1
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Zhang X, Tian H, Lu C, Xie SP, Ma JS, Chen HZ, Tang DE, Dai Y, Yan Q, Xian W. Long non-coding RNA Growth Arrest Specific 5 Regulates the Podocyte Function in Nephrotic Syndrome Development via microRNA-144-5p/Phosphatase And Tensin Homolog. Nephrology (Carlton) 2025; 30:e70024. [PMID: 40156076 DOI: 10.1111/nep.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
AIM This research examined the role and possible regulatory mechanisms of lncRNA GAS5 in the occurrence and progression of primary nephrotic syndrome (PNS) to provide biomarkers for early screening of PNS in the clinic. METHODS RT-qPCR was employed to assess the expression levels of GAS5 and miR-144-5p. ROC analysis was conducted to evaluate their predictive capabilities for PNS. The interaction between GAS5 and miR-144-5p was confirmed using a dual-luciferase assay. Following this, GAS5 overexpression plasmids, along with co-transfected plasmids, were introduced into podocytes to examine their impact on the inflammatory factors, oxidative stress index, cell proliferation and apoptosis. Furthermore, we performed GO and KEGG enrichment analyses, along with PPI analysis, on the target genes of miR-144-5p to speculate on its potential functions and to identify critical genes. RESULTS The expression levels of GAS5 were decreased while miR-144-5p levels were elevated in PNS patients. The diagnostic approach of serum GAS5 combined with miR-144-5p improved the accuracy of identification. GAS5 was observed to inhibit inflammation and oxidative stress responses and the apoptosis of MPC-5 cells, and enhance cell proliferation. However, the overexpression of miR-144-5p counteracted the effect of GAS5 on podocyte function. Enrichment analysis suggested the miR-144-5p target genes could affect podocyte structure, homeostasis and cell growth. PTEN and STAT3 are identified as critical regulatory targets. CONCLUSION The sponging effect of GAS5 on miR-144-5p caused changes in PTEN mRNA expression and could potentially prevent or mitigate PNS. GAS5 is expected to become a potential target for treating PNS.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Infectious Diseases, Frist Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Huan Tian
- Clinical Laboratory, Ezhou Central Hospital, Ezhou, People's Republic of China
| | - Chang Lu
- Department of the Organ Transplantation, 924th Hospital of Joint Logistic Support Force of PLA, Guilin, People's Republic of China
| | - Shen-Ping Xie
- Department of the Organ Transplantation, 924th Hospital of Joint Logistic Support Force of PLA, Guilin, People's Republic of China
| | - Jing-Sheng Ma
- Department of the Organ Transplantation, 924th Hospital of Joint Logistic Support Force of PLA, Guilin, People's Republic of China
| | - Huai-Zhou Chen
- Department of the Organ Transplantation, 924th Hospital of Joint Logistic Support Force of PLA, Guilin, People's Republic of China
| | - Dong-E Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Qiang Yan
- Department of the Organ Transplantation, 924th Hospital of Joint Logistic Support Force of PLA, Guilin, People's Republic of China
| | - Wei Xian
- Immunology Department, The Second People's Hospital of Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Hsu CY, Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Rajotiya S, Hjazi A, Prasad K, Atteri S, Chauhan AS. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Gene 2025; 941:149217. [PMID: 39756550 DOI: 10.1016/j.gene.2025.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches. The downregulation of long non-coding RNA growth arrest‑specific transcript 5 (GAS5) has been observed in multiple tumor types, indicating its role as a tumor suppressor in cancer. GAS5 exhibits interactions with various proteins, DNA, and microRNAs (miRNAs), leading to the upregulation of several mRNAs encoding suppressor proteins like PTEN. Consequently, this upregulation inhibits tumor growth. In this review, we have examined the existing literature concerning the expression of GAS5 and its diagnostic significance in female tissue-specific cancers, including breast, cervical, ovarian, and endometrial cancers. Additionally, we have explored its interactions with different miRNAs and its impact on cancer progression and resistance to therapy in these malignancies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics,Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Kdv Prasad
- Symbiosis Institute of Business Management, Hyderabad; Symbiosis International (Deemed University), Pune, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Moras B, Sissi C. Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. Int J Mol Sci 2025; 26:2126. [PMID: 40076754 PMCID: PMC11900516 DOI: 10.3390/ijms26052126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its treatment poses significant challenges due to its aggressive nature and resistance to conventional therapies. Long non-coding RNAs (lncRNAs) represent a new frontier in the search for suitable targets to control melanoma progression and invasiveness. Indeed, lncRNAs exploit a wide range of regulatory functions along chromatin remodeling, gene transcription, post-transcription, transduction, and post-transduction to ultimately tune multiple cellular processes. The understanding of this intricate and flexible regulatory network orchestrated by lncRNAs in pathological conditions can strategically support the rational identification of promising targets, ultimately speeding up the setup of new therapeutics to integrate the currently available approaches. Here, the most recent findings on lncRNAs involved in melanoma will be analyzed. In particular, the functional links between their mechanisms of action and some frequently underestimated features, like their different subcellular localizations, will be highlighted.
Collapse
Affiliation(s)
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
5
|
Yang Z, Cai J, Li J, Liu X, Liu W, Cui K, Bai Z, Dong Y, Peng D, Duan Q, Shahzad A, Zhang Q. The Mechanism of TRIM21 Inhibiting the Invasion and Migration of ccRCC by Stabilizing ASS1. Mol Carcinog 2025; 64:260-278. [PMID: 39513657 DOI: 10.1002/mc.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive invasion and metastasis, presenting significant clinical challenges. Gaining insights into the molecular mechanisms underlying its progression is crucial for the development of effective therapeutic strategies. Addressing a critical knowledge gap in understanding ccRCC tumorigenesis, this study aims to elucidate the expression patterns of TRIM21 in ccRCC, unravel its impact on ccRCC patient prognosis, and investigate the regulatory role of TRIM21 in ASS1 expression and urea cycle dysregulation within the context of ccRCC. The results demonstrate that TRIM21 is downregulated in ccRCC, and low expression of TRIM21 predicts an unfavorable prognosis for ccRCC patients. Furthermore, the upregulation of TRIM21 can inhibit the migration and invasion of ccRCC cells by regulating the ubiquitination modification of ASS1. This not only expands the functional role of TRIM21 in ccRCC tumorigenesis but also demonstrates its ability to reverse urea cycle dysregulation through stabilizing ASS1 expression. Specifically, abnormal downregulation of TRIM21 in ccRCC reduces K63 ubiquitination modification of ASS1, leading to decreased stability of the ASS1 protein, aggravated urea cycle dysregulation, and facilitated migration and invasion of ccRCC cells. Additionally, reduction in ASS1 reverses the depressed migration and invasion caused by overexpression of TRIM21 in ccRCC cells. In summary, our findings contribute to a deeper understanding of the functional role played by TRIM21 in ccRCC progression, pinpoint a unique and novel regulatory mechanism involving ectopic downregulation-mediated ASS1 ubiquitination modification and urea cycle dysfunction during ccRCC progression, and provide fresh insights for further investigation into the pathogenesis and metabolic reprogramming associated with ccRCC.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jihao Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ziyuan Bai
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yurong Dong
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongmei Peng
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
7
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
8
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Chen J, Chen W, Wang Z, Zhou L, Lin Q, Huang Q, Zheng L, You H, Lin S, Shi Q. PGD: Shared gene linking polycystic ovary syndrome and endometrial cancer, influencing proliferation and migration through glycometabolism. Cancer Sci 2024; 115:2908-2922. [PMID: 38979884 PMCID: PMC11462980 DOI: 10.1111/cas.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024] Open
Abstract
The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.
