1
|
Powrózek T, Otieno MO, Maffeo D, Frullanti E, Martinez-Useros J. Blood circulating miRNAs as pancreatic cancer biomarkers: An evidence from pooled analysis and bioinformatics study. Int J Biol Macromol 2025; 308:142469. [PMID: 40180095 DOI: 10.1016/j.ijbiomac.2025.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, characterized by a poor prognosis. Currently, there are no screening programs for the early detection of PC, and existing diagnostic methods are primarily limited to high-risk individuals. Biomarkers such as CA19-9 have not significantly improved early diagnosis, making the identification of new potential biomarkers crucial for routine clinical practice. Among the candidate biomarkers, miRNAs have been most extensively studied due to their role in regulating gene expression (either as oncomiRs or tumor suppressor miRNAs) and their potential for minimally invasive analysis through liquid biopsy techniques. This review aims to summarize the current literature on blood-circulating miRNAs and their diagnostic value in PC detection, considering the context of CA19-9 and benign pancreatic diseases. The data from the collected studies were curated through both statistical and bioinformatics analyses to identify the most promising miRNAs with optimal diagnostic accuracy for PC detection and to assess their role in the molecular processes leading to tumor development.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Michael Ochieng' Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Cancer Genomics and Systems Biology Lab, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
2
|
Wnuk J, Hudy D, Strzelczyk JK, Michalecki Ł, Dybek K, Gisterek-Grocholska I. Serum hsa-miR-22-3p, hsa-miR-885-5p, Lipase-to-Amylase Ratio, C-Reactive Protein, CA19-9, and Neutrophil-to-Lymphocyte Ratio as Prognostic Factors in Advanced Pancreatic Ductal Adenocarcinoma. Curr Issues Mol Biol 2025; 47:27. [PMID: 39852142 PMCID: PMC11763715 DOI: 10.3390/cimb47010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease. The search for novel prognostic factors is still needed. Two miRNAs, miR-22-3p and miR-885-5p, which show increased expression in PC, were selected for this study. The aim of this study was to evaluate the utility of these miRNAs in the prognosis of PC. Other prognostic factors such as lipase-to-amylase ratio (LAR), neutrophil-to-lymphocyte ratio (NLR), and carbohydrate antigen 19-9 (CA19-9) were also evaluated in this study. This study was conducted in 50 patients previously diagnosed with pancreatic ductal adenocarcinoma in clinical stage (CS) III and IV. All patients underwent a complete medical history, physical examination, and routine laboratory tests including a complete blood count, C-reactive protein (CRP), CA19-9, lipase, and amylase. Two additional blood samples were taken from each patient to separate plasma and serum. Isolation of miRNA was performed using TRI reagent with cel-miR-39-3p as a spike-in control. Reverse transcription of miRNA was performed using a TaqMan Advanced miRNA cDNA Synthesis Kit. The relative expression levels of miR-22-3p and miR-885-5p were measured using RT-qPCR. Serum hsa-miR-22-3p was detected in 22 cases (44%), while hsa-miR-885-5p was detected in 33 cases (66%). There were no statistically significant differences in serum or plasma miRNA expression levels between patient groups based on clinical stage, gender, or BMI. There were no statistically significant differences in LAR between patients with different CS. For NLR, CRP and CA19-9 thresholds were determined using ROC analysis (6.63, 24.7 mg/L and 4691 U/mL, respectively). Cox's F test for overall survival showed statistically significant differences between groups (p = 0.002 for NLR, p = 0.007 for CRP and p = 0.007 for CA19-9). Utility as prognostic biomarkers was confirmed in univariate and multivariate analysis for CA19-9, CRP, and NLR. The selected miRNAs and LAR were not confirmed as reliable prognostic markers in PC.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (D.H.); (J.K.S.)
