1
|
Ni Q, Yang H, Rao H, Zhang L, Xiong M, Han X, Deng B, Wang L, Chen J, Shi Y. The role of the C5a-C5aR pathway in iron metabolism and gastric cancer progression. Front Immunol 2025; 15:1522181. [PMID: 39850877 PMCID: PMC11754390 DOI: 10.3389/fimmu.2024.1522181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development. The impact of the complement system on iron metabolism and its role in gastric cancer progression is an area warranting further investigation. Our research demonstrates that the C5a-C5aR pathway promotes gastric cancer progression by enhancing iron acquisition in tumor cells through two mechanisms. First, it drives macrophage polarization toward the M2 phenotype, which has a strong iron-release capability. Second, it increases the expression of LCN2, a high-affinity iron-binding protein critical for iron export from tumor-associated macrophages, by activating endoplasmic reticulum stress in these cells. Both mechanisms facilitate the transfer of iron from macrophages to cancer cells, thereby promoting tumor cell proliferation. This study aims to elucidate the connection between the complement C5a-C5aR pathway and iron metabolism within the tumor microenvironment. Our data suggest a pivotal role of the C5a-C5aR pathway in tumor iron management, indicating that targeting its regulatory mechanisms may pave the way for future iron-targeted therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qinxue Ni
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Liyong Zhang
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Mengyuan Xiong
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Shi
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| |
Collapse
|
2
|
Yin X, Xing W, Yi N, Zhou Y, Chen Y, Jiang Z, Ma C, Xia C. Comprehensive analysis of lactylation-related gene sets and mitochondrial functions in gastric adenocarcinoma: implications for prognosis and therapeutic strategies. Front Immunol 2024; 15:1451725. [PMID: 39478860 PMCID: PMC11521809 DOI: 10.3389/fimmu.2024.1451725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Gastric adenocarcinoma (STAD) is characterized by high heterogeneity and aggressiveness, leading to poor prognostic outcomes worldwide. This study explored the prognostic significance of lactylation-related gene sets and mitochondrial functions in STAD by integrating large-scale genomic datasets, including TCGA and several GEO datasets. We utilized Spatial transcriptomics and single-cell RNA sequencing to delineate the tumor microenvironment and assess the heterogeneity of cellular responses within the tumor. Additionally, the study identified distinct molecular subtypes within STAD that correspond with unique survival outcomes and immune profiles, enhancing the molecular classification beyond current paradigms. Prognostic models incorporating these molecular markers demonstrated superior predictive capabilities over existing models across multiple validation datasets. Furthermore, our analysis of immune landscapes revealed that variations in lactylation could influence immune cell infiltration and responsiveness, pointing towards novel avenues for tailored immunotherapy approaches. These comprehensive insights provide a foundation for targeted therapeutic strategies and underscore the potential of metabolic and immune modulation in improving STAD treatment outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Cunbing Xia
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
4
|
Shojaeian A, Naeimi Torshizi SR, Parsapasand MS, Amjad ZS, Khezrian A, Alibakhshi A, Yun F, Baghaei K, Amini R, Pecic S. Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research. Discov Oncol 2024; 15:162. [PMID: 38743146 PMCID: PMC11093943 DOI: 10.1007/s12672-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S R Naeimi Torshizi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Sadat Parsapasand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khezrian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Alibakhshi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faye Yun
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA
| | - Kaveh Baghaei
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA.
| |
Collapse
|
5
|
Kırboğa KK, Rudrapal M. Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer. Assay Drug Dev Technol 2024; 22:181-191. [PMID: 38572922 DOI: 10.1089/adt.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.
