1
|
Yu TS, Han SQ, Wang LJ, Wang HY, Ni XF, Wang RT, Li GS, Hou Y, Peng J, Yan ZY, Zhao YJ, Hou M, Liu XG. Effects of orelabrutinib, a BTK inhibitor, on antibody-mediated platelet destruction in primary immune thrombocytopenia. Br J Haematol 2025; 206:1186-1199. [PMID: 40069128 DOI: 10.1111/bjh.20045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
Primary immune thrombocytopenia (ITP) is a haemorrhagic disorder with a complex pathogenesis, wherein autoreactive B-cell-mediated platelet destruction plays a crucial role. Bruton's tyrosine kinase (BTK) is widely expressed and essential for immune cells. Several BTK inhibitors have been used clinically to treat haematological malignancies, while few studies are focusing on the regulatory role of BTK in ITP. This study aims to explore the feasibility and underlying mechanisms of a novel BTK inhibitor orelabrutinib in the treatment of ITP through in vitro and in vivo experiments. Orelabrutinib could inhibit B-cell receptor-mediated B-cell activation, proliferation, differentiation and pro-inflammatory cytokine secretion. Transcriptome sequencing revealed that B cells of ITP patients were more hyper-responsive in inflammation and secretion activity compared to healthy controls, and orelabrutinib might alter B-cell status through downregulating ribosome and mitochondrial metabolism. Fcγ receptor-mediated platelet phagocytosis and pro-inflammatory cytokine production by macrophages were also suppressed by orelabrutinib. Furthermore, orelabrutinib treatment considerably elevated the platelet count in active ITP murine models by inhibiting plasma cell differentiation, anti-platelet antibody production, pro-inflammatory factor secretion and platelet phagocytosis in the livers and spleens. Taken together, orelabrutinib could serve as a potential therapeutic agent for ITP by blocking antibody-mediated platelet destruction.
Collapse
Affiliation(s)
- Tian-Shu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shou-Qing Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ling-Jun Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hao-Yi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xiao-Fei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ru-Ting Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Guo-Sheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zhen-Yu Yan
- North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Ya-Jing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
2
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
3
|
Zhang X, Han Y, Nie Y, Jiang Y, Sui X, Ge X, Liu F, Zhang Y, Wang X. PAX5 aberrant expression incorporated in MIPI-SP risk scoring system exhibits additive value in mantle cell lymphoma. J Mol Med (Berl) 2023; 101:595-606. [PMID: 37126184 DOI: 10.1007/s00109-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin lymphoma with highly heterogeneous clinical courses. Paired-box 5 (PAX5), the regulator of B cell differentiation and growth, is abnormally expressed in several types of cancers. Herein, we explored the prognostic value of PAX5 in MCL by comprehensively analyzing the clinical features and laboratory data of 82 MCL cases. PAX5 positivity was associated with shorter overall survival (OS; p = 0.011) and was identified as an independent prognostic factor in MCL patients. The elevated β2-MG (p = 0.027) and advanced Mantle Cell Lymphoma International Prognostic Index (MIPI) score (p = 0.014) were related to positive PAX5 expression. The MIPI-SP risk scoring system was established and exhibited a superior prognostic value for OS depending on an area under the curve (AUC) of 0.770 (95% CI, 0.658-0.881) than MIPI score. Bioinformatic analysis of PAX5-related genes supported the mechanistic roles of PAX5 in MCL. This study provides insight into the potential role of PAX5 in MCL, and the novel risk scoring system MIPI-SP optimizes the risk stratification and facilitates prognosis evaluation in MCL patients. KEY MESSAGES: • Paired-box 5 positivity indicated adverse prognosis in mantle cell lymphoma patients. • Positive PAX5 expression was related to MIPI score and β2-MG in MCL patients. • MIPI-SP risk scoring system has superior prognostic value than MIPI score in MCL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yu Nie
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
4
|
Miao Y, Wang Y, Bi Z, Huang K, Gao J, Li X, Li S, Wei L, Zhou H, Yang C. Antifibrotic mechanism of avitinib in bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 2023; 23:94. [PMID: 36949426 PMCID: PMC10031887 DOI: 10.1186/s12890-023-02385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar epithelial cell injury and lung fibroblast overactivation. At present, only two drugs are approved by the FDA for the treatment of IPF, including the synthetic pyridinone drug, pirfenidone, and the tyrosine kinase inhibitor, nintedanib. Avitinib (AVB) is a novel oral and potent third-generation tyrosine kinase inhibitor for treating non-small cell lung cancer (NSCLC). However, the role of avitinib in pulmonary fibrosis has not yet been established. In the present study, we used in vivo and in vitro models to evaluate the role of avitinib in pulmonary fibrosis. In vivo experiments first verified that avitinib significantly alleviated bleomycin-induced pulmonary fibrosis in mice. Further in vitro molecular studies indicated that avitinib inhibited myofibroblast activation, migration and extracellular matrix (ECM) production in NIH-3T3 cells, mainly by inhibiting the TGF-β1/Smad3 signalling pathways. The cellular experiments also indicated that avitinib improved alveolar epithelial cell injury in A549 cells. In conclusion, the present findings demonstrated that avitinib attenuates bleomycin-induced pulmonary fibrosis in mice by inhibiting alveolar epithelial cell injury and myofibroblast activation.