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland; (D.H.); (J.K.S.)
| | - Łukasz Michalecki
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| | - Kamil Dybek
- Central Laboratory, University Clinical Center, Medical University of Silesia in Katowice, 14 Medyków St., 40-752 Katowice, Poland
| | - Iwona Gisterek-Grocholska
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland; (J.W.)
| |
Collapse
|
3
|
Khan IA, Saraya A. Circulating MicroRNAs as Noninvasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer: A Review. J Gastrointest Cancer 2023; 54:720-730. [PMID: 36322366 DOI: 10.1007/s12029-022-00877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human cancers. Currently, most PC cases are diagnosed at an already advanced stage. Early detection of PC is critical to improving survival rates. Therefore, there is an urgent need to identify biomarkers for the early detection of PC. Recently, circulating miRNAs in whole blood and other body fluids have been reported as promising biomarkers for the early detection of various cancers, including PC. Furthermore, due to minimal invasiveness and technical availability, circulating miRNAs hold promise for further wide usage. As a potential novel molecular marker, circulating miRNAs not only represent promising noninvasive diagnostic and prognostic tools but could also improve the evaluation of tumor classification, metastasis, and curative effect. The purpose of this review is to outline the available information regarding circulating miRNAs as biomarkers for the early detection of PC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Wnuk J, Strzelczyk JK, Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma-A Review of the Literature. Int J Mol Sci 2023; 24:ijms24065113. [PMID: 36982210 PMCID: PMC10049684 DOI: 10.3390/ijms24065113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic cancer (PC) is considered to be the seventh most common cause of cancer-related deaths. The number of deaths caused by PC is estimated to increase in the future. An early diagnosis of PC is crucial for improving treatment outcomes. The most common histopathological subtype of PC is pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs)-which are endogenous non-coding RNAs involved in the posttranscriptional regulation of multiple gene expression-constitute useful diagnostic and prognostic biomarkers in various neoplasms, including PDAC. Circulating miRNAs detected in a patient's serum or plasma are drawing more and more attention. Hence, this review aims at evaluating the clinical value of circulating miRNA in the screening, diagnosis, prognosis and monitoring of pancreatic ductal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Iwona Gisterek
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| |
Collapse
|
5
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
6
|
Said F, Tantawy M, Sayed A, Ahmed S. Clinical Significance of MicroRNA-29a and MicroRNA-100 Gene Expression in Pediatric Acute Myeloid Leukemia. J Pediatr Hematol Oncol 2022; 44:e391-e395. [PMID: 33902066 DOI: 10.1097/mph.0000000000002168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
AIM The aim of this study was to evaluate the diagnostic and prognostic performance of miRNA-29a and miRNA-100 in pediatric acute myeloid leukemia (AML). PATIENTS AND METHODS In all, 73 children with diagnosed pediatric AML (based on standard morphologic, cytochemical, cytogenetic, immunologic, and molecular workup, and the French-American British classification) admitted to Children's Cancer Hospital Egypt (CCHE-57357), and 9 healthy age-matched and sex-matched controls were recruited for a case-control study. Gene expression levels of miRNA-29a and miRNA-100 were assessed using real-time quantitative RT-PCR. RESULTS When diagnosed, patients had a significantly higher expression of miRNA-100 as against controls (median [range]: 12.99 [0.92-851.38] vs. 0.26 [0.03-2.67], P<0.001), with a significantly lower expression of miRNA-29a (2.08 [0.02-19.72] vs. 24.95 [15.48-42.54], P<0.001). Likewise, high-risk patients according to cytogenetic stratification had significantly higher miRNA-100 expression and lower miRNA-29a expression. Both miRNA-100 and miRNA-29a performed well as diagnostic markers of pediatric AML with an area under the curve of 0.977 (95% confidence interval [95% CI: 0.943-1.0]) and 0.994 (0.982-1.0) for miRNA-100 and miRNA-29a, respectively. Both miRNA-29a (odds ratio [95% CI]: 0.160 [0.054-0.474], P=0.001) and miRNA-100 (odds ratio [95% CI]: 1.997 [1.994-2.001], P=0.047) were identified as significant predictors of treatment response. CONCLUSION The miRNA-29a and miRNA-100 expression may serve as diagnostic and prognostic markers in pediatric AML.