Collapse
Affiliation(s)
- Jia‐ming Chen
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Wei‐Hong Chen
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Zhi‐yi Wang
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Liang‐Yu Zhou
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qiu‐ya Lin
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qiao‐yi Huang
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Ling‐tao Zheng
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Hui‐jie You
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Shu Lin
- Neuroendocrinology GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centre of Neurological and Metabolic ResearchThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Qi‐yang Shi
- Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| |
Collapse
|
10
|
Mohajeri-khorasani A, Karimi E, Zarei M, Azari H, Beyer C, Mousavi P, Sanadgol N, Negahi AA. Role of mitochondrial lncRNA GAS5 in the pathogenesis of Multiple Sclerosis: interfering with the release of miR-651-5p-enriched exosomes from microglia cells.. [DOI: 10.21203/rs.3.rs-4673502/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Abstract
Multiple Sclerosis (MS) arises from immune system dysfunction and damage to the myelin sheath within the CNS. At various stages of MS, analyzing blood samples has the potential to help differentiate between individuals with MS and those without, detect the early onset of the disease, or distinguish between different types of MS. Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) serves a pivotal role in governing cell growth and arrest, as well as modulating the immune system by acting as the glucocorticoid receptor. This research aims to explore GAS5 expression in peripheral blood mononuclear cells (PBMCs) of Relapsing-Remitting MS (RRMS) patients and evaluate its targeted miRNAs in exosomes. Our findings revealed an elevated expression level of GAS5 in RRMS patients in contrast to control groups (P-value = 0.0121), and GAS5 demonstrated diagnostic potential for RRMS, with an AUC of 0.6498. The in-silico analysis revealed that hsa-miR-651-5p emerged as a central component in the regulatory network of GAS5, with its target genes primarily implicated in transcription and apoptosis regulation. Additionally, RUNX1, YY1, GSK3B, FMR1, and KLF2 were identified as entities linked to GAS5. In this regard, our findings indicate a significant association between redox imbalance and the dysregulation of GAS5 and miR-651-5p expression in the HMC3 cell line. Given the increased expression of miR-651-5p in exosomes under stress, the transport of miR-651-5p into serum exosomes may be varied and related to GAS5 expression in PBMCs of MS subtypes. In conclusion, GAS5 can serve as a mitochondrial marker for RRMS, and redox imbalance appears to influence its regulation, highlighting its role in the cellular stress response. Future research is suggested to focus on elucidating the molecular mechanisms underlying GAS5/miR-651-5p interaction to better understand this process.
Collapse
|
11
|
Lin H, Wei X, Ye J, Chen J, Huang J, Wu T, Chen Z, Zeng Y, Peng L. Lnc-CLSTN2-1:1 Promotes Osteosarcoma Progression by Disrupting Redox Balance through PI3K/AKT Signaling Pathway. J Cancer 2024; 15:1287-1298. [PMID: 38356713 PMCID: PMC10861822 DOI: 10.7150/jca.91579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Objective: Most patients with osteosarcoma (OS) have an extremely poor prognosis. The primary purpose of this investigation was to explore the biological effect of Lnc-CLSTN2-1:1 on OS and the potential processes involved. Materials and procedures: We selected differentially overexpressed Lnc-CLSTN2-1:1 from our laboratory's existing RNA sequence analysis data (fibroblast osteoblast (hFOB 1.19) and three osteosarcoma cell lines (HOS, MG63, and U2OS) as the research object. Next, we detected Lnc-CLSTN2-1:1 in the osteosarcoma HOS cell line and fibroblast cells using qRT-PCR. We evaluated cell proliferation ability using EdU incorporation test, CCK-8 test, and cell clone formation; cell invasion and migration were assessed using the Transwell test, while flow cytometry examined cell cycle, apoptosis, and reactive oxygen species (ROS); Subsequently, the activity changes of selenase (GPx) glutathione peroxidase and (TrxR) thioredoxin reductase were detected. In addition, changes in related proteins were analyzed through Western blotting. Results: The expression of Lnc-CLSTN2-1:1 in osteosarcoma cells was significantly increased. The proliferation, invasion, and migration of osteosarcoma cells were significantly inhibited by knockdown of the expression of Lnc-CLSTN2-1:1, and the cell cycle-related signaling pathway PI3K/AKT/GSK-3β/cycinD1 was also inhibited. However, insulin-like growth factor-1 (igf-1) could reverse this process. In addition, we examined the activity of two selenophenases (TrxR and GPx) and the changes of ROS before and after Lnc-CLSTN2-1:1 knockdown. The results showed that both TrxR and GPx activities were reduced after Lnc-CLSTN2-1:1 knockdown, resulting in the inhibition of antioxidant stress levels, while intracellular ROS levels were high, which eventually caused killing effects on tumor cells due to the imbalance between oxidative stress and antioxidant stress. Conclusion: Our results showed that Lnc-CLSTN2-1:1 enhanced anti-oxidative stress TrxR and GPx selenoprotein activities through the PI3K/AKT signaling pathway while counteracting the loss of reactive oxygen species ROS produced by mitochondria to osteosarcoma cells, which protected osteosarcoma cells and thus promoted the proliferation and metastatic ability of OS.
Collapse
Affiliation(s)
- Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Xinjian Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Junhong Ye
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Jiaxian Chen
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Jing Huang
- Oncology Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Zhenju Chen
- Department of Orthopedics, Suixi Hospital of Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Yuming Zeng
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| | - Lijiao Peng
- Oncology Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong,534001, China
| |
Collapse
|
12
|
P E, S K, Sagayam KM, J A. An automated cervical cancer diagnosis using genetic algorithm and CANFIS approaches. Technol Health Care 2024; 32:2193-2209. [PMID: 38251073 DOI: 10.3233/thc-230926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cervical malignancy is considered among the most perilous cancers affecting women in numerous East African and South Asian nations, both in terms of its prevalence and fatality rates. OBJECTIVE This research aims to propose an efficient automated system for the segmentation of cancerous regions in cervical images. METHODS The proposed techniques encompass preprocessing, feature extraction with an optimized feature set, classification, and segmentation. The original cervical image undergoes smoothing using the Gaussian Filter technique, followed by the extraction of Local Binary Pattern (LBP) and Grey Level Co-occurrence Matrix (GLCM) features from the enhanced cervical images. LBP features capture pixel relationships within a mask window, while GLCM features quantify energy metrics across all pixels in the images. These features serve to distinguish normal cervical images from abnormal ones. The extracted features are optimized using Genetic Algorithm (GA) as an optimization method, and the optimized sets of features are classified using the Co-Active Adaptive Neuro-Fuzzy Inference System (CANFIS) classification method. Subsequently, a morphological segmentation technique is employed to categorize irregular cervical images, identifying and segmenting malignant regions within them. RESULTS The proposed approach achieved a sensitivity of 99.09%, specificity of 99.39%, and accuracy of 99.36%. CONCLUSION The proposed approach demonstrated superior performance compared to state-of-the-art techniques, and the results have been validated by expert radiologists.
