1
|
Lu X, Friedrich LJ, Efferth T. Natural products targeting tumour angiogenesis. Br J Pharmacol 2025; 182:2094-2136. [PMID: 37680009 DOI: 10.1111/bph.16232] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Tumour angiogenesis is the formation of new blood vessels to support the growth of a tumour. This process is critical for tumour progression and metastasis, making it an attractive approach to cancer therapy. Natural products derived from plants, animals or microorganisms exert anti-angiogenic properties and can be used to inhibit tumour growth and progression. In this review, we comprehensively report on the current status of natural products against tumour angiogenesis from four perspectives until March 2023: (1) the role of pro-angiogenic factors and antiangiogenic factors in tumour angiogenesis; (2) the development of anti-tumour angiogenesis therapy (monoclonal antibodies, VEGFR-targeted small molecules and fusion proteins); (3) the summary of anti-angiogenic natural agents, including polyphenols, polysaccharides, alkaloids, terpenoids, saponins and their mechanisms of action, and (4) the future perspectives of anti-angiogenic natural products (bioavailability improvement, testing of dosage and side effects, combination use and discovery of unique natural-based compounds). Our review aims to better understand the potential of natural products for drug development in inhibiting tumour angiogenesis and further aid the effective transition of these outcomes into clinical trials. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lara Johanna Friedrich
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Deng Z, Xiao S, He YY, Guo Y, Tang LJ. Sorafenib-induced cardiovascular toxicity: A cause for concern. Chem Biol Interact 2025; 410:111388. [PMID: 39889871 DOI: 10.1016/j.cbi.2025.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Sorafenib, a multi-target tyrosine kinase inhibitor, is primarily used to manage hepatocellular carcinoma, advanced renal cell carcinoma, and differentiated thyroid cancer. Although this drug extends patient survival and slows tumor progression, its cardiovascular toxicity substantially impacts of quality of life. Effective the prevention and treatment of the resulting complications are needed. The mechanisms underlying of sorafenib-induced cardiovascular toxicity are complex, and remain incompletely understood despite extensive research. In this review, we discuss the incidence of sorafenib-induced cardiovascular toxicity, including hypertension, thromboembolism, and heart failure in clinical settings. We also summarize current research on the underlying mechanisms, such as ferroptosis, necroptosis, autophagy, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we explore studies regarding the protective effects of various drugs against sorafenib-induced cardiovascular toxicity. This in-depth synthesis of data regarding the clinical manifestations and mechanisms of sorafenib-induced cardiotoxicity provides a valuable scientific foundation for developing therapeutic drugs to combat these adverse effects.
Collapse
Affiliation(s)
- Zheng Deng
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Xiao
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying-Ying He
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu Guo
- Institute of Pharmacy and Pharmacology, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Li-Jing Tang
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Fu ZH, Zhao C, Wang Y, Zhang L, Wang L. Pharmacovigilance imbalance analysis of VEGFR-TKI-related taste and smell disorders. Sci Rep 2025; 15:3118. [PMID: 39856344 PMCID: PMC11760945 DOI: 10.1038/s41598-025-87678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Taste and smell disorders (TSDs) can induce diminished interest in food, inadequate nutrient intake, and emotional irregularities, particularly among cancer patients. Previous research found that the main culprits of TSD development in cancer patients are cytotoxic drugs such as taxol, fluorouracil, cyclophosphamide, and anthracycline-based drugs. The advent of targeted drugs such as vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) has significantly extended the survival time of cancer patients, and thus widely used in clinical practice. However, the association between the use of VEGFR-TKIs and the development of TSDs havs not been studied.The adverse event(AE) reports related to VEGFR-TKIs were downloaded from the FDA Adverse Event Reporting System (FAERS) database. Disproportionality analysis was conducted to assess the correlation between VEGFR-TKIs and TSDs. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs) were used to analyze the AEs of TSDs. The study found a statistically significant correlation between the occurrence of TSDs and the use of VEGF-TKIs (cabozantinib, axitinib, pazopanib, sunitinib, nintedanib, and lenvatinib).However, the instructions for Nintedanib, Sorafenib and Lenvatinib were not mentioned. Capbottinib demonstrated the highest number of reports(1790 cases), also with the strongest association (ROR 95%CI-low = 16.51; PRR = 16.18; IC025 = 3.96) when analyzing the narrow SMQ of TSDs. Dysgeusia, taste disorder, and ageusia were the most commonly reported preferred terms (PTs) in VEGFR-TKI-related TSDs, accounting for more than 90% of the reported cases. Cabozantinib showed the highest number of reports and strongest correlation with ageusia, taste disorder, parosmia, and anosmia. The study found significant association between the reports of TSDs and the use of VEGFR-TKIs, indicating the monitoring of TSD development and appropriate management in clinical is necessary.