Collapse
Affiliation(s)
- Fadwa Said
- Departmens of Clinical Pathology
- Hematology Laboratory
| | | | - Ahmed Sayed
- Genomics Program
- Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sonia Ahmed
- Pediatric Oncology, National Cancer Institute, Cairo University
- Pediatric Oncology Department, Children's Cancer Hospital (CCHE-57357)
| |
Collapse
|
7
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
8
|
Yan TB, Huang JQ, Huang SY, Ahir BK, Li LM, Mo ZN, Zhong JH. Advances in the Detection of Pancreatic Cancer Through Liquid Biopsy. Front Oncol 2021; 11:801173. [PMID: 34993149 PMCID: PMC8726483 DOI: 10.3389/fonc.2021.801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer refers to the development of malignant tumors in the pancreas: it is associated with high mortality rates and mostly goes undetected in its early stages for lack of symptoms. Currently, surgical treatment is the only effective way to improve the survival of pancreatic cancer patients. Therefore, it is crucial to diagnose the disease as early as possible in order to improve the survival rate of patients with pancreatic cancer. Liquid biopsy is a unique in vitro diagnostic technique offering the advantage of earlier detection of tumors. Although liquid biopsies have shown promise for screening for certain cancers, whether they are effective for early diagnosis of pancreatic cancer is unclear. Therefore, we reviewed relevant literature indexed in PubMed and collated updates and information on advances in the field of liquid biopsy with respect to the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Bao Yan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia-Qi Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Shi-Yun Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Bhavesh K. Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Long-Man Li
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zeng-Nan Mo
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
9
|
Seyed Hosseini E, Nikkhah A, Sotudeh A, Alizadeh Zarei M, Izadpanah F, Nikzad H, Haddad Kashani H. The impact of LncRNA dysregulation on clinicopathology and survival of pancreatic cancer: a systematic review and meta-analysis (PRISMA compliant). Cancer Cell Int 2021; 21:447. [PMID: 34425840 PMCID: PMC8383355 DOI: 10.1186/s12935-021-02125-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose An increasing number of studies have reported a significant association between long non-coding RNAs (lncRNAs) dysregulation and pancreatic cancers. In the present study, we aimed to gather articles to evaluate the prognostic value of long non coding RNA in pancreatic cancer. Experimental design We systematically searched all eligible articles from databases of PubMed, Web of Science, and Scopus to meta-analysis of published articles and screen association of multiple lncRNAs expression with clinicopathology and/or survival of pancreatic cancer. The pooled hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were used to analysis of overall survival, disease-free survival and progression-free survival were measured with a fixed or random effects model. Results A total of 39 articles were included in the present meta-analysis. Our results showed that dysregulation of lncRNAs were linked to overall survival (39 studies, 4736 patients HR = 0.41, 95% CI 0.25 ± 0.58, random-effects in pancreatic cancer. Moreover, altered lncRNAs were also contributed to progression-free survival (8 studies, 1180 patients HR: 1.88, 95% CI (1.35–2.62) and disease-free survival (2 studies, 285 patients, HR: 6.07, 95% CI 1.28–28.78). In addition, our findings revealed the association between dysregulated RNAs and clinicopathological features in this type of cancer. Conclusions In conclusion, dysregulated lncRNAs could be served as promising biomarkers for diagnosis and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nikkhah
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | - Amir Sotudeh
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | - Marziyeh Alizadeh Zarei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran. .,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Ohtsuka M, Iwamoto K, Naito A, Imasato M, Hyuga S, Nakahara Y, Mikamori M, Furukawa K, Moon J, Asaoka T, Kishi K, Shamma A, Akamatsu H, Mizushima T, Yamamoto H. Circulating MicroRNAs in Gastrointestinal Cancer. Cancers (Basel) 2021; 13:cancers13133348. [PMID: 34283058 PMCID: PMC8267753 DOI: 10.3390/cancers13133348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The screening methods and therapeutic strategies for gastrointestinal cancer (GIC) have improved, but mortality in GIC patients remains high. Early detection and precise evaluation of GIC are required to further improve treatment outcomes in GIC patients. MicroRNAs (miRNAs), which do not encode proteins, have attracted attention as biomarkers of various diseases. Since the first report revealing the strong correlation between miRNAs and cancer in 2002, numerous studies have illustrated the changes in the expression and the biological and oncological effects of miRNAs in GIC. Furthermore, miRNAs circulating in the blood are reported to be associated with GIC status. These miRNAs are thought to be useful as noninvasive biomarkers because of their stability in blood. Herein, we discuss the potential of miRNAs as noninvasive biomarkers for each type of GIC on the basis of previous reports and describe perspectives for their future application. Abstract Gastrointestinal cancer (GIC) is a common disease and is considered to be the leading cause of cancer-related death worldwide; thus, new diagnostic and therapeutic strategies for GIC are urgently required. Noncoding RNAs (ncRNAs) are functional RNAs that are transcribed from the genome but do not encode proteins. MicroRNAs (miRNAs) are short ncRNAs that are reported to function as both oncogenes and tumor suppressors. Moreover, several miRNA-based drugs are currently proceeding to clinical trials for various diseases, including cancer. In recent years, the stability of circulating miRNAs in blood has been demonstrated. This is of interest because these miRNAs could be potential noninvasive biomarkers of cancer. In this review, we focus on circulating miRNAs associated with GIC and discuss their potential as novel biomarkers.