Collapse
Affiliation(s)
- Kevser Kübra Kırboğa
- Bioengineering Department, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Türkiye
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| |
Collapse
|
6
|
Li Q, Yin LK. Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol 2023; 14:373-399. [PMID: 37970110 PMCID: PMC10631345 DOI: 10.5306/wjco.v14.i10.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor of the digestive system. Disulfidptosis is a new programmed cell death mechanism, although its specific mechanism in GC is incompletely understood. AIM In this study, we used bioinformatics analysis to explore a disulfidptosis-based predictive model related to GC prognosis and to identify potential therapeutic targets and sensitive drugs for GC. METHODS We extracted GC-related data from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software (version 4.2.1) was used for correlation analysis. RESULTS Through the above analysis, we found that the disulfidptosis related gene may be related to the prognosis of GC. Six genes, namely, PLS3, GRP, APOD, SGCE, COL8A1, and VAMP7, were found to constitute a predictive model for GC prognosis. APOD is a potential therapeutic target for treating GC. Bosutinib and other drugs are sensitive for the treatment of GC. CONCLUSION The results of this study indicate that disulfidptosis is related to the prognosis and treatment of GC, while APOD represents a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, Fushun Hospital of Traditional Chinese Medicine, Zigong 643200, Sichuan Province, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, Fushun People’s Hospital, Zigong 643200, Sichuan Province, China
| |
Collapse
|
7
|
Yin L, Duan W, Chen Y, Chen D, Wang Y, Guo S, Qin J. Biodegradable hydrogel from pectin and carboxymethyl cellulose with Silibinin loading for lung tumor therapy. Int J Biol Macromol 2023:125128. [PMID: 37268066 DOI: 10.1016/j.ijbiomac.2023.125128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Serious side effects of chemotherapy drugs greatly limited the anticancer performance, while targeted drug delivery could improve the therapeutic effect and reduce side effects. In this work, biodegradable hydrogel was fabricated from pectin hydrazide (pec-H) and oxidized carboxymethyl cellulose (DCMC) for localized Silibinin delivery in lung adenocarcinoma treatment. The self-healing pec-H/DCMC hydrogel showed blood compatibility and cell compatibility both in vitro and in vivo, and could be degraded by enzymes. The hydrogel also formed fast fit for injectable applications and showed sustained drug release characteristic sensitive to pH based on acylhydrzone bond cross-linked networks. The Silibinin, as a specific lung cancer inhibiting drug targets TMEM16A ion channel, was loaded into the pec-H/DCMC hydrogel to treat the lung cancer in mice model. The results showed that the hydrogel loaded Silibinin significantly enhanced the anti-tumor efficiency in vivo and greatly reduced the toxicity of the Silibinin. Based on the dual effect of improving efficacy and reducing side effects, the pec-H/DCMC hydrogel with Silibinin loading have broad application prospects to inhibit lung tumor growth in clinic.
Collapse
Affiliation(s)
- Liping Yin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenhao Duan
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
8
|
Saifi MA, Sathish G, Bazaz MR, Godugu C. Exploration of tumor penetrating peptide iRGD as a potential strategy to enhance tumor penetration of cancer nanotherapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188895. [PMID: 37037389 DOI: 10.1016/j.bbcan.2023.188895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Cancer therapy continues to be a huge challenge as most chemotherapeutic agents exert serious adverse effects on healthy organs. Chemotherapeutic agents lack selective targeting and even the existing target specific therapies are failing due to poor distribution into the tumor microenvironment. Nanotechnology offers multiple advantages to address the limitations encountered by conventional therapy. However, the delivery of nanotherapeutics to tumor tissue has not improved over the years partly due to the poor and inadequate distribution of nanotherapeutics into deeper tumor regions resulting in resistance and relapse. To curb the penetration concerns, iRGD was explored and found to be highly effective in improving the delivery of cancer nanomedicine. The preclinical observations are highly encouraging; however, the clinical translation is at a nascent stage. Based on this, we have made an elaborative effort to give a detailed account of various promising applications of iRGD to increase anticancer and tumor imaging potential. Importantly, we have comprehensively discussed the shortcomings and uncertainties associated with the clinical translation of iRGD-based therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Gauri Sathish
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
10
|