Collapse
Affiliation(s)
- Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Kai Huang
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd. Tianjin, Tianjin, 301700, People's Republic of China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Luqing Wei
- Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin, 300400, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
5
|
Tang Q, Chen H, Mai Z, Sun H, Xu L, Wu G, Tu Z, Cheng X, Wang X, Chen T. Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis. Free Radic Biol Med 2022; 180:198-209. [PMID: 35063650 DOI: 10.1016/j.freeradbiomed.2022.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/17/2023]
Abstract
Abivertinib (AC) is a novel epidermal growth factor receptor tyrosine kinase inhibitor with highly efficient antitumor activity. Here, we report the capacity of AC to induce both reactive oxygen species (ROS)-dependent apoptosis and ferroptosis in tumor cells. Our data showed that AC induced iron- and ROS-dependent cytotoxicity in MCF7, HeLa, and A549 cell lines. Flow cytometry analyses showed that AC increased ferrous ions and ROS and induced ferroptosis in MCF-7 cells. This was confirmed by the findings that AC not only decreased solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression but also induced iron- and ROS-dependent aggrandized lipid ROS accumulation and plasma membrane damage. Meanwhile, AC induced nuclear condensation and increased ROS-dependent phosphatidylserine (PS) eversion, caspase-3 activation, and cleaved-PARP expression, suggesting that AC also induced ROS-dependent apoptosis. In addition, mitochondrial depletion significantly inhibited AC-induced cytotoxicity, including ferroptosis and apoptosis, indicating the key role of mitochondria in AC-induced ferroptosis and apoptosis. Moreover, knockout of Bim or Bax not only remarkably inhibited AC-induced apoptosis, but also markedly inhibited AC-triggered downregulation of SLC711 and GPX4, accumulation of lipid ROS, and damage to the plasma membrane. This suggests that Bim and Bax act upstream of SLC7A11 and GPX4 to mediate AC-induced ferroptosis. Collectively, AC induces ferroptosis and apoptosis, in which the Bim- and Bax-mediated mitochondrial pathways play a dominant role.
Collapse
Affiliation(s)
- Qiling Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Han Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - LingJun Xu
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guihao Wu
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhuang Tu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511500, China.
| |
Collapse
|
6
|
Huang J, Huang X, Li Y, Li X, Wang J, Li F, Yan X, Wang H, Wang Y, Lin X, Tu J, He D, Ye W, Yang M, Jin J. Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis. Front Med 2021; 16:416-428. [PMID: 34792736 DOI: 10.1007/s11684-021-0838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinghan Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fenglin Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Yan
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Huanping Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiangjie Lin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jifang Tu
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenle Ye
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Yang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Jin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Huang J, Huang S, Ma Z, Lin X, Li X, Huang X, Wang J, Ye W, Li Y, He D, Yang M, Pan J, Ling Q, Li F, Mao S, Wang H, Wang Y, Jin J. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Thromb Haemost 2021; 121:192-205. [PMID: 32961571 DOI: 10.1055/s-0040-1716530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbβ3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Huang S, Li C, Zhang X, Pan J, Li F, Lv Y, Huang J, Ling Q, Ye W, Mao S, Huang X, Jin J. Abivertinib synergistically strengthens the anti-leukemia activity of venetoclax in acute myeloid leukemia in a BTK-dependent manner. Mol Oncol 2020; 14:2560-2573. [PMID: 32519423 PMCID: PMC7530784 DOI: 10.1002/1878-0261.12742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/23/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
B‐cell lymphoma 2 (BCL‐2), a crucial member of the anti‐apoptotic BCL‐2 family, is frequently dysregulated in cancer and plays an important role in acute myeloid leukemia (AML). Venetoclax is a highly selective BCL‐2 inhibitor that has been approved by the FDA for treating elderly AML patients. However, the emergence of resistance after long‐term treatment emphasizes the need for a deeper understanding of the potential mechanisms of resistance and effective rescue methods. By using RNA‐seq analysis in two human AML cohorts made up of three patients with complete remission and three patients without remission after venetoclax treatment, we identified that upregulation of BTK enabled AML blast resistance to venetoclax. Interestingly, we found that abivertinib, an oral BTK inhibitor, could synergize with venetoclax to inhibit the proliferation of primary AML cells and cell lines. It is worth noting that the combination of the two effectively enhanced the sensitivity of two AML patients (AML#3 and AML#12) to venetoclax. In