Collapse
Affiliation(s)
- Zhong-Hua Fu
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Chenglong Zhao
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yaqin Wang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Lei Zhang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Lei Wang
- Department of pharmacy, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2025; 99:67-81. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
5
|
Wang S, Ji F, Gao X, Li Z, Lv S, Zhang J, Luo J, Li D, Yan J, Zhang H, Fang K, Wu L, Li M. Tyrosine Kinase Inhibitor Lenvatinib Causes Cardiotoxicity by Inducing Endoplasmic Reticulum Stress and Apoptosis through Activating ATF6, IRE1α and PERK Signaling Pathways. Recent Pat Anticancer Drug Discov 2025; 20:168-184. [PMID: 38994620 DOI: 10.2174/0115748928265981231204044653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Lenvatinib is a tyrosine kinase inhibitor that can improve progression-free survival in patients with thyroid cancer and hepatocellular carcinoma. However, it is limited by adverse cardiovascular events, including hypertension and cardiac dysfunction. Activation of endoplasmic reticulum stress is involved in cardiomyocyte apoptosis. OBJECTIVE This study aimed to confirm whether the cardiotoxicity of lenvatinib is associated with endoplasmic reticulum stress by targeting the activating transcription factor 6 (ATF6), inositol- requiring enzyme 1α (IRE1α) and protein kinase RNA-like ER kinase (PERK) signaling pathways. METHODS Male C57/BL6 mice were intragastric administration with 30 mg/kg/day lenvatinib. Electrocardiography (ECG) and echocardiography were used to detect arrhythmias and cardiac function. Neonatal rat cardiomyocytes were treated with lenvatinib for 48h. Cell counting kit (CCK8), 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFHDA), Hoechst 33258 and dihydrorhodamine 123 were respectively used for evaluating cell viability, the level of reactive oxygen species (ROS), nuclear morphological changes and mitochondrial membrane potential (MMP) level. RESULTS Lenvatinib remarkably decreased the posterior wall thickness of left ventricle during diastole and systole but caused little decrease to the left ventricular ejection fraction (LVEF, %). Furthermore, lenvatinib greatly prolonged the corrected QT interval (QTc) and altered the morphology of cardiomyocytes. No significant difference in fibrosis was found in mouse cardiac slices. Lenvatinib upregulates apoptosis-related protein expression. In addition, lenvatinib increased ERS-related proteins expression (GRP78, CHOP, and ATF6) and enhanced PERK phosphorylation. In neonatal rat cardiac myocytes, lenvatinib markedly decreased the viability of cardiomyocytes and induced apoptosis. Furthermore, ROS production increased and MMP decreased. Similar to the mice experiment, lenvatinib caused upregulation of apoptosis-related and ERS-related proteins and increased the phosphorylation levels of PERK and IRE1α. CONCLUSION Lenvatinib-induced cardiotoxicity is associated with ERS-induced apoptosis by targeting the ATF6, IRE1α, and PERK signaling pathways.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Fang Ji
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoli Gao
- Department of General Surgery (Breast Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhiyi Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Si Lv
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiarui Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Yan
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Huayang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kaicheng Fang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
6
|
Camarda ND, Lu Q, Meola DM, Man JJ, Song Z, Travers RJ, Lopez KE, Powers SN, Papanastasiou M, DeRuff KC, Mullahoo J, Egri SB, Davison D, Sebastiani P, Eblen ST, Buchsbaum RJ, Huggins GS, London CA, Jaffe JD, Upshaw JN, Yang VK, Jaffe IZ. Identifying mitigating strategies for endothelial cell dysfunction and hypertension in response to VEGF receptor inhibitors. Clin Sci (Lond) 2024; 138:1131-1150. [PMID: 39282930 PMCID: PMC11938066 DOI: 10.1042/cs20240537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients. α-Adrenergic-antagonists were identified as drugs that most oppose the VEGFRi proteomic signature. Doxazosin, one such α-antagonist, prevented EC dysfunction in murine, canine, and human aortic ECs. In mice with sorafenib-induced-hypertension, doxazosin mitigated EC dysfunction but not hypertension or glomerular endotheliosis, while lisinopril mitigated hypertension and glomerular endotheliosis without impacting EC function. Hence, reversing EC dysfunction was insufficient to mitigate VEGFRi-induced-hypertension in this mouse model. Canine cancer patients with VEGFRi-induced-hypertension were randomized to doxazosin or lisinopril and both agents significantly decreased SBP. The canine clinical trial supports safety and efficacy of doxazosin and lisinopril as antihypertensives for VEGFRi-induced-hypertension and the potential of trials in canines with spontaneous cancer to accelerate translation. The overall findings demonstrate the utility of phosphoproteomics to identify EC-protective agents to mitigate cardio-oncology side effects.