Collapse
Affiliation(s)
- Masahisa Ohtsuka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (A.S.); (H.Y.)
- Correspondence: ; Tel.: +81-6-6771-6051; Fax: +81-6-6771-2838
| | - Kazuya Iwamoto
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Atsushi Naito
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Mitsunobu Imasato
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Satoshi Hyuga
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Yujiro Nakahara
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Manabu Mikamori
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Kenta Furukawa
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Jeongho Moon
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Kentaro Kishi
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Awad Shamma
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (A.S.); (H.Y.)
| | - Hiroki Akamatsu
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Tsunekazu Mizushima
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho, Tennouji-ku, Osaka 543-0035, Japan; (K.I.); (A.N.); (M.I.); (S.H.); (Y.N.); (M.M.); (K.F.); (J.M.); (T.A.); (K.K.); (H.A.); (T.M.)
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (A.S.); (H.Y.)
| |
Collapse
|
11
|
Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, Wang HM, Lu GX, Wang PY, Liu Y, Li ZJ, Deng J, Lin QL, Ma L, Feng SS, Chen XQ, Zheng XM, Zhou YF, Hu YJ, Yin HQ, Tian LL, Gu LP, Lv ZW, Yu F, Li W, Ma YS, Da F. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:702-718. [PMID: 33575116 PMCID: PMC7851426 DOI: 10.1016/j.omtn.2020.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors that are harmful to human health. Increasing evidence has underscored the critical role of the competitive endogenous RNA (ceRNA) regulatory networks among various human cancers. However, the complexity and behavior characteristics of the ceRNA network in HCC were still unclear. In this study, we aimed to clarify a phosphatase and tensin homolog (PTEN)-related ceRNA regulatory network and identify potential prognostic markers associated with HCC. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from The Cancer Genome Atlas (TCGA) database. The DLEU2L-hsa-miR-100-5p/ hsa-miR-99a-5p-TAOK1 ceRNA network related to the prognosis of HCC was obtained by performing bioinformatics analysis. Importantly, we identified the DLEU2L/TAOK1 axis in the ceRNA by using correlation analysis, and it appeared to become a clinical prognostic model by Cox regression analysis. Furthermore, methylation analyses suggested that the abnormal upregulation of the DLEU2L/TAOK1 axis likely resulted from hypomethylation, and immune infiltration analysis showed that the DLEU2L/TAOK1 axis may have an impact on the changes in the tumor immune microenvironment and the development of HCC. In summary, the current study constructing a ceRNA-based DLEU2L/TAOK1 axis might be a novel important prognostic factor associated with the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Dan-Dan Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Zi-Jin Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Xiao-Qi Chen
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiang-Min Zheng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Ya-Fu Zhou
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yong-Jun Hu
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Hua-Qun Yin
- School of Resource Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Fu Da
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
12
|
Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer. Cancer Cell Int 2020; 20:457. [PMID: 32973402 PMCID: PMC7493950 DOI: 10.1186/s12935-020-01550-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
Collapse
|
13
|
Identification and Validation of Circulating Micrornas as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma Patients Undergoing Surgical Resection. J Clin Med 2020; 9:jcm9082440. [PMID: 32751582 PMCID: PMC7464450 DOI: 10.3390/jcm9082440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and aggressive cancers with a less than 6% five-year survival rate. Circulating microRNAs (miRNAs) are emerging as a useful tool for non-invasive diagnosis and prognosis estimation in the various cancer types, including PDAC. Our study aimed to evaluate whether miRNAs in the pre-operative blood plasma specimen have the potential to predict the prognosis of PDAC patients. In total, 112 PDAC patients planned for surgical resection were enrolled in our prospective study. To identify prognostic miRNAs, we used small RNA sequencing in 24 plasma samples of PDAC patients with poor prognosis (overall survival (OS) < 16 months) and 24 plasma samples of PDAC patients with a good prognosis (OS > 20 months). qPCR validation of selected miRNA candidates was performed in the independent cohort of PDAC patients (n = 64). In the discovery phase of the study, we identified 44 miRNAs with significantly different levels in the plasma samples of the group of good and poor prognosis patients. Among these miRNAs, 23 showed lower levels, and 21 showed higher levels in plasma specimens from PDAC patients with poor prognosis. Eleven miRNAs were selected for the validation, but only miR-99a-5p and miR-365a-3p were confirmed to have significantly lower levels and miR-200c-3p higher levels in plasma samples of poor prognosis cases. Using the combination of these 3-miRNA levels, we were able to identify the patients with poor prognosis with sensitivity 85% and specificity 80% (Area Under the Curve = 0.890). Overall, 3-miRNA prognostic score associated with OS was identified in the pre-operative blood plasma samples of PDAC patients undergoing surgical resection. Following further independent validations, the detection of these miRNA may enable identification of PDAC patients who have no survival benefit from the surgical treatment, which is associated with the high morbidity rates.