Collapse
Affiliation(s)
- Elayaraja P
- Department of Electronics and Communication Engineering, Kongunadu College of Engineering and Technology, Trichy, India
| | - Kumarganesh S
- Department of Electronics and Communication Engineering, Knowledge Institute of Technology, Salem, India
| | - K Martin Sagayam
- Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Andrew J
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
16
|
Xiong G, Feng Y, Yi X, Zhang X, Li X, Yang L, Yi Z, Sai B, Yang Z, Zhang Q, Kuang Y, Zhu Y. NRF2-directed PRPS1 upregulation to promote the progression and metastasis of melanoma. Front Immunol 2022; 13:989263. [PMID: 36203561 PMCID: PMC9530353 DOI: 10.3389/fimmu.2022.989263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.
Collapse
Affiliation(s)
- Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaoyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| |
Collapse
|
17
|
Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. Int J Mol Sci 2022; 23:ijms231710133. [PMID: 36077530 PMCID: PMC9456385 DOI: 10.3390/ijms231710133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell’s “building blocks” towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.
Collapse
|
18
|
Liu Y, Ma S, Ma Q, Zhu H. Silencing LINC00665 inhibits cutaneous melanoma in vitro progression and induces apoptosis via the miR-339-3p/TUBB. J Clin Lab Anal 2022; 36:e24630. [PMID: 35929185 PMCID: PMC9459347 DOI: 10.1002/jcla.24630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background LncRNAs are closely related to cutaneous melanoma (CM) tumorigenesis and metastasis, and it can affect the progression of CM by regulating cell proliferation, migration, invasion, apoptosis, and other cellular mechanisms. This study investigated the role of LINC00665 in CM. Methods Expressions of LINC00665, miR‐339‐3p, and tubulin beta chain (TUBB) in CM cells were analyzed by qRT‐PCR and/or Western blot. The LINC00665/miR‐339‐3p/TUBB targeting network was predicted by bioinformatics tools, screened out by Venn diagrams and analyzed by Pearson's correlation coefficients, followed by validation via dual‐luciferase reporter assay and/or pull‐down assay. Transfection of siLINC00665 or miR‐339‐3p inhibitor/mimic was conducted with CM cells whose viability, proliferation, migration, invasion, cell cycle progression, and apoptosis were measured by CCK‐8 assay, colony formation assay, wound healing assay, Transwell assay, and flow cytometry. The associations of TUBB with tumor biological characteristics and other proteins were analyzed by CanserSEA and String, respectively. Results High‐expressed LINC00665 was detected in CM cells. Silencing LINC00665 decreased CM cell viability; inhibited colony formation, cell cycle progression, migration and invasion; enhanced apoptosis; and upregulated miR‐339‐3p. LINC00665 targeted miR‐339‐3p which targeted TUBB. MiR‐339‐3p upregulation induced effects similar to the LINC00665‐silencing‐induced effects and could downregulate TUBB, which was associated with malignant behaviors and related to other five proteins. MiR‐339‐3p downregulation induced the opposite effects of what miR‐339‐3p upregulation induced, and the miR‐339‐3p downregulation‐induced effects could be reversed by LINC00665 silencing. Conclusion Silencing LINC00665 inhibits in vitro CM progression and induces apoptosis via the miR‐339‐3p/TUBB axis.
Collapse
Affiliation(s)
- Yi Liu
- Dermatological Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City, China
| | - Shanshan Ma
- Department of Dermatology & STD, QingDao No.8 People's Hospital, Qingdao, China
| | - Qichao Ma
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| | - Haigang Zhu
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| |
Collapse
|
19
|
Zhang YJ, Xie R, Jiang J, Zhai L, Yang CH, Zhang J, Wang X, Chen DX, Niu HT, Chen L. 5‑Aza‑dC suppresses melanoma progression by inhibiting GAS5 hypermethylation. Oncol Rep 2022; 48:123. [PMID: 35593315 PMCID: PMC9164261 DOI: 10.3892/or.2022.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The in‑depth study of melanoma pathogenesis has revealed that epigenetic modifications, particularly DNA methylation, is a universal inherent feature of the development and progression of melanoma. In the present study, the analysis of the tumor suppressor gene growth arrest‑specific transcript 5 (GAS5) demonstrated that its expression was downregulated in melanoma, and its expression level had a certain negative association with its methylation modification level. The promoter of GAS5 presented with detectable CpG islands, and methylation‑specific polymerase chain reaction analysis demonstrated that GAS5 was actually modified by methylation in melanoma tissues and cells; however, no methylation modification of GAS5 was detected in normal tissues. Following the treatment of melanoma cells with 5‑Aza‑2'‑deoxycytidine (5‑Aza‑dC), GAS5 methylation was significantly reversed. The analysis of melanoma cell proliferation revealed that 5‑Aza‑dC inhibited A375 and SK‑MEL‑110 cell proliferation in a time‑dependent manner. Further analysis of apoptosis demonstrated that 5‑Aza‑dC significantly increased the apoptosis level of the two cell lines. Moreover, migration analysis of melanoma cells revealed that 5‑Aza‑dC significantly reduced cell migration. Furthermore, 5‑Aza‑dC significantly decreased the invasive ability of the two cell lines. However, when the expression of GAS5 was silenced, the effects of 5‑Aza‑dC on cell proliferation, apoptosis, invasion and migration were not significant. Furthermore, the subcutaneous injection of A375 cells in nude mice successfully resulted in xenograft tumor formation. However, following an intraperitoneal injection of 5‑Aza‑dC, the volume and weight of xenograft tumors and Ki‑67 expression were significantly reduced, and caspase‑3 activity and GAS5 expression were enhanced; following the silencing of GAS5, the antitumor effect of 5‑Aza‑dC was significantly blocked. On the whole, the present study demonstrates that 5‑Aza‑dC inhibits the growth of melanoma, and its function may be related to the methylation modification of GAS5.