Yao Y, Hu X, Ma J, Wu L, Tian Y, Chen K, Liu B. Comprehensive analysis of autophagy-related clusters and individual risk model for immunotherapy response prediction in gastric cancer. Front Oncol 2023; 13:1105778. [PMID: 36937439 PMCID: PMC10022822 DOI: 10.3389/fonc.2023.1105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Autophagy can be triggered by oxidative stress and is a double-edged sword involved in the progression of multiple malignancies. However, the precise roles of autophagy on immune response in gastric cancer (GC) remain clarified. Methods We endeavor to explore the novel autophagy-related clusters and develop a multi-gene signature for predicting the prognosis and the response to immunotherapy in GC. A total of 1505 patients from eight GC cohorts were categorized into two subtypes using consensus clustering. We compare the differences between clusters by the multi-omics approach. Cox and LASSO regression models were used to construct the prognostic signature. Results Two distinct clusters were identified. Compared with cluster 2, the patients in cluster 1 have favorable survival outcomes and lower scores for epithelial-mesenchymal transition (EMT). The two subtypes are further characterized by high heterogeneity concerning immune cell infiltration, somatic mutation pattern, and pathway activity by gene set enrichment analysis (GSEA). We obtained 21 autophagy-related differential expression genes (DEGs), in which PTK6 amplification and BCL2/CDKN2A deletion were highly prevalent. The four-gene (PEA15, HSPB8, BNIP3, and GABARAPL1) risk signature was further constructed with good predictive performance and validated in 3 independent datasets including our local Tianjin cohort. The risk score was proved to be independent prognostic factor. A prognostic nomogram showed robust validity of GC survival. The risk score was significantly associated with immune cell infiltration status, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint molecules. Furthermore, the model was efficient for predicting the response to tumor-targeted agent and immunotherapy and verified by the IMvigor210 cohort. This model is also capable of discriminating between low and high-risk patients receiving chemotherapy. Conclusion Altogether, our exploratory research on the landscape of autophagy-related patterns may shed light on individualized therapies and prognosis in GC.
Collapse
|
11
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Niu Q, Sun Q, Bai R, Zhang Y, Zhuang Z, Zhang X, Xin T, Chen S, Han B. Progress of Nanomaterials-Based Photothermal Therapy for Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:10428. [PMID: 36142341 PMCID: PMC9499573 DOI: 10.3390/ijms231810428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the top 15 most prevalent cancers worldwide. However, the current treatment models for OSCC (e.g., surgery, chemotherapy, radiotherapy, and combination therapy) present several limitations: damage to adjacent healthy tissue, possible recurrence, low efficiency, and severe side effects. In this context, nanomaterial-based photothermal therapy (PTT) has attracted extensive research attention. This paper reviews the latest progress in the application of biological nanomaterials for PTT in OSCC. We divide photothermal nanomaterials into four categories (noble metal nanomaterials, carbon-based nanomaterials, metal compounds, and organic nanomaterials) and introduce each category in detail. We also mention in detail the drug delivery systems for PTT of OSCC and briefly summarize the applications of hydrogels, liposomes, and micelles. Finally, we note the challenges faced by the clinical application of PTT nanomaterials and the possibility of further improvement, providing direction for the future research of PTT in OSCC treatment.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
13
|
Aberrant Expression TFR1/CD71 in Gastric Cancer Identifies a Novel Potential Prognostic Marker and Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4257342. [PMID: 36082181 PMCID: PMC9448533 DOI: 10.1155/2022/4257342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors with poor prognosis. So far, other than the HER2, GC lacks effective therapeutic targets. Transferrin receptor 1 (TFR1) expressions are abnormally upregulated in various cancers for the satisfaction of iron demand increased. This study aimed to explore the expression and clinical value of TFR1 in GC. Methods A tissue microarray including GC tissues and matched noncancerous tissues from 155 GC patients were collected. Moreover, the level of TFR1 expression was detected by immunohistochemistry, and we also evaluated the relationship between TFR1 expression and the clinicopathologic characteristics. What is more, univariate analysis and multivariate analysis were used to evaluate the risk factors and independent risk factors affecting the prognosis of GC. Results We found that TFR1 was overexpressed in GC tissues compared with noncancerous tissues, and a significant relationship was found between TFR1 expression and age (P=0.001), Lauren type (P=0.008), T stage (P=0.003), HER2 (P=0.003), PD-L1 (P < 0.001), and the level of CA72-4 (P=0.028). Survival analysis confirmed that GC patients with positive TFR1 expression had a poorer OS than that with negative TFR1 expression, and TFR1 expression was an independent risk factor in GC. Furthermore, we also found that there was a significant difference between the TFR1-PD-L1− group and the TFR1+PD-L1+ group (P=0.023), while there was no significant difference between the TFR1-PD-L1− group and the TFR1+PD-L1− group (P=0.119), or between the TFR1-PD-L1− group and the TFR1-PD-L1+ group (P=0.396). Conclusions TFR1 was overexpressed in GC and its aberrant expression identifies a novel potential prognostic marker and therapeutic target. In addition, TFR1 expression may be associated with the immune microenvironment and suppress the immune response via regulating the PD-L1 expression.