Collapse
|
14
|
miR-16-5p is upregulated by amyloid β deposition in Alzheimer's disease models and induces neuronal cell apoptosis through direct targeting and suppression of BCL-2. Exp Gerontol 2020; 136:110954. [PMID: 32320719 DOI: 10.1016/j.exger.2020.110954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with irreversible neurodegeneration. Accumulation of amyloid beta (Aβ) in the brain is considered to be a major cause of neuronal cell death in AD, but the neurotoxic mechanism of Aβ is not yet fully understood. Here, we focused on the role of microRNAs (miRNAs) in Aβ-induced neuronal cell death. In microarray and RT-qPCR analysis of plasma miRNAs obtained from 5 familiar AD mutations (5xFAD) and wild-type (WT) mice of various ages, miR-16-5p showed a significant age-related change that was accompanied by neuronal cell death in the brain tissue of 5xFAD mice. In addition, increased miR-16-5p was prominent near Aβ plaque-deposition sites in 5xFAD mouse brains. Aβ treatment induced miR-16-5p upregulation and apoptosis in primary cultured mouse cortical neurons and the SH-SY5Y human neuroblastoma cell line. In silico analysis and reporter gene assays indicated that miR-16-5p directly targets the mRNA encoding the anti-apoptotic factor, B cell lymphoma-2 (BCL-2), in the neuronal cell line. Overexpression of miR-16-5p in SH-SY5Y cells downregulated BCL-2 expression and induced apoptosis. These results collectively suggest that the miR-16-5p/BCL-2 axis plays an important role for neuronal cell apoptosis in AD.
Collapse
|
15
|
Sohel MMH. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci 2020; 248:117473. [PMID: 32114007 DOI: 10.1016/j.lfs.2020.117473] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of tiny molecules of 18-22 nucleotide long noncoding RNA that regulate the post-transcriptional gene expression through translational inhibition and/or mRNA destabilization. Because of their involvement in important developmental processes, it is highly likely that the altered expression of miRNAs could be associated with abnormal conditions like suboptimal growth or diseases. Thus, the expression of miRNAs can be used as biomarkers in pathophysiological conditions. Recently, a handful of miRNAs are detected in cell-free conditions including biofluids and cell culture media and they exhibit specific expression patterns that are associated with altered physiological conditions. Extracellular miRNAs are not only extremely stable outside cells in a variety of biofluids but also they are easy to acquire. These characteristics led to the idea of using extracellular miRNAs as a potential biomarker for the onset and prognosis of cancer. Although miRNAs have been proposed as a potential diagnostic tool for cancer detection, their application in the routine clinical investigation is yet to come. First, this review will provide an insight into the extracellular miRNAs, particularly, their release mechanisms and characteristics, and the potential of extracellular miRNAs as a biomarker in cancer detection. Finally, it will discuss the potential of using extracellular miRNAs in different cancer diagnoses and challenges associated with the clinical application of extracellular miRNAs as noninvasive biomarkers.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Turkey; Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
16
|
Reese M, Flammang I, Yang Z, Dhayat SA. Potential of Exosomal microRNA-200b as Liquid Biopsy Marker in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12010197. [PMID: 31941049 PMCID: PMC7016821 DOI: 10.3390/cancers12010197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/01/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor entity, characterized by rapid disease progression, early metastatic dissemination, and late diagnosis at advanced tumor stages. Recently, we explored the clinical impact of several microRNAs (miR) associated with proliferation, epithelial-to-mesenchymal transition (EMT), and chemoresistance in tissue and blood serum specimens of PDAC patients. Here, we evaluated the potential of these miRs as diagnostic and prognostic biomarkers in PDAC in serum exosomes and their respective