Collapse
Affiliation(s)
- Yang-Jie Zhang
- Department of Orthopedics (Spine Special), Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Ran Xie
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Jie Jiang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Li Zhai
- Department of Laboratory Testing, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Cong-Hui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Jing Zhang
- Department of Dentistry, Hospital of Traditional Chinese and Western Medicine, Kunming, Yunnan 650224, P.R. China
| | - Xi Wang
- Department of Pharmacy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Dong-Xue Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Hua-Tao Niu
- Department of Neurological Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
20
|
Lin G, Wu T, Gao X, He Z, Nong W. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors. Front Oncol 2022; 12:846497. [PMID: 35837102 PMCID: PMC9273967 DOI: 10.3389/fonc.2022.846497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With completing the whole genome sequencing project, awareness of lncRNA further deepened. The growth arrest-specific transcript 5 (GAS5) was initially identified in growth-inhibiting cells. GAS5 is a lncRNA (long non-coding RNA), and it plays a crucial role in various human cancers. There are small ORFs (open reading frames) in the exons of the GAS5 gene sequence, but they do not encode functional proteins. In addition, GAS5 is also the host gene of several small nucleolar RNAs (snoRNA). These snoRNAs are believed to play a suppressive role during tumor progression by methylating ribosomal RNA (rRNA). As a result, GAS5 expression levels in tumor tissues are significantly reduced, leading to increased malignancy, poor prognosis, and drug resistance. Recent studies have demonstrated that GAS5 can interact with miRNAs by base-pairing and other functional proteins to inhibit their biological functions, impacting signaling pathways and changing the level of intracellular autophagy, oxidative stress, and immune cell function in vivo. In addition, GAS5 participates in regulating proliferation, invasion, and apoptosis through the above molecular mechanisms. This article reviews the recent discoveries on GAS5, including its expression levels in different tumors, its biological behavior, and its molecular regulation mechanism in human cancers. The value of GAS5 as a molecular marker in the prevention and treatment of cancers is also discussed.
Collapse
Affiliation(s)
- Guohong Lin
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Tianzhun Wu
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Xing Gao
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Ziqin He
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Wenwei Nong
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Wenwei Nong,
| |
Collapse
|
21
|
Elayaraja P, Kumarganesh S, Martin Sagayam K, Dang H, Pomplun M. An efficient approach for detection and classification of cancer regions in cervical images using optimization based CNN classification approach. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cervical cancer can be cured if it is initially screened and giving timely treatment to the patients. This paper proposes an optimization technique for exposing and segmenting the cancer portion in cervical images using transform and windowing technique. The image processing steps are preprocessing, transformation, feature extraction, feature optimization, classification, and segmentation involved in the proposed work. Initially, Gabor transform is enforced on the cervical test image to modify the pixels associated with the spatial domain into multi-resolution domain. Subsequently, the parameters of the multi-level features are extracted from the Gabor transformed cervical image. Then, the extracted features are optimized using the Genetic Algorithm (GA), and the optimistic prominent part is classified by the Convolutional Neural Networks (CNN). Finally, the Finite Segmentation Algorithm (FSA) is used to detect and segment the cancer region in cervical images. The proposed GA based CNN classification method describes the effectual detection and classification of cervical cancer by the parameters such as sensitivity, specificity and accuracy. The experimental results are shown 99.37% of average sensitivity, 98.9% of average specificity and 99.21% of average accuracy, 97.8% of PPV, 91.8% of NPV, 96.8% of FPR and 90.4% of FNR.
Collapse
Affiliation(s)
- P. Elayaraja
- Department of Electronics and Communication Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamilnadu, India
| | - S. Kumarganesh
- Department of Electronics & Communication Engineering, Knowledge Institute of Technology, Salem, Tamilnadu, India
| | - K. Martin Sagayam
- Department of Electronics & Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Hien Dang
- Faculty of Computer Science and Engineering, Thuyloi University, Hanoi, Vietnam
- Department of Computer Science, University of Massachusetts Boston, MA, USA
| | - Marc Pomplun
- Department of Computer Science, University of Massachusetts Boston, MA, USA
| |
Collapse
|
22
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
23
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
24
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
25
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
26
|
Hegre SA, Samdal H, Klima A, Stovner EB, Nørsett KG, Liabakk NB, Olsen LC, Chawla K, Aas PA, Sætrom P. Joint changes in RNA, RNA polymerase II, and promoter activity through the cell cycle identify non-coding RNAs involved in proliferation. Sci Rep 2021; 11:18952. [PMID: 34556693 PMCID: PMC8460802 DOI: 10.1038/s41598-021-97909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
Proper regulation of the cell cycle is necessary for normal growth and development of all organisms. Conversely, altered cell cycle regulation often underlies proliferative diseases such as cancer. Long non-coding RNAs (lncRNAs) are recognized as important regulators of gene expression and are often found dysregulated in diseases, including cancers. However, identifying lncRNAs with cell cycle functions is challenging due to their often low and cell-type specific expression. We present a highly effective method that analyses changes in promoter activity, transcription, and RNA levels for identifying genes enriched for cell cycle functions. Specifically, by combining RNA sequencing with ChIP sequencing through the cell cycle of synchronized human keratinocytes, we identified 1009 genes with cell cycle-dependent expression and correlated changes in RNA polymerase II occupancy or promoter activity as measured by histone 3 lysine 4 trimethylation (H3K4me3). These genes were highly enriched for genes with known cell cycle functions and included 57 lncRNAs. We selected four of these lncRNAs-SNHG26, EMSLR, ZFAS1, and EPB41L4A-AS1-for further experimental validation and found that knockdown of each of the four lncRNAs affected cell cycle phase distributions and reduced proliferation in multiple cell lines. These results show that many genes with cell cycle functions have concomitant cell-cycle dependent changes in promoter activity, transcription, and RNA levels and support that our multi-omics method is well suited for identifying lncRNAs involved in the cell cycle.
Collapse
Affiliation(s)
- Siv Anita Hegre
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Helle Samdal
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Antonin Klima
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Endre B Stovner
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Kristin G Nørsett
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Lene Christin Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Department of Computer Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
27
|
Lv S, Pu X, Luo M, Wen H, Xu Z, Wei Q, Dang Q. Long noncoding RNA GAS5 interacts and suppresses androgen receptor activity in prostate cancer cells. Prostate 2021; 81:893-901. [PMID: 34184786 DOI: 10.1002/pros.24186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023]
Abstract
The androgen receptor (AR) plays an important role in the progression of prostate cancer and is the most important therapeutic target. However, androgen deprivation therapy will finally lead patients to progress to castration-resistant prostate cancer (CRPC). Here, we confirmed that GAS5, a long noncoding RNA, could interact and suppress AR transactivation in CRPC C4-2 cells. Knockdown GAS5 by short hairpin RNA would enhance the transcription of AR via promote AR recruitment to the promoter of its downstream target genes. Functionally, GAS5 overexpression inhibits cell proliferation partially through inhibiting AR transactivation in C4-2 cells. Moreover, knocking down GAS5 protects C4-2 cells from the docetaxel-induced cell apoptosis. In return, the suppressed AR was found to downregulate the GAS5 expression, which forms a feedback loop resulted in AR high transcription activity in CRPC. Collectively, our findings revealed the important role of GAS5 in AR axis activity regulation and CRPC progression. Targeting GAS5 to intervene the feedback loop might be a new potential therapeutic approach for the patients at CRPC stage.