Collapse
Affiliation(s)
- Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Dawn M. Meola
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Zeyuan Song
- Institute for Clinical research and Health Policy Studies, Tufts Medical Center
| | - Richard J. Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | | | - Sarah N. Powers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | | | | | | | | - Paola Sebastiani
- Institute for Clinical research and Health Policy Studies, Tufts Medical Center
| | - Scott T. Eblen
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel J. Buchsbaum
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Gordon S. Huggins
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Cheryl A. London
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | - Vicky K. Yang
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
7
|
Leiva O, Zarif TE, Alvarez-Cardona J. Gastrointestinal Cancer Therapy and Cardiotoxicity. Curr Treat Options Oncol 2024; 25:1203-1209. [PMID: 39102169 DOI: 10.1007/s11864-024-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Gastrointestinal cancers are a heterogenous group of cancers that share common risk factors with cardiovascular disease. Therapy for gastrointestinal cancers have improved cancer-specific outcomes at the cost of cardiotoxicity. The most common cardiotoxic therapies utilized in gastrointestinal cancers include conventional chemotherapy (including fluoropyrimidines and anthracyclines), targeted therapies including anti-vascular endothelial growth factor (VEGF) therapy and tyrosine kinase inhibitors (TKI), and immunotherapy. It is important for clinicians managing patients with gastrointestinal cancers to be aware of potential cardiotoxicity associated with these agents.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, U.S.A
| | - Talal El Zarif
- Department of Medicine, Yale New Haven Health, New Haven, CT, U.S.A
| | - Jose Alvarez-Cardona
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, U.S.A..
| |
Collapse
|
8
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhu H, Wen B, Xu J, Zhang Y, Xu L, Huang Y. Efficacy and Safety of Pharmacological Treatment in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2024; 17:811. [PMID: 38931478 PMCID: PMC11206895 DOI: 10.3390/ph17060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Complex regional pain syndrome (CRPS) is a disabling condition that usually affects the extremities after trauma or surgery. At present, there is no FDA-approved pharmacological treatment for patients with CRPS. We performed this systematic review and meta-analysis to evaluate the efficacy and safety of pharmacological therapies and determine the best strategy for CRPS. We searched the databases, including PubMed, Embase, Cochrane, Web of Science, Scopus, and ClinicalTrials.gov, for published eligible randomized controlled trials (RCTs) comparing pharmacological treatment with placebo in CRPS patients. Target patients were diagnosed with CRPS according to Budapest Criteria in 2012 or the 1994 consensus-based IASP CRPS criteria. Finally, 23 RCTs comprising 1029 patients were included. We used the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach to rate certainty (confidence in evidence and quality of evidence). Direct meta-analysis showed that using bisphosphonates (BPs) (mean difference [MD] -2.21, 95% CI -4.36--0.06, p = 0.04, moderate certainty) or ketamine (mean difference [MD] -0.78, 95% CI -1.51--0.05, p = 0.04, low certainty) could provide long-term (beyond one month) pain relief. However, there was no statistically significant difference in the efficacy of short-term pain relief. Ketamine (rank p = 0.55) and BPs (rank p = 0.61) appeared to be the best strategies for CRPS pain relief. Additionally, BPs (risk ratio [RR] = 1.86, 95% CI 1.34-2.57, p < 0.01, moderate certainty) and ketamine (risk ratio [RR] = 3.45, 95% CI 1.79-6.65, p < 0.01, moderate certainty) caused more adverse events, which were mild, and no special intervention was required. In summary, among pharmacological interventions, ketamine and bisphosphonate injection seemed to be the best treatment for CRPS without severe adverse events.