EpCAM-positive (epithelial cell adhesion molecule) subset. Expression analysis by RT-qRT-PCR (real-time quantitative reverse transcription polymerase chain reaction) revealed an overexpression of miR-200b and miR-200c in serum exosomes of PDAC patients as compared to healthy controls (p < 0.001; p = 0.024) and patients with chronic pancreatitis (p = 0.005; p = 0.19). Receiver operating characteristic (ROC) curve analysis showed that a biomarker panel consisting of miR-200b and miR-200c from total and EpCAM-positive serum exosomes enhanced the diagnostic accuracy of carbohydrate antigen 19-9 (CA.19-9) to 97% (p < 0.0001). Univariate survival analysis revealed a correlation between shorter overall survival (OS) and high expression of miR-200c in total serum exosomes (p = 0.038) and miR-200b in EpCAM-positive serum exosomes (p = 0.032), whereas EpCAM exosomal miR-200b was also indicative of shorter OS in the subgroup of patients treated with curative intent (p = 0.013). Multivariate survival analysis showed that miR-200b derived from EpCAM-positive serum exosomes might serve as an independent prognostic factor in PDAC (p = 0.044). Our findings indicate a potential role of exosomal miR-200 as diagnostic and prognostic liquid biopsy marker in PDAC and call for validation in a larger, multicenter setting.
Collapse
|
17
|
Wei J, Yang L, Wu YN, Xu J. Serum miR-1290 and miR-1246 as Potential Diagnostic Biomarkers of Human Pancreatic Cancer. J Cancer 2020; 11:1325-1333. [PMID: 32047539 PMCID: PMC6995378 DOI: 10.7150/jca.38048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a highly malignant tumor with no effective early diagnostic biomarkers. This study was performed to screen and identify serum microRNAs (miRNAs) as noninvasive biomarkers for PC diagnosis. Methods: Two upregulated miRNAs were selected by integrated analysis of three independent GEO datasets. Then, the expressions of two miRNAs in serum were determined by quantitative reverse-transcription PCR among 120 PC patients, 40 benign disease controls and 40 healthy controls. The correlation between serum miRNAs and clinical characteristics was analyzed. The diagnostic utility of miRNAs was compared to CA19-9 using receiver operating characteristic curve analysis. Results: We discovered miR-1290 and miR-1246 were upregulated in PC patients through GEO datasets analysis. Serum miR-1290 and miR-1246 expression levels were elevated in PC patients compared to all controls and dramatically decreased after tumor resection (all P<0.001). The area under the curve (AUC) for miR-1290 was larger than miR-1246 and CA19-9 (miR-1290: 0.91; miR-1246: 0.81; CA19-9: 0.82). The combined diagnosis of individual or both miRNAs with CA19-9 was more effective for discriminating PC from all controls than the single CA19-9 assay (miR-1290+CA19-9: 0.96, miR-1246+CA19-9: 0.93, miR-1290+miR-1246+CA19-9: 0.97). The abundance of serum miR-1290 and miR-1246 was associated with tumor stage and size respectively and logistic modeling proved that both of them were independent risk factors for PC. Conclusion: Serum miR-1290 and miR-1246 might be promising biomarkers for PC diagnosis and the combined detection of CA19-9, together with miR-1290 or miR-1246, could improve the diagnostic accuracy of PC.
Collapse
Affiliation(s)
- Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Yi-Ning Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|
18
|
Vietsch EE, Peran I, Suker M, van den Bosch TPP, van der Sijde F, Kros JM, van Eijck CHJ, Wellstein A. Immune-Related Circulating miR-125b-5p and miR-99a-5p Reveal a High Recurrence Risk Group of Pancreatic Cancer Patients after Tumor Resection. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:4784. [PMID: 34484811 PMCID: PMC8415800 DOI: 10.3390/app9224784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic Kras G12D/+; Trp53 R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.
Collapse
Affiliation(s)
- Eveline E. Vietsch
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Mustafa Suker
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | | | - Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Johan M. Kros
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|