Collapse
Affiliation(s)
- Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Pu
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mayao Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haoran Wen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuofan Xu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Dang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
29
|
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021; 22:ijms22136810. [PMID: 34202777 PMCID: PMC8267719 DOI: 10.3390/ijms22136810] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
- Correspondence:
| |
Collapse
|
30
|
Shan Y, Huang Y, Lee AM, Mentzer J, Ling A, Huang RS. A Long Noncoding RNA, GAS5 Can Be a Biomarker for Docetaxel Response in Castration Resistant Prostate Cancer. Front Oncol 2021; 11:675215. [PMID: 34094978 PMCID: PMC8176853 DOI: 10.3389/fonc.2021.675215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
While functional studies of long noncoding RNAs (lncRNAs) have mostly focused on how they influence disease diagnosis and prognosis, the pharmacogenomic relevance of lncRNAs remains largely unknown. Here, we test the hypothesis that the expression of a lncRNA, grow arrest-specific 5 (GAS5) can be a biomarker for docetaxel response in castration resistant prostate cancer (CRPC) using both prostate cancer (PCa) cell lines and CRPC patient datasets. Our results suggest that lower GAS5 expression is associated with docetaxel resistance in both PCa cell lines and CRPC patients. Further experiments also suggest that GAS5 is downregulated in docetaxel resistant CRPC cell lines, which reinforces its potential as a biomarker for docetaxel response. To examine the underlying biological mechanisms, we transiently knockdown GAS5 expression in PCa cell lines and then subject the cells to docetaxel treatment overtime. We did not observe a decrease in docetaxel induced growth inhibition or apoptosis in the siRNA treated cells. The findings suggest that there is no direct causal relationship between change in GAS5 expression and docetaxel response. Subsequently, we explored the indirect regulation among GAS5, ATP binding cassette subfamily B member 1 (ABCB1), and docetaxel sensitivity. We showed that transient knockdown GAS5 did not lead to significant changes in ABCB1 expression. Therefore, we rule out the hypothesis that GAS5 directly down regulate ABCB1 that lead to docetaxel sensitivity. In conclusion, our work suggests that GAS5 can serve as a predictive biomarker for docetaxel response in CRPC; however, the exact mechanism behind the observed correlation remain to be elucidated.
Collapse
Affiliation(s)
- Yuting Shan
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Adam M Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Mentzer
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
De Sanctis P, Filardo G, Abruzzo PM, Astolfi A, Bolotta A, Indio V, Di Martino A, Hofer C, Kern H, Löfler S, Marcacci M, Marini M, Zampieri S, Zucchini C. Non-Coding RNAs in the Transcriptional Network That Differentiates Skeletal Muscles of Sedentary from Long-Term Endurance- and Resistance-Trained Elderly. Int J Mol Sci 2021; 22:1539. [PMID: 33546468 PMCID: PMC7913629 DOI: 10.3390/ijms22041539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared-the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.
Collapse
Affiliation(s)
- Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Valentina Indio
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
| | - Alessandro Di Martino
- Second Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Christian Hofer
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy;
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| |
Collapse
|
32
|
Development and Validation of a Nine-Redox-Related Long Noncoding RNA Signature in Renal Clear Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6634247. [PMID: 33425212 PMCID: PMC7781722 DOI: 10.1155/2020/6634247] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Background Redox plays an essential role in the pathogeneses and progression of tumors, which could be regulated by long noncoding RNA (lncRNA). We aimed to develop and verify a novel redox-related lncRNA-based prognostic signature for clear cell renal cell carcinoma (ccRCC). Materials and Methods A total of 530 ccRCC patients from The Cancer Genome Atlas (TCGA) were included in this study. All the samples were randomly split into training and test group at a 1 : 1 ratio. Then, we screened differentially expressed redox-related lncRNAs and constructed a novel prognostic signature from the training group using the least absolute shrinkage and selection operation (LASSO) and COX regression. Next, to verify the accuracy of the signature, we conducted risk and survival analysis, as well as the construction of ROC curve, nomogram, and calibration curves in the training group, test group, and all samples. Finally, the redox gene-redox-related lncRNA interaction network was constructed, and gene set enrichment analysis (GSEA) was performed to investigate the status of redox-related functions between high/low-risk groups. Results A nine-redox-related lncRNA signature consisted of AC025580.3, COLCA1, AC027601.2, DLEU2, AC004918.3, AP006621.2, AL031670.1, SPINT1-AS1, and LAMA5-AS1 was significantly associated with overall survival in ccRCC patients. The signature proved efficient, and thus, a nomogram was successfully assembled. In addition, the GSEA results demonstrated that two major redox-related functions were enhanced in the high-risk group ccRCC patients. Conclusions Our findings robustly demonstrate that the nine-redox-related lncRNA signature could serve as an efficient prognostic indicator for ccRCC.
Collapse
|
33
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Chen W, Lv X, Wang Y, Zhang X, Wang S, Hussain Z, Chen L, Su R, Sun W. Transcriptional Profiles of Long Non-coding RNA and mRNA in Sheep Mammary Gland During Lactation Period. Front Genet 2020; 11:946. [PMID: 33101361 PMCID: PMC7546800 DOI: 10.3389/fgene.2020.00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sheep milk and related products have been growing in popularity around the world in recent years. However, the sheep milk industry is limited by low milk yield, and the molecular regulators of ovine lactation remain largely unknown. To investigate the transcriptomic basis of sheep lactation, RNA-Sequencing was used to explore the expression profiles of lncRNA and mRNA of the mammary gland in Hu sheep at three key time points during the lactation stage: 5 days before the expected date of parturition perinatal period (PP), 6 days after parturition early lactation (EL), and 25 days after parturition peak lactation (PL). A total of 1111, 688, and 54 differentially expressed (DE) lncRNAs as well as 1360, 660, and 17 DE mRNAs were detected in the EL vs PP, PL vs PP, and PL vs EL comparisons, respectively. Several prominent mRNAs (e.g., CSN1S1, CSN1S2, PAEP, CSN2, CSN3, and COL3A1) and lncRNAs (e.g., LNC_018483, LNC_005678, LNC_012936, and LNC_004856) were identified. Functional enrichment analysis revealed that several DE mRNAs and target genes of DE lncRNAs were involved in lactation-related pathways, such as MAPK, PPAR, and ECM-receptor interaction. This study enhances our understanding of how transcriptomic profiles change during the lactation period and pave the way for future studies examining sheep lactation.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinjun Zhang
- Animal Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| | - Rui Su
- Suzhou Taihu Dongshang Sheep Industry Development Co., Ltd., Suzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
36
|