this study, we demonstrated that combined use of the two drugs can synergistically inhibit the colony‐forming capacity of AML cells, arrest the AML cell cycle in the G0/G1 phase, and inhibit the BCL‐2 anti‐apoptotic family protein, activating the caspase family to induce apoptosis. Mechanistically, knockdown of BTK in AML cell lines impaired the synergistic effect of the two drugs. In vivo study showed similar results as those seen in vitro. Abivertinib in combination with venetoclax could significantly prolong the survival time and reduce the tumor burden of MV4‐11‐NSG mice compared with those of control and single‐agent groups. Our in vitro and in vivo studies have shown that the combination of abivertinib and venetoclax may benefit AML patients, especially in patients resistant to venetoclax or those that relapse. New clinical trials will be planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiajia Pan
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jingwen Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shihui Mao
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| |
Collapse
|
9
|
Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, Huang X, Jin J. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer 2020; 11:2123-2132. [PMID: 32127939 PMCID: PMC7052937 DOI: 10.7150/jca.34981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Apigenin, a flavonoid phytochemical extracted from fruits and vegetables, has shown anti-neoplastic effects in a variety of malignant tumors. DLBCL is the most common type of aggressive lymphoma in adults with a poor prognosis. Small-molecule inhibitors like BTK inhibitors have demonstrated extended period of disease control. Whereas the effects of the synergetic inhibition of the two have not been elucidated. Methods: We assessed the efficacy of Apigenin alone or combined with Abivertinib to inhibit DLBCL progression. Cell viability was examined using the cell proliferation cell proliferation assay (MTS). Apoptotic cells and cell cycle evaluation were detected by Annexin V-FITC and DNA staining solution respectively. Western blot was used to explore the potential mechanism, and the in vivo effects of the two drugs were performed by a DLBCL xenograft BALB/c nude mice model. Results: Our results demonstrated that Apigenin can inhibit the proliferation and clone forming of DLBCL cells. Apigenin also induces apoptosis by down-regulating BCL-XL and activating Caspase family. In addition, Apigenin down-regulates cell cycle proteins including CDK2/CDK4/CDK6/CDC2/p-RB to increase G2/M phase arrest. Mechanically, our data demonstrate that Apigenin leads to a significant reduction of the expression of pro-proliferative pathway PI3K/mTOR to inhibit DLBCL cells survival. Moreover, our in vitro and in vivo results show that Apigenin can synergize with Abivertinib, a novel BTK inhibitor, in treating DLBCL visa synergistically inducing apoptosis and inhibiting the p-GS3K-β and its downstream targets. Conclusions: Collectively, our study suggests that Apigenin exerts improving anti-lymphoma effect of BTK inhibitors and provides hope to targeted therapy of those develop resistance.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First people's hospital, Zhejiang, Hangzhou, China
| | - Nana Shi
- The Children's Hospital Zhejiang University School of Medicine
| | - Yile Zhou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Huang S, Pan J, Jin J, Li C, Li X, Huang J, Huang X, Yan X, Li F, Yu M, Hu C, Jin J, Xu Y, Ling Q, Ye W, Wang Y, Jin J. Abivertinib, a novel BTK inhibitor: Anti-Leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Cancer Lett 2019; 461:132-143. [PMID: 31310800 DOI: 10.1016/j.canlet.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), has shown promising pharmacologic effects in acute myeloid leukemia (AML). In this study, we report that abivertinib or AC0010, a novel BTK inhibitor, inhibits cell proliferation, reduces colony-forming capacity, and induces apoptosis and cell cycle arrest in AML cells, especially those harboring FLT3-ITD mutations. Abivertinib was also found to be more sensitive than ibrutinib in treating AML. We demonstrate that in addition to targeting the phosphorylation of BTK, abivertinib also targeted the crucial PI3K survival pathway. Furthermore, abivertinib suppressed the expression of p-FLT3 and the downstream target p-STAT5 in AML cells harboring FLT3-ITD mutations. Moreover, in vitro and in vivo data revealed synergistic activity between abivertinib and homoharringtonine (HHT), a natural plant alkaloid commonly used in China, in treating AML cells with or without FLT3-ITD mutations. Collectively, these preclinical data suggest that abivertinib may be a promising novel agent for AML, with potential for combination treatment with HHT. Clinical studies on abivertinib-involved therapy are planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jing Jin
- Department of Hematology, Shaoxing People's Hospital, Zhejiang, Shaoxing, China
| | - Chengying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First People's Hospital, Zhejiang, Hangzhou, China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jingrui Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China.
| |
Collapse
|