Collapse
|
14
|
Chen S, Jundi D, Wang W, Ren C. LINC01857 promotes the proliferation, migration, and invasion of gastric cancer cells via regulating miR-4731-5p/HOXC6. Can J Physiol Pharmacol 2022; 100:689-701. [PMID: 35468304 DOI: 10.1139/cjpp-2021-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The great importance of long non-coding RNAs (lncRNAs) in tumorigenesis has been acknowledged gradually. LINC01857 is previously reported to be highly expressed in gastric cancer (GC), while the regulatory mechanism of LINC01857 in gastric cancer is largely unknown. In this study, we detected high expression of LINC01857 from the gastric cancer microarray GSE109476. Additionally, LINC01857 expression is remarkably up-regulated in gastric cancer cell lines (AGS, MKN-45, HGC-27 and SGC-7901) compared to the normal gastric mucosal cell line GES-1. Functionally, LINC01857 knockdown suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transformation (EMT) of GC cells, while LINC01857 overexpression promoted the proliferation, migration, invasion and EMT of GC cells. Furthermore, our data demonstrate that LINC01857 targeted miR-4731-5p and subsequently increased the expression of HOXC6 in GC. Rescue experiments showed that miR-4731-5p inhibition and HOXC6 overexpression could reverse the biological behavior of GC cells induced by LINC01857 knockdown. In conclusion, we demonstrated that LINC01857 sponged miR-4731-5p to promote the expression of HOXC6 and eventually acts as an oncogene in GC.
Collapse
Affiliation(s)
| | - Dai Jundi
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Wei Wang
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China;
| | - Chenglei Ren
- Shandong Province, Department of Gastrointestinal Surgery, Yantai, China, 264000;
| |
Collapse
|
15
|
Gao Z, Long Y, Wu Y, Pu Y, Xue F. LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer. Carcinogenesis 2022; 43:419-429. [PMID: 35136989 DOI: 10.1093/carcin/bgac018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in gastric cancer (GC) progression. And understanding the role of N6-methyladenosine (m6A) in tumorigenesis is an emerging field in cancer research. Here, we identified a novel oncogene, lncRNA LINC02253, in GC. LINC02253 expression was found to be significantly increased in GC. And LINC02253 expression was closely correlated with tumor size, lymph node metastasis and TNM stage of GC. Besides, GC patients with higher LINC02253 expression had worse 5-year overall survival. Additionally, LINC02253 promoted GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, we determined that LINC02253 increased KRT18 expression through enhancing the stability of KRT18 mRNA. Furthermore, LINC02253 increased m6A modification of KRT18 mRNA to stabilize KRT18 mRNA by recruiting m6A writer METTL3. And, rescue experiments revealed that KRT18 mediated the effects of LINC02253 on growth, migration and invasion of GC cells through activating MAPK/ERK signaling pathway. In conclusion, we demonstrates that oncogenic lncRNA LINC02253 positively regulates GC growth and metastasis via increasing METTL3-mediated mRNA stability of KRT18, extending the understanding of GC pathogenesis regulated by lncRNAs.