Yang HC, Stern A, Chiu DTY. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2020; 44:285-292. [PMID: 33097441 PMCID: PMC8358196 DOI: 10.1016/j.bj.2020.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic hubs play a major role in the initiation and development of cancer. Oncogenic signaling pathways drive metabolic reprogramming and alter redox homeostasis. G6PD has potential oncogenic activity and it plays a pivotal role in cell proliferation, survival and stress responses. Aberrant activation of G6PD via metabolic reprogramming alters NADPH levels, leading to an antioxidant or a pro-oxidant environment which can either enhance DNA oxidative damage and genomic instability or initiate oncogenic signaling. Nutrient deprivation can rewire metabolism, which leads to mutations that determine a cancer cell's fate. Deregulated G6PD status and oxidative stress form a vicious cycle, which paves the way for cancer progression. This review aims to update and focus the potential role of G6PD in metabolic reprogramming and redox signaling in cancer.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pediatric Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
37
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
38
|
Agbana YL, Abi ME, Ni Y, Xiong G, Chen J, Yun F, Yi Z, Zhang Q, Yang Z, Kuang Y, Zhu Y. LINC00511 as a prognostic biomarker for human cancers: a systematic review and meta-analysis. BMC Cancer 2020; 20:682. [PMID: 32698787 PMCID: PMC7376647 DOI: 10.1186/s12885-020-07188-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/16/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA 00511 (LINC00511) is highly expressed in diverse cancers and has a correlation with poor clinical outcomes for cancer patients. In view of contradictory data among published data, we aim to evaluate the prognostic role of LINC00511 for cancer patients. METHODS In the present study, a meta-analysis of related studies has been performed to investigate the prognostic significance of LINC00511 in cancer patients. Relevant studies published before December 22, 2019 were systematically searched online in PubMed, EMBASE, Web of Science, and the Cochrane Library databases. The relationship between LINC00511 expression and cancer patients' survival, including overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS) and progression-free survival (PFS), was evaluated using pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs). The association between LINC00511 expression and clinicopathological features was assessed using odd ratios (ORs) and their corresponding 95% CIs. RESULTS A total of 14 eligible studies with 1883 patients were enrolled in the present meta-analysis. The results demonstrated that elevated expression of LINC00511 was significantly associated with poor OS (HR = 2.62; 95% CI: 2.00-3.45; p < 0.001), PFS (HR = 1.80; 95% CI: 1.29-2.51; p = 0.001) and DFS/RFS (HR = 2.90; 95% CI: 1.04-8.12; p = 0.04). Additionally, High LINC00511 expression was associated with large tumor size (OR = 3.10; 95% CI: 1.97-4.86; p < 0.00001), lymph node metastasis (OR = 3.11; 95% CI: 2.30-4.21; p < 0.00001), advanced clinical stage (OR = 3.95; 95% CI: 2.68-5.81; p < 0.00001), distant metastasis (OR = 2.39; 95% CI: 1.16-4.93; p = 0.02), and disease recurrence (OR = 4.62; 95% CI: 2.47-8.65; p < 0.00001). Meanwhile, no correlation was found between LINC00511 expression and age, gender, and histological grade. These findings were consolidated by the results of bioinformatics analysis. CONCLUSIONS Based on our findings, LINC00511 may serve as a novel prognostic biomarker for cancer patients.
Collapse
Grants
- 31660246, 31960200,81960462,31960145,81460421,81760455, 81560037,91660135 National Natural Science Foundation of China
- 2017FE468(-003), 2018FE468(-001), 2017FE468(-132) Yunnan Province, Kunming Medical University joint Foundation for Applied Basic Research
- National Natural Science Foundation of China
- Yunnan Province, Kunming Medical University joint Foundation for Applied Basic Research
Collapse
Affiliation(s)
- Yannick Luther Agbana
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Guohang Xiong
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Fang Yun
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032 Yunnan Province China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650032 Yunnan Province China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan Province China
| |
Collapse
|
39
|
Yang X, Xie Z, Lei X, Gan R. Long non-coding RNA GAS5 in human cancer. Oncol Lett 2020; 20:2587-2594. [PMID: 32782576 PMCID: PMC7400976 DOI: 10.3892/ol.2020.11809] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a group of >200-nucleotide ncRNA molecules. lncRNAs regulate several cell functions, such as proliferation, apoptosis, invasion and metastasis. Meanwhile, lncRNAs are abnormally expressed in human malignancies, where they suppress or promote tumor growth. The present study focused on growth arrest-specific transcript 5 (GAS5), a well-known lncRNA that acts as a tumor suppressor but is suppressed in multiple types of cancer, including mammary carcinoma, prostate cancer, colorectal cancer, gastric cancer, melanoma, esophageal squamous cell carcinoma, lung cancer, ovarian cancer, cervical cancer, gliomas, osteosarcoma, pancreatic cancer, bladder cancer, kidney cancer, papillary thyroid carcinoma, neuroblastoma, endometrial cancer and liver cancer. Notably, GAS5 is overexpressed in liver cancer, potentially functioning as an oncogene. In the present study, the diagnostic and therapeutic roles of GAS5 in different tumors were reviewed, with a summary of the potential clinical application of the lncRNA, which may help identify novel study directions for GAS5.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhizhong Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyong Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China.,Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Wu D, Gu B, Qian Y, Sun Y, Chen Y, Mao ZD, Shi YJ, Zhang Q. Long non-coding RNA growth arrest specific-5: a potential biomarker for early diagnosis of severe asthma. J Thorac Dis 2020; 12:1960-1971. [PMID: 32642099 PMCID: PMC7330345 DOI: 10.21037/jtd-20-213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). Methods Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. Results The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. Conclusions The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.
Collapse
Affiliation(s)
- Di Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bin Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
41
|
Xu W, Yan Z, Hu F, Wei W, Yang C, Sun Z. Long non-coding RNA GAS5 accelerates oxidative stress in melanoma cells by rescuing EZH2-mediated CDKN1C downregulation. Cancer Cell Int 2020; 20:116. [PMID: 32308561 PMCID: PMC7146881 DOI: 10.1186/s12935-020-01167-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background The significance of long non-coding RNAs (lncRNAs) in mediating oxidative stress of cancers has been implicated recently. This study proposed a potential therapeutic target lncRNA growth arrest-specific transcript 5 (GAS5) for melanoma, due to its crucial role in oxidative stress and apoptosis of melanoma cells by regulating the enhancer of zeste homolog 2 (EZH2)-mediated CDKN1C expression. Methods The lncRNA GAS5 expression pattern was examined in melanoma tissues and cells. The correlation of lncRNA GAS5, EZH2, and CDKN1C with survival rate of melanoma patients was analyzed. In melanoma cell lines, lncRNA GAS5 expression was overexpressed or knocked down to clarify its effects on cell viability, apoptosis, and oxidative stress. The interaction between lncRNA GAS5 and EZH2 was examined by RIP and RNA pull-down assays followed by verification of the target relationship between EZH2 and CDKN1C. Results High expression of EZH2 and poor expression of lncRNA GAS5 and CDKN1C was observed in melanoma tissues and found to be correlated with the reduction in survival expectancy of melanoma patients. Overexpression of lncRNA GAS5 or CDKN1C or EZH2 knockdown could inhibit cell viability but enhance melanoma cell apoptosis and oxidative stress. Importantly, lncRNA GAS5 attenuated EZH2 expression by recruiting E2F4 to the EZH2 promoter region and knockdown of EZH2 upregulated CDKN1C expression by inhibiting the H3K27me3. Conclusion The evidence provided by our study highlighted the involvement of lncRNA GAS5 in the translational suppression of EZH2 as well as the upregulation of CDKN1C, resulting in the promotion of melanoma cell apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Wei Xu