Collapse
Affiliation(s)
- He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH 44195, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Yuelun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Stefanini B, Tovoli F, Trevisani F, Marseglia M, Di Costanzo GG, Cabibbo G, Sacco R, Pellizzaro F, Pressiani T, Chen R, Ponziani FR, Foschi FG, Magini G, Granito A, Piscaglia F. Prediction of cardiovascular risk in patients with hepatocellular carcinoma receiving anti-angiogenic drugs: lessons from sorafenib. Intern Emerg Med 2024; 19:1151-1160. [PMID: 38551755 PMCID: PMC11186950 DOI: 10.1007/s11739-024-03578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/05/2024] [Indexed: 06/20/2024]
Abstract
Antiangiogenics are associated with an increased risk of major adverse cardiac and cerebrovascular events (MACE). The identification of at-risk subjects is relevant in the case of hepatocellular carcinoma (HCC), for which anti-angiogenic TKIs and bevacizumab are used in first and subsequent lines of therapy, to select alternative drugs for patients with excessive risk. We verified the ability to predict MACE in sorafenib-treated patients of the 2022 European Society of Cardiology (ESC-2022) score for anti-angiogenics and the recently proposed CARDIOSOR score. A retrospective analysis was conducted of prospectively collected data of the ARPES and ITA.LI.CA databases. All patients received sorafenib for unresectable HCC from 2008 to 2018. Baseline information to calculate the ESC-2022 and CARDIOSOR scores and registration of evolutive events (including MACE) were available for all patients. The predictive ability of both scores was verified using competing risk regressions and tests for goodness of fit. This study included 843 patients (median follow-up 11.3 months). Thirty-four (4.0%) patients presented a MACE. The four-tier ESC-2022 classification showed a progressive risk increase for every class (cumulative risk 1.7%, 2.7%, 4.3%, and 15.0% in the low, medium, high, and high-risk tiers, respectively). The dichotomous CARDIOSOR scale identified a high-risk group with a fourfold increased risk of MACE (sHR 4.66, p = 0.010; cumulative risk 3.8% and 16.4%). ESC-2022 showed a better goodness of fit compared to the CARDIOSOR score [C-index 0.671 (0.583-0.758) vs 0.562 (0.501-0.634), p = 0.021], but this gap was eliminated using the linear version of CARDIOSOR. Both the ESC-2022 and CARDIOSOR scores discriminated patients at increased risk for MACE. The use of these scores in clinical practice should be encouraged, since therapeutic measures can mitigate the cardiovascular risk.
Collapse
Affiliation(s)
- Bernardo Stefanini
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy.
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Franco Trevisani
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Mariarosaria Marseglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | | | - Giuseppe Cabibbo
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, PROMISE, Gastroenterology & Hepatology Unit, University of Palermo, Palermo, Italy
| | - Rodolfo Sacco
- Gastroenterology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Gastroenterology and Digestive Endoscopy Unit, Foggia University Hospital, Foggia, Italy
| | - Filippo Pellizzaro
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Unit, University of Padova, Padua, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Rusi Chen
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Francesca Romana Ponziani
- Department of Specialty and Transplant Medicine, Internal Medicine and Gastroenterology, Gastroenterology, Hepatology and Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Roma- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giulia Magini
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Granito
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
11
|
Florek K, Mendyka D, Gomułka K. Vascular Endothelial Growth Factor (VEGF) and Its Role in the Cardiovascular System. Biomedicines 2024; 12:1055. [PMID: 38791016 PMCID: PMC11117514 DOI: 10.3390/biomedicines12051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with ischemic heart disease (IHD) as the most common. Ischemia-induced angiogenesis is a process in which vascular endothelial growth factor (VEGF) plays a crucial role. To conduct research in the field of VEGF's association in cardiovascular diseases, it is vital to understand its role in the physiological and pathological processes in the heart. VEGF-based therapies have demonstrated a promising role in preclinical studies. However, their potential in human therapies is currently under discussion. Furthermore, VEGF is considered a potential biomarker for collateral circulation assessment and heart failure (HF) mortality. Additionally, as VEGF is involved in angiogenesis, there is a need to elucidate the impact of VEGF-targeted therapies in terms of cardiovascular side effects.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Dominik Mendyka
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
12
|
Zeng J, Deng Q, Chen Z, Yan S, Dong Q, Zhang Y, Cui Y, Li L, He Y, Shi J. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021-2023). Bioorg Chem 2024; 146:107278. [PMID: 38484586 DOI: 10.1016/j.bioorg.2024.107278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.
