the LE. These data suggest that the broad beneficial effects of EGCG could be mediated, at least in part, through its membranotropic effects and therefore membrane functioning. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- a Molecular and Cellular Biology Institute (IBMC) and Institute for Biotechnological Research, Development and Innovation (IDiBE) , Universitas "Miguel Hernández" , Alicante , Spain
| |
Collapse
|
42
|
Siemianowicz K, Likus W, Dorecka M, Wilk R, Dziubdziela W, Markowski J. Chemoprevention of Head and Neck Cancers: Does It Have Only One Face? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9051854. [PMID: 30356371 PMCID: PMC6176306 DOI: 10.1155/2018/9051854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Abstract
Head and neck squamous cell cancer (HNSCC) represents a significant burden worldwide. Chemoprevention of HNSCC is a means of cancer control with a use of drugs or natural agents in order to hinder or delay the cancer development. The purpose of this article is to review mechanism of action of different chemopreventive agents' groups and results of most important researches concerning them. The safety issues of HNSCC chemoprevention are also discussed. In case of HNSCC there is currently no agent, which would give positive result in the third phase of clinical trials. Promising results of preclinical trials are not always confirmed by further tests. Main problems are low effectiveness, high toxicity, and lack of highly specificity biomarkers for monitoring the research. New trials concerning many agents, as well as novel technologies for provision of pharmaceutical forms of them, including drug nanocarriers, are currently underway, which gives hope for finding the perfect chemopreventive agent formula.
Collapse
Affiliation(s)
- Krzysztof Siemianowicz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752 Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Ceglana 35 Str., 40-952 Katowice, Poland
| | - Renata Wilk
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752 Katowice, Poland
| | - Włodzimierz Dziubdziela
- Outpatient Clinic for Treatment of Chronic Pain, Wyszyńskiego 12 Str., 41-200 Sosnowiec, Poland
| | - Jarosław Markowski
- Department of Laryngology, School of Medicine in Katowice, Medical University of Silesia, Francuska 20/24 Str., 40-027 Katowice, Poland
| |
Collapse
|
43
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
44
|
Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q. Epigallocatechin-3-gallate inhibited cancer stem cell-like properties by targeting hsa-mir-485-5p/RXRα in lung cancer. J Cell Biochem 2018; 119:8623-8635. [PMID: 30058740 DOI: 10.1002/jcb.27117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Non-small-cell lung cancer (NSCLC) appears to be a significant threat to public health worldwide. MicroRNAs have been identified as significant regulators for the development of NSCLC. Previous reports have suggested that hsa-mir-485-5p is dysregulated in various cancers. RXRα, as a kind of nuclear receptor, is an effective target of cancer treatment. Cancer stem cells (CSCs) are recognized as the main cause for tumor metastasis, recurrence, and chemotherapy resistance. However, the mechanism by which hsa-mir-485-5p and RXRα modulate CSCs in NSCLC remains unknown. Here, we found that hsa-mir-485-5p was decreased in serum samples from patients with NSCLC and NSCLC cells. Meanwhile, epigallocatechin-3-gallate (EGCG), an effective anticancer compound extracted from green tea, can enhance hsa-mir-485-5p expression. Hsa-mir-485-5p mimics markedly inhibited NSCLC cell growth and induced cell apoptosis. However, inhibition of hsa-mir-485-5p significantly enriched CSC-like traits. Moreover, bioinformatics analysis predicted the binding correlation between hsa-mir-485-5p and RXRα, which was confirmed by a dual-luciferase reporter assay. We observed that RXRα was increased in NSCLC and EGCG could inhibit RXRα levels dose dependently. In addition, RXRα upregulation or activation expanded the CSC-like properties of NSCLC cells, whereas RXRα inhibition or inactivation could exert a reverse phenomenon. Consistently, in vivo experiments also validated that EGCG could repress the CSC-like characteristics by modulating the hsa-mir-485-5p/RXRα axis. Our findings may reveal a novel molecular mechanism for the treatment of NSCLC.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Ruta LL, Popa CV, Nicolau I, Farcasanu IC. Epigallocatechin-3-O-gallate, the main green tea component, is toxic to Saccharomyces cerevisiae cells lacking the Fet3/Ftr1. Food Chem 2018; 266:292-298. [PMID: 30381188 DOI: 10.1016/j.foodchem.2018.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
Abstract
Epigallocatechin-3-O-gallate (EGCG), the main green tea component, is intensively studied for its anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer effects. In the present study, a screen on a Saccharomyces cerevisiae gene deletion library was performed to identify conditions under which EGCG had deleterious rather than beneficial effects. Two genes were identified whose deletion resulted in sensitivity to EGCG: FET3 and FTR1, encoding the components of the Fet3/Ftr1 high-affinity iron uptake system, also involved in Cu(I)/Cu(II) balance on the surface of yeast cells. The presence of EGCG in the growth medium induced the production of Cu(I), with deleterious effects on fet3Δ and ftr1Δ cells. Additionally, when combined, physiological surpluses of Cu(II) and EGCG acted in synergy not only against fet3Δ and ftr1Δ, but also against wild type cells, by generating surplus Cu(I) in the growth medium. The results imply that caution should be taken when combining EGCG-rich beverages/nutraceuticals with copper-rich foods.