- 1Department of Dermatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Zeqiang Yan
- 2Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Fen Hu
- 3Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dongjin District, Xiangyang, 441021 People's Republic of China
| | - Wei Wei
- 3Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dongjin District, Xiangyang, 441021 People's Republic of China
| | - Chao Yang
- 3Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dongjin District, Xiangyang, 441021 People's Republic of China
| | - Zhihua Sun
- 3Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Dongjin District, Xiangyang, 441021 People's Republic of China
| |
Collapse
|
42
|
Kushwaha PP, Gupta S, Singh AK, Prajapati KS, Shuaib M, Kumar S. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer. Antioxid Redox Signal 2020; 32:267-284. [PMID: 31656079 DOI: 10.1089/ars.2019.7918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Reactive oxygen species (ROS) production occurs primarily in the mitochondria as a by-product of cellular metabolism. ROS are also produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in response to growth factors and cytokines by normal physiological signaling pathways. NADPH oxidase, a member of NADPH oxidase (NOX) family, utilizes molecular oxygen (O2) to generate ROS such as hydrogen peroxide and superoxide. Imbalance between ROS production and its elimination is known to be the major cause of various human diseases. NOX family proteins are exclusively involved in ROS production, which makes them attractive target(s) for the treatment of ROS-mediated diseases including cancer. Recent Advances: Molecules such as Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2), N-methyl-d-aspartic acid (NMDA) receptors, nuclear factor-kappaB, KRAS, kallistatin, gene associated with retinoic-interferon-induced mortality-19, and deregulated metabolic pathways are involved in ROS production in association with NADPH oxidase. Critical Issues: Therapeutic strategies targeting NADPH oxidases in ROS-driven cancers are not very effective due to its complex regulatory circuit. Tumor suppressor microRNAs (miRNAs) viz. miR-34a, miR-137, miR-99a, and miR-21a-3p targeting NADPH oxidases are predominantly downregulated in ROS-driven cancers. miRNAs also regulate other cellular machineries such as Keap1/Nrf2 pathway and NMDA receptors involved in ROS production and consequently drug resistance. Here, we discuss the structure, function, and metabolic role of NADPH oxidase, NOX family protein-protein interaction, their association with other pathways, and NADPH oxidase alteration by miRNAs. Moreover, we also discuss and summarize studies on NADPH oxidase associated with various malignancies and their therapeutic implications. Future Directions: Targeting NADPH oxidases through miRNAs appears to be a promising strategy for the treatment of ROS-driven cancer.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sanjay Gupta
- The James and Eilleen Dicke Laboratory, Department of Urology, Case Western Reserve University, Cleveland, Ohio
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| | - Atul Kumar Singh
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Kumari Sunita Prajapati
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Mohd Shuaib
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
43
|
Xie C, Wu W, Tang A, Luo N, Tan Y. lncRNA GAS5/miR-452-5p Reduces Oxidative Stress and Pyroptosis of High-Glucose-Stimulated Renal Tubular Cells. Diabetes Metab Syndr Obes 2019; 12:2609-2617. [PMID: 31849505 PMCID: PMC6910862 DOI: 10.2147/dmso.s228654] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. lncRNAs are demonstrated to improve the DN by changing the expression of miRNAs. This study was aimed to investigate the effect of lncRNA GAS5/miR-452-5p on the inflammation, oxidative stress and pyroptosis of high-glucose-induced renal tubular cells. METHODS HK-2 cells were induced by HG to simulate DN cells. RT-qPCR analysis confirmed the transfection effects and detected the expression of GAS5, NLRP3, caspase1, IL-1β, pro-caspase1, pro-IL-1β, GSDMD-N and miR-452-5p. Western blot analysis determined the protein expression of NLRP3, caspase1, IL-1β, pro-caspase1, pro-IL-1β and GSDMD-N. The expression of GSDMD-N was also verified by immunofluorescence. The levels of TNF-α, IL-6, MCP-1, ROS, MDA and SOD were measured by commercial assay kits, respectively. Dual-luciferase reporter assay indicated that GAS5 could combine with miR-452-5p. RESULTS GAS5 expression was decreased in HG-induced HK-2 cells. GAS5 overexpression could decrease the levels of TNF-α, IL-6, MCP-1, ROS and MDA and increase the levels of SOD. Moreover, GAS5 overexpression suppressed the expression of NLRP3, caspase1, IL-1β and GSDMD-N, and the results of immunofluorescence verified the above results. miR-452-5p interference could cause the same changes as GAS5 overexpression for HG-induced HK-2 cells, and GAS5 inhibition could reverse the effect of miR-452-5p interference. CONCLUSION GAS5 overexpression inhibited the inflammation, oxidative stress and pyroptosis of HG-induced renal tubular cells by downregulating the expression of miR-452-5p.
Collapse
Affiliation(s)
- Cuisong Xie
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Weiling Wu
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Ainan Tang
- Department of Endocrinology, Chenzhou 3rd People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Ning Luo
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| | - Yanfei Tan
- Department of Endocrinology, Chenzhou No.1 People’s Hospital, Chenzhou, Hunan423000, People’s Republic of China
| |
Collapse
|
44
|
Lu X, Chen F, Yuan D, He X, Liu X, Zi Y, Lu Y. Retracted Article: Exosome-derived PTENP1 suppresses cisplatin resistance of bladder cancer (BC) by suppressing cell proliferation, migration and inducing apoptosis via the miR-103a/PDCD4 axis. RSC Adv 2019; 9:37642-37651. [PMID: 35542268 PMCID: PMC9075761 DOI: 10.1039/c9ra07823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people. Chemotherapy drug resistance, for example, cisplatin (DDP) resistance, is a huge limitation for BC therapy. PTEN pseudogene-1 (PTENP1) has been identified as a significant biomarker of multiple cancers. Therefore, it is essential to illuminate the molecular mechanism of PTENP1 in BC cell DDP resistance and progression. Serum exosomes were isolated using an ExoQuick precipitation kit. Serum exosomes were round-shaped vesicles of 100 ± 60 nm in size. The expression of PTENP1 was down-regulated in serum exosomes isolated from cisplatin non-responsive patients compared with responsive patients. ROC curves certified the diagnostic value of PTENP1. Apparently, PTENP1 transfection inhibited DDP-resistant BC cell proliferation, migration, cisplatin resistance and facilitated apoptosis. Next, we discovered that PTENP1 was a sponge of miR-103a, while PDCD4 was a target of miR-103a. More importantly, PTENP1 regulated DDP-resistant cell viability, migration, apoptosis and cisplatin resistance by interacting with the miR-103a/PDCD4 axis. In addition, PTENP1 hindered tumor growth of cisplatin-resistant mice. Exosome-derived PTENP1 suppressed the DDP resistance of BC by inhibiting cell proliferation, migration and promoting apoptosis through regulating the miR-103a/PDCD4 axis, representing a targeted therapy for DDP-resistant BC patients.