Collapse
Affiliation(s)
- Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuang Yan
- Sichuan University of Arts and Science, DaZhou 635000, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, Sichuan 611137, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
13
|
Abboud K, Umoru G, Trachtenberg B, Ajewole V. Real-world data of cardio-oncologic interventions for cardiovascular adverse events with oral oncolytics. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:22. [PMID: 38594785 PMCID: PMC11003064 DOI: 10.1186/s40959-024-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Oral cancer therapy-related cardiovascular (CV) toxicity has a wide variety of presentations including arrhythmia, cardiomyopathy, and myocardial infarction, but clinical evidence related to its management is limited. The purpose of this IRB-approved, single-center, retrospective, cohort study was to characterize cardio-oncologic interventions for CV adverse events related to oral oncolytics. METHODS The cohort included 67 patients who were admitted to a multi-hospital health system between June 1, 2016 and July 31, 2021, had at least one medical record order of oral oncolytics considered to have cardiotoxic potential, and had an ICD10 code for a cardiotoxic event added to their electronic medical records after initiation of oral oncolytics. RESULTS The majority (97%) had pre-existing cardiovascular disease (CVD) or a CV risk factor. The three most common classes of oral oncolytics were aromatase inhibitors (36%), BCR-ABL inhibitors (16%), and VEGFR inhibitors (13%). New-onset or worsening heart failure (HF) (n = 31), which occurred after a median of 148 days (Interquartile range (IQR) 43-476 days) was the most common cardiotoxic event. The most frequent interventions were pharmacological treatment of the CV adverse event (n = 44) and treatment interruption (n = 18), but guideline-directed medication therapy for HF could be further optimized. CONCLUSION Pre-existing CVD or CV risk factors predispose oncology patients to CV adverse events. Real-world practice reveals that CV adverse events require temporary interruption of treatment and initiation of pharmacologic treatment. A multidisciplinary, patient-centered approach that includes discussion of risks/benefits of treatment continuation, and initiation of guideline-directed treatment is recommended until high-quality, drug-specific data for monitoring and treatment become available.
Collapse
Affiliation(s)
- Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Barry Trachtenberg
- Heart Failure and Transplantation Cardiology, Houston Methodist Hospital, Houston, TX, USA
| | - Veronica Ajewole
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA.
- Texas Southern University College of Pharmacy & Health Sciences, Houston, TX, USA.
| |
Collapse
|
14
|
Yu Z, Wu Z, Zhou M, Chen L, Li W, Liu G, Tang Y. mtADENet: A novel interpretable method integrating multiple types of network-based inference approaches for prediction of adverse drug events. Comput Biol Med 2024; 168:107831. [PMID: 38081118 DOI: 10.1016/j.compbiomed.2023.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Identification of adverse drug events (ADEs) is crucial to reduce human health risks and accelerate drug safety assessment. ADEs are mainly caused by unintended interactions with primary or additional targets (off-targets). In this study, we proposed a novel interpretable method named mtADENet, which integrates multiple types of network-based inference approaches for ADE prediction. Different from phenotype-based methods, mtADENet introduced computational target profiles predicted by network-based methods to bridge the gap between chemical structures and ADEs, and hence can not only predict ADEs for drugs and novel compounds within or outside the drug-ADE association network, but also provide insights for the elucidation of molecular mechanisms of the ADEs caused by drugs. We constructed a series of network-based prediction models for 23 ADE categories. These models achieved high AUC values ranging from 0.865 to 0.942 in 10-fold cross validation. The best model further showed high performance on four external validation sets, which outperformed two previous network-based methods. To show the practical value of mtADENet, we performed case studies on developmental neurotoxicity and cardio-oncology, and over 50 % of predicted ADEs and targets for drugs and novel compounds were validated by literature. Moreover, mtADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer/). In summary, mtADENet would be a powerful tool for ADE prediction and drug safety assessment in drug discovery and development.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Long Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
15
|