Collapse
Affiliation(s)
- Zengzhan Gao
- The second Department of general surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Yanbin Long
- The second Department of general surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Yunhua Wu
- The second Department of general surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Yansong Pu
- The second Department of general surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Fei Xue
- The second Department of general surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
16
|
Matus MF, Malola S, Häkkinen H. Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy. ACS NANOSCIENCE AU 2021; 1:47-60. [PMID: 37102116 PMCID: PMC10125177 DOI: 10.1021/acsnanoscienceau.1c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanodrug delivery systems (NDDSs) based on water-soluble and atomically precise gold nanoclusters (AuNCs) are under the spotlight due to their great potential in cancer theranostics. Gastric cancer (GC) is one of the most aggressive cancers with a low early diagnosis rate, with drug therapy being the primary means to overcome its increasing incidence. In this work, we designed and characterized a set of 28 targeted nanosystems based on Au144(p-MBA)60 (p-MBA = para-mercaptobenzoic acid) nanocluster to be potentially employed as combination therapy in GC treatment. The proposed multifunctional AuNCs are functionalized with cytotoxic drugs (5-fluorouracil and epirubicin) or inhibitors of different signaling pathways (phosphatidylinositol 3-kinases (PI3K)/protein kinase B (Akt)/mammalian target of the rapamycin (mTOR), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)) and RGD peptides as targeting ligands, and we studied the role of ligand ratio in their optimal structural conformation using peptide-protein docking and all-atom molecular dynamics (MD) simulations. The results reveal that the peptide/drug ratio is a crucial factor influencing the potential targeting ability of the nanosystem. The most convenient features were observed when the peptide amount was favored over the drug in most cases; however, we demonstrated that the system composition and the intermolecular interactions on the ligand shell are crucial for achieving the desired effect. This approach helps guide the experimental stage, providing essential information on the size and composition of the nanosystem at the atomic level for ligand tuning in order to increase the desired properties.
Collapse
|
17
|
The Effect and Mechanism of lncRNA NR2F1-As1/miR-493-5p/MAP3K2 Axis in the Progression of Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3881932. [PMID: 34335755 PMCID: PMC8294992 DOI: 10.1155/2021/3881932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Background LncRNA NR2F1-AS1 has been identified as an oncogene in some human tumors, such as breast cancer, nonsmall cell lung cancer, and esophageal squamous cell carcinoma. Nonetheless, whether NR2F1-AS1 is involved in the progression of gastric cancer (GC) remains unknown. Methods The expression patterns of NR2F1-AS1, MAP3K2, and miR-493-5p in GC tissues and cells were detected by RT-qPCR. The protein expression of MAP3K2 was assessed by the Western blotting assay. The MTT assay and flow cytometry were performed to measure cell proliferation and cell apoptosis in GC cells. The transwell assay was adopted to assess cell migration in GC cells. The relationship between NR2F1-AS1, MAP3K2, and miR-493-5p was verified by a dual-luciferase reporter assay. Results The increased NR2F1-AS1 and MAP3K2 expressions were discovered in GC tissues and cells compared with control groups. Knockdown of NR2F1-AS1 and MAP3K2 dramatically suppressed cell proliferation and migration, while it enhanced cell apoptosis in GC cells. In addition, NR2F1-AS1 was found to be a sponge of miR-493-5p, and MAP3K2 was a downstream gene of miR-493-5p. Moreover, the expression of MAP3K2 was notably reduced by miR-493-5p, and NR2F1-AS1 counteracted the inhibition of miR-493-5p. Conclusion Thus, NR2F1-AS1 was verified to regulate GC cell progression by sponging miR-493-5p to upregulate MAP3K2 expression.
Collapse
|
18
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Kong X, Lu P, Liu C, Guo Y, Yang Y, Peng Y, Wang F, Bo Z, Dou X, Shi H, Meng J. A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Mol Med Rep 2021; 23:362. [PMID: 33760188 PMCID: PMC7985997 DOI: 10.3892/mmr.2021.12001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) inhibitors for treatment of a various types of cancers have revolutionized cancer immunotherapy. However, PD-1/PD-L1 inhibitors are associated with a low response rate and are only effective on a small number of patients with cancer. Development of an anti-PD-1/PD-L1 sensitizer for improving response rate and effectiveness of immunotherapy is a challenge. The present study reviews the synergistic effects of PD-1/PD-L1 inhibitor with oncolytic virus, tumor vaccine, molecular targeted drugs, immunotherapy, chemotherapy, radiotherapy, intestinal flora and traditional Chinese medicine, to provide information for development of effective combination therapies.
Collapse
Affiliation(s)
- Xianbin Kong
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chuanxin Liu
- Department of Pharmaceutical Analysis, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Yuzhu Guo
- Department of Radiotherapy, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yuying Yang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yingying Peng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Fangyuan Wang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhichao Bo
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaoxin Dou
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Haoyang Shi
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jingyan Meng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|