Collapse
Affiliation(s)
- Xingre Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Fengyu Chen
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Diao Yuan
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiang He
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiaowen Liu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yunju Zi
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yu Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| |
Collapse
|
45
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
46
|
Goustin AS, Thepsuwan P, Kosir MA, Lipovich L. The Growth-Arrest-Specific ( GAS)-5 Long Non-Coding RNA: A Fascinating lncRNA Widely Expressed in Cancers. Noncoding RNA 2019; 5:ncrna5030046. [PMID: 31533355 PMCID: PMC6789762 DOI: 10.3390/ncrna5030046] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding genes in mammalian genomes. Most mammalian genomes harbor ~20,000 protein-coding genes that give rise to conventional messenger RNA (mRNA) transcripts. These coding genes exhibit sweeping evolutionary conservation in their ORFs. LncRNAs function via different mechanisms, including but not limited to: (1) serving as “enhancer” RNAs regulating nearby coding genes in cis; (2) functioning as scaffolds to create ribonucleoprotein (RNP) complexes; (3) serving as sponges for microRNAs; (4) acting as ribo-mimics of consensus transcription factor binding sites in genomic DNA; (5) hybridizing to other nucleic acids (mRNAs and genomic DNA); and, rarely, (6) as templates encoding small open reading frames (smORFs) that may encode short proteins. Any given lncRNA may have more than one of these functions. This review focuses on one fascinating case—the growth-arrest-specific (GAS)-5 gene, encoding a complicated repertoire of alternatively-spliced lncRNA isoforms. GAS5 is also a host gene of numerous small nucleolar (sno) RNAs, which are processed from its introns. Publications about this lncRNA date back over three decades, covering its role in cell proliferation, cell differentiation, and cancer. The GAS5 story has drawn in contributions from prominent molecular geneticists who attempted to define its tumor suppressor function in mechanistic terms. The evidence suggests that rodent Gas5 and human GAS5 functions may be different, despite the conserved multi-exonic architecture featuring intronic snoRNAs, and positional conservation on syntenic chromosomal regions indicating that the rodent Gas5 gene is the true ortholog of the GAS5 gene in man and other apes. There is no single answer to the molecular mechanism of GAS5 action. Our goal here is to summarize competing, not mutually exclusive, mechanistic explanations of GAS5 function that have compelling experimental support.
Collapse
Affiliation(s)
- Anton Scott Goustin
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
47
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Fang H, Jiang W, Jing Z, Mu X, Xiong Z. miR-937 regulates the proliferation and apoptosis via targeting APAF1 in breast cancer. Onco Targets Ther 2019; 12:5687-5699. [PMID: 31410016 PMCID: PMC6645689 DOI: 10.2147/ott.s207091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Previous research had shown that an imbalance in cell proliferation and apoptosis is a vital mechanism for tumorigenesis and cancer progression that may directly influence biological behaviors of cancer. microRNAs are associated with the occurrence and development of tumors. This study aimed to explore the influence of miR-937 on breast cancer regulation of APAF1 expression. Methods: Cancer Genome Altas microarray analysis (fold change > 2, p<0.05) was used to verify differentially expressed microRNAs and RT-qPCR was used to detect miR-937 mRNA level in breast cancer. Cell viability and proliferation were measured using CCK8 and colony formation assays, respectively, after the miR-937 mimics/inhibitors and their negative control were transfected into MCF7 cells. The variations in cell cycle and apoptosis were examined using flow cytometry. DAVID database was used to perform GO enrichment analysis. We use dual luciferase report system to detect the effect of miR-937 on the transcriptional activity of APAF1. APAF1 protein level was determined by Western blot assay. Results: miR-937 was up-regulated in breast cancer cell lines and high miR-937 expression is associated with a poorer survival rate in cancer patients. miR-937 overexpression promoted the viability, down-regulated the G1 phase ratios and increased the ability of colony formation in breast cancer cells. miR-937 inhibition inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. Our results showed that miR-937 targeted bind to the APAF1-3'UTR. APAF1 overexpression inhibited the viability and the ability of colony formation, promoted the apoptosis and up-regulated the G1 phase ratios. After cells were co-transfection miR-937 mimics and APAF1, cell apoptosis level was increased. Conclusion: APAF1 up-regulation or APAF1 down-regulation in breast cancer may regulate cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Huiying Fang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Wei Jiang
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhouhong Jing
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Xiaosong Mu
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| | - Zhongxun Xiong
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing City, 400000, People's Republic of China
| |
Collapse
|
49
|
Lin JX, Xie XS, Weng XF, Qiu SL, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM, Zheng CH. Overexpression of IC53d promotes the proliferation of gastric cancer cells by activating the AKT/GSK3β/cyclin D1 signaling pathway. Oncol Rep 2019; 41:2739-2752. [PMID: 30864700 PMCID: PMC6448126 DOI: 10.3892/or.2019.7042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclin‑dependent kinase 5 regulatory subunit‑associated protein 3 (CDK5RAP3 or C53) is involved in the development of various types of tumor, and alternative splicing of C53 results in numerous transcription variants that encode different isoforms. The present study aimed to clone human C53 isoform d (IC53d) and explore its role in the proliferation of gastric cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of IC53d in 80 primary gastric adenocarcinoma tissues and adjacent normal tissues. In addition, the association between IC53d and clinicopathological parameters was determined. Gastric cancer cell lines stably overexpressing IC53d were established to observe its effects on cell proliferation, invasion and migration, and on in vivo tumorigenicity, and the mechanism of action was explored. The results of the presen study demonstrated that IC53d was upregulated in gastric cancer tissues and was associated with tumor T‑stage. Furthermore, overexpression of IC53d promoted the proliferation, colony formation and G1/S phase transition of gastric cancer cells, leading to enhancement of tumorigenesis in vitro and in vivo. Overexpression of IC53d also promoted phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β), which increased the expression of cyclin D1. In addition, high cyclin D1 expression was associated with a significantly worse prognosis for patients compared with in patients with low cyclin D1 expression. These results indicated that IC53d may promote the phosphorylation of AKT and GSK3β, which in turn may increase cyclin D1 expression, enhancing G1/S phase transition, accelerating cell cycle progression, promoting the proliferation of gastric cancer cells, and inducing a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
50
|
Lin CY, Wang SS, Yang CK, Li JR, Chen CS, Hung SC, Chiu KY, Cheng CL, Ou YC, Yang SF. Impact of GAS5 genetic polymorphism on prostate cancer susceptibility and clinicopathologic characteristics. Int J Med Sci 2019; 16:1424-1429. [PMID: 31673232 PMCID: PMC6818208 DOI: 10.7150/ijms.38080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Down-regulation of Growth arrest-specific 5 (GAS5) is correlated with enhanced cell proliferation and poorer prognosis of prostate cancer. We aimed to investigate the effect of variant rs145204276 of GAS5 on the prostate cancer susceptibility and clinicopathologic characteristics. In this study, 579 prostate cancer patients who underwent robot-assisted radical prostatectomy and 579 healthy controls were included. The frequency of the allele del of rs145204276 were compared between the patients and the controls to evaluate the impact of tumor susceptibility and the correlation of clinicopathological variables. The results shown that patients who carries genotype ins/del or del/del at SNP rs145204276 showed decreased risk of pathological lymph node metastasis disease (OR=0.545, p=0.043) and risk of seminal vesicle invasion (OR=0.632, p=0.022) comparing to with genotype ins/ins. In the subgroup analysis of age, more significant risk reduction effects were noted over lymph node metastasis disease (OR=0.426, p=0.032) and lymphovascular invasion (OR=0.521, p=0.025). In conclusion, the rs145204276 polymorphic genotype of GAS5 can predict the risk of lymph node metastasis. This is the first study to report the correlation between GAS5 gene polymorphism and prostate cancer prognosis.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Surgical Critical Care, Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Cheng-Kuang Yang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chen-Li Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|