Chen YC, Chen JH, Hsieh FI. Major adverse cardiovascular events of vascular endothelial growth factor tyrosine kinase inhibitors among patients with different malignancy: A systemic review and network meta-analysis. J Chin Med Assoc 2024; 87:48-57. [PMID: 37991373 DOI: 10.1097/jcma.0000000000001026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) are a common cancer treatment. However, the pharmacologic characteristics of VEGF-TKIs may influence cardiovascular risks. The relative risks of major adverse cardiovascular events (MACEs) associated with VEGF-TKIs are poorly understood. METHODS We searched PubMed, Embase, and ClinicalTrials.gov from inception until August 31, 2021, for phase II/III randomized controlled trials of 11 VEGF-TKIs (axitinib, cabozantinib, lenvatinib, pazopanib, ponatinib, ripretinib, regorafenib, sorafenib, sunitinib, tivozanib, and vandetanib). The endpoints were heart failure, thromboembolism, and cardiovascular death. The Mantel-Haenszel method was used to calculate the risk of VEGF-TKI among users by comparing it to nonusers. Pairwise meta-analyses with a random-effects model were used to estimate the risks of the various VEGF-TKIs. We estimated ranked probability with a P-score and assessed credibility using the Confidence in Network Meta-Analysis framework. RESULTS We identified 69 trials involving 30 180 patients with cancer. The highest risk of MACEs was associated with high-potency tivazonib (odds ratio [OR]: 3.34), lenvatinib (OR: 3.26), and axitinib (OR: 2.04), followed by low-potency pazopanib (OR: 1.79), sorafenib (OR: 1.77), and sunitinib (OR: 1.66). The risk of heart failure significantly increased in association with less-selective sorafenib (OR: 3.53), pazopanib (OR: 3.10), and sunitinib (OR: 2.65). The risk of thromboembolism significantly increased in association with nonselective lenvatinib (OR: 3.12), sorafenib (OR: 1.54), and sunitinib (OR: 1.53). Higher potency (tivozanib, axitinib) and lower selectivity (sorafenib, vandetanib, pazopanib, sunitinib) were associated with a higher probability of heart failure. Low selectivity (lenvatinib, cabozantinib, sorafenib, sunitinib) was associated with a higher probability of thromboembolism. CONCLUSION Higher-potency and lower-selectivity VEGF-TKIs may influence the risks of MACEs, heart failure, and thromboembolism. These findings may facilitate evidence-based decision-making in clinical practice.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan, ROC
- Health Data Analytics and Statistics Centre, Office of Data Science, Taipei Medical University, Taipei, Taiwan, ROC
| | - Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan, ROC
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomic, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
16
|
Khurana A, Arora MK, Dubey H. Cardiac safety profile of type II kinase inhibitors: Analysis of post-marketing reports from databases of European Medicine Agency & World Health Organization. Daru 2023; 31:107-118. [PMID: 37221442 PMCID: PMC10624791 DOI: 10.1007/s40199-023-00464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Targeted therapy with type II kinase inhibitors (KIs) is one of the preferred choices in cancer treatment. However, type II KI therapy can be associated to serious cardiac risks. OBJECTIVES This study aimed to assess the occurrence of cardiac events reported with type II KIs in Eudravigilance (EV) and VigiAccess databases. METHODS To evaluate reporting frequency of individual case safety reports (ICSRs) related to cardiac events, we referred EV and VigiAccess databases. The data was retrieved for the period from date of marketing authorization of respective type II KI till 30 July 2022. Computational analysis was conducted with data from EV and VigiAccess using reporting odds ratio (ROR) along with its 95% confidence interval (CI) under Microsoft excel. RESULTS In total, 14429 ICSRs in EV and 11522 ICSRs from VigiAccess were retrieved concerning cardiac events with at least one type II KI as the suspected drug. In both databases, most of the ICSRs were reported for Imatinib, Nilotinib, and Sunitinib, while most reported cardiac events were myocardial infarction/acute myocardial infarction, cardiac failure/congestive heart failure and atrial fibrillation. As per EV, 98.8% ICSRs with cardiac ADRs were assessed as serious and of which, 17.4% ICSRs were associated with fatal outcomes and approximately 47% included patient's recovery as a favorable outcome. Nilotinib (ROR 2.87, 95% CI 3.01-2.74) and Nintedanib (ROR 2.17, 95% CI 2.3-2.04) were associated with a significant increase in reporting frequency of ICSRs related to cardiac events. CONCLUSIONS Type II KI related cardiac events were serious and associated with unfavorable outcomes. A significant increase in ICSRs reporting frequency was observed with Nilotinib and Nintedanib. These results insist for a consideration of revision of cardiac safety profile of Nilotinib and Nintedanib, specifically for risks of myocardial infarction and atrial fibrillation. Additionally, the need for other ad-hoc studies is indicated.
Collapse
Affiliation(s)
- Atul Khurana
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, 248009, Uttarakhand, India
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, 248009, Uttarakhand, India.