Collapse
Affiliation(s)
- Lavinia L Ruta
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| | - Claudia V Popa
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| | - Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| | - Ileana C Farcasanu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| |
Collapse
|
46
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018. [DOI: 10.4155/fmc-2017-0204
expr 946749968 + 822201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
47
|
The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Med Chem 2018; 10:795-809. [DOI: 10.4155/fmc-2017-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigallocatechin gallate (EGCG), one of polyphenols isolated from green tea, exhibits biology-benefiting effects with minimum severe adverse. EGCG is known to be a mitochondrion-targeting medicinal agent, regulating mitochondrial metabolism, including mitochondrial biogenesis, mitochondrial bioenergetics, and mitochondria-mediated cell cycle and apoptosis. EGCG might exhibit either antioxidative activity to prevent against oxidative stress or pro-oxidative activity to counteract cancer cells, which depends on the cellular stress situations, cell types and the concentration of EGCG. Recent research has gained positive and promising data. This review will discuss the interaction between EGCG and mitochondrion.
Collapse
|
48
|
Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells. Mol Cells 2018; 41:73-82. [PMID: 29429153 PMCID: PMC5824026 DOI: 10.14348/molcells.2018.2227] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer preventive activities of green tea and its main constituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes ground-breaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stemness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.
Collapse
Affiliation(s)
- Hirota Fujiki
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Tatsuro Watanabe
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Eisaburo Sueoka
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570,
Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570,
Japan
| |
Collapse
|
49
|
Zhang Y, Darland D, He Y, Yang L, Dong X, Chang Y. REDUCTION OF PM2.5 TOXICITY ON HUMAN ALVEOLAR EPITHELIAL CELLS A549 BY TEA POLYPHENOLS. J Food Biochem 2018; 42. [PMID: 29962558 DOI: 10.1111/jfbc.12496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tea-derived polyphenols have anticancer and antioxidant properties, and they can regulate oxidative stress. This study was designed to quantify both the toxic effects of fine particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) and determine whether tea polyphenols could provide a protective effect against PM2.5 toxicity on human alveolar epithelial A549 cells in vitro. Cytotoxic effects of the PM2.5 on A549 cells were measured by means of cell viability, the expression of caspase-3, bax/bcl-2 and C/EBP-homologous protein (CHOP), and the generation of intracellular reactive oxygen species, malondialdehyde and superoxide dismutase. The results showed that tea polyphenols ameliorated some of the adverse effects of PM2.5 on A549 cell viability and superoxide dismutase levels. In addition, tea polyphenols decreased the production of reactive oxygen species, malondialdehyde generation, and apoptosis in response to PM2.5 exposure. Therefore, our results support a role for tea polyphenols in reducing the toxicity of PM2.5, particularly with regard to targeting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ying Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, P. R. China.,Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, P. R. China
| | - Diane Darland
- Department of Biology, University of North Dakota, Grand Forks, ND, United States
| | - Yan He
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, P. R. China
| | - Lixue Yang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, P. R. China
| | - Xinfeng Dong
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, P. R. China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
50
|
Shabbir A, Esfandyari T, Farassati F. Cancer stem cells, the ultimate targets in cancer therapy. Onco Targets Ther 2018; 11:183-184. [PMID: 29379299 PMCID: PMC5757206 DOI: 10.2147/ott.s154431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ahmed Shabbir
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center
| | - Tuba Esfandyari
- Department of Medicine, School of Medicine, The University of Kansas
| | - Faris Farassati
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center.,Saint Luke's Cancer Institute.,Saint Luke's Marion Bloch Neuroscience Institute, Saint Luke's Health System, Kansas City, MO, USA
| |
Collapse
|