| | - Harikesh Dubey
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Crocetto F, Ferro M, Buonerba C, Bardi L, Dolce P, Scafuri L, Mirto BF, Verde A, Sciarra A, Barone B, Calogero A, Sagnelli C, Busetto GM, Del Giudice F, Cilio S, Sonpavde G, Di Trolio R, Della Ratta GL, Barbato G, Di Lorenzo G. Comparing cardiovascular adverse events in cancer patients: A meta-analysis of combination therapy with angiogenesis inhibitors and immune checkpoint inhibitors versus angiogenesis inhibitors alone. Crit Rev Oncol Hematol 2023; 188:104059. [PMID: 37353178 DOI: 10.1016/j.critrevonc.2023.104059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Anti-VEGF (vascular endothelial growth factor) agents were associated with increased risk of several cardiovascular events, while one meta-analysis did not show any significantly increased risk of cardiotoxicity associated with the use of immune checkpoint inhibitors (ICIs). This meta-analysis of randomized-controlled trials (RCTs) was designed to compare cardiovascular toxicity of anti-VEGF agents plus ICI vs anti-VEGF agents without ICIs. A systematic search of the literature was conducted to include all full papers reporting about phase II and III randomized controlled trials (RCTs) conducted in patients with solid malignancies randomized to an anti-VEGF agent plus an ICI vs. an anti-VEGF agent without an ICI. Overall incidences of cardiovascular events were compared between these two treatment groups estimating the corresponding odds ratios. This analysis suggests that ICIs may increase the risk of cardiovascular toxicities associated with anti-VEGF therapies. Further research, including real world studies, is warranted.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Carlo Buonerba
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Luca Bardi
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Dolce
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Luca Scafuri
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Antonio Verde
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Antonella Sciarra
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, NA, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, Rome, Italy
| | - Simone Cilio
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Guru Sonpavde
- Division of Medical Oncology, Advent Health Cancer Institute, Orlando, FL, USA
| | - Rossella Di Trolio
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | | | - Gabriele Barbato
- Department of Anesthesia and Intensive Care, "Anastasia Guerriero" Hospital, Caserta Local Health Authority, Marcianise, Caserta, Italy
| | - Giuseppe Di Lorenzo
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy; Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
19
|
Xue Y, Feng S, Li G, Zhang C. Safety profile of vascular endothelial growth factor receptor tyrosine-kinase inhibitors in pediatrics: a pharmacovigilance disproportionality analysis. Front Pharmacol 2023; 14:1160117. [PMID: 37377925 PMCID: PMC10291139 DOI: 10.3389/fphar.2023.1160117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: existing research on children consists primarily of phase I/II clinical trials for VEGFR-TKI. System reports of safety on the use of VEGFR-TKI in pediatrics are lacking. Aim: to investigate the safety profiles of VEGFR-TKI in pediatrics via the FDA Adverse Event Reporting System (FAERS). Method: data regarding VEGFR-TKIs were extracted from the FAERS between 2004Q1 to 2022Q3 and categorized by the Medical Dictionary for Regulatory Activities (MedDRA). Population characteristics were analyzed, and reporting odds ratio (ROR) was performed to identify risk signals associated with VEGFR-TKI. Results: 53,921 cases containing 561 children were identified in the database from 18 May 2005, to 30 September 2022. Among those in the system organ class, skin, subcutaneous tissue disorders, and blood and lymphatic system disorders in pediatrics contributed to over 140 cases. Palmar-plantar eythrodysesthesia syndrome (PPES) in VEGFR-TKI presented the most significant 340.9 (95% 229.2-507.0). And pneumothorax also gave a high reporting odds ratio of 48.9 (95% 34.7-68.9). For a specific drug, musculoskeletal pain gave a ROR of 78.5 (95% 24.4-252.6) in cabozantinib and oesophagitis in lenvatinib with a ROR of 95.2 (95% 29.5-306.9). Additionally, hypothyroidism presented a high signal, especially sunitinib, with a ROR of 107.8 (95% 37.6-308.7). Conclusion: the present study explored the safety profile of VEGFR-TKI in pediatrics using the FAERS database. Multiple skin and subcutaneous tissue disorders, as well as blood and lymphatic system disorders, were common VEGFR-TKI-related AEs in system organ class. No serious hepatobiliary AEs were detected. For the specific AEs, PPES and pneumothorax were VEGFR-TKI-related AEs that presented significantly higher signals than those in the general population.
Collapse
|
20
|
Ghafary I, Kim CK, Roth E, Lu M, Taub EM, Lee S, Cohen I, Lu Z. The association of QTc prolongation with cardiovascular events in cancer patients taking tyrosine kinase inhibitors (TKIs). CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:25. [PMID: 37208762 DOI: 10.1186/s40959-023-00178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To investigate the association between stages of QTc prolongation and the risk of cardiac events among patients on TKIs. METHODS This was a retrospective cohort study performed at an academic tertiary care center of cancer patients who were taking TKIs or not taking TKIs. Patients with two recorded ECGs between January 1, 2009, and December 31, 2019, were selected from an electronic database. The QTc duration > 450ms was determined as prolonged. The association between QTc prolongation progression and events of cardiovascular disease were compared. RESULTS This study included a total of 451 patients with 41.2% of patients taking TKIs. During a median follow up period of 3.1 years, 49.5% subjects developed CVD and 5.4% subjects suffered cardiac death in patient using TKIs (n = 186); the corresponding rates are 64.2% and 1.2% for patients not on TKIs (n = 265), respectively. Among patient on TKIs, 4.8% of subjects developed stroke, 20.4% of subjects suffered from heart failure (HF) and 24.2% of subjects had myocardial infarction (MI); corresponding incidence are 6.8%, 26.8% and 30.6% in non-TKIs. When patients were regrouped to TKIs versus non-TKIs with and without diabetes, there was no significant difference in the incidence of cardiac events among all groups. Adjusted Cox proportional hazards models were applied to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). There is a significant increased risk of HF events (HR, 95% CI: 2.12, 1.36-3.32) and MI events (HR, 95% CI: 1.78, 1.16-2.73) during the 1st visit. There are also trends for an increased incidence of cardiac adverse events associated with QTc prolongation among patient with QTc > 450ms, however the difference is not statistically significant. Increased cardiac adverse events in patients with QTc prolongation were reproduced during the 2nd visit and the incidence of heart failure was significantly associated with QTc prolongation(HR, 95% CI: 2.94, 1.73-5.0). CONCLUSION There is a significant increased QTc prolongation in patients taking TKIs. QTc prolongation caused by TKIs is associated with an increased risk of cardiac events.
Collapse
Affiliation(s)
- Ismail Ghafary
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chang-Kyung Kim
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric Roth
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Erin M Taub
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Susan Lee
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ira Cohen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhongju Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
21
|
Wang X, Cao M, Liu Z, Chen L, Zhou Y, Gao P, Zou Y. Association between Cardiovascular Response and Inflammatory Cytokines in Non-Small Cell Lung Cancer Patients. J Cardiovasc Dev Dis 2023; 10:jcdd10040173. [PMID: 37103052 PMCID: PMC10144044 DOI: 10.3390/jcdd10040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Cardiovascular disease is an essential comorbidity in patients with non-small cell lung cancer (NSCLC) and represents an independent risk factor for increased mortality. Therefore, careful monitoring of cardiovascular disease is crucial in the healthcare of NSCLC patients. Inflammatory factors have previously been associated with myocardial damage in NSCLC patients, but it remains unclear whether serum inflammatory factors can be utilized to assess the cardiovascular health status in NSCLC patients. A total of 118 NSCLC patients were enrolled in this cross-sectional study, and their baseline data were collected through a hospital electronic medical record system. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of leukemia inhibitory factor (LIF), interleukin (IL)-18, IL-1β, transforming growth factor-β1 (TGF-β1), and connective tissue growth factor (CTGF). Statistical analysis was performed using the SPSS software. Multivariate and ordinal logistic regression models were constructed. The data revealed an increased serum level of LIF in the group using tyrosine kinase inhibitor (TKI)-targeted drugs compared to non-users (p < 0.001). Furthermore, serum TGF-β1 (area under the curve, AUC: 0.616) and cardiac troponin T (cTnT) (AUC: 0.720) levels were clinically evaluated and found to be correlated with pre-clinical cardiovascular injury in NSCLC patients. Notably, the serum levels of cTnT and TGF-β1 were found to indicate the extent of pre-clinical cardiovascular injury in NSCLC patients. In conclusion, the results suggest that serum LIF, as well as TGFβ1 together with cTnT, are potential serum biomarkers for the assessment of cardiovascular status in NSCLC patients. These findings offer novel insights into the assessment of cardiovascular health and underscore the importance of monitoring cardiovascular health in the management of NSCLC patients.
Collapse
Affiliation(s)
- Xiaolin Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zilong Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yufei Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
23
|
Huang YC, Hsieh PY, Wang LY, Tsai TH, Chen YJ, Hsieh CH. Local Liver Irradiation Concurrently Versus Sequentially with Cabozantinib on the Pharmacokinetics and Biodistribution in Rats. Int J Mol Sci 2023; 24:ijms24065849. [PMID: 36982920 PMCID: PMC10056485 DOI: 10.3390/ijms24065849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The aim of this study was to evaluate the radiotherapy (RT)-pharmacokinetics (PK) effect of cabozantinib in concurrent or sequential regimens with external beam radiotherapy (EBRT) or stereotactic body radiation therapy (SBRT). Concurrent and sequential regimens involving RT and cabozantinib were designed. The RT–drug interactions of cabozantinib under RT were confirmed in a free-moving rat model. The drugs were separated on an Agilent ZORBAX SB-phenyl column with a mobile phase consisting of 10 mM potassium dihydrogen phosphate (KH2PO4)–methanol solution (27:73, v/v) for cabozantinib. There were no statistically significant differences in the concentration versus time curve of cabozantinib (AUCcabozantinib) between the control group and the RT2Gy×3 f’x and RT9Gy×3 f’x groups in the concurrent and the sequential regimens. However, compared to those in the control group, the Tmax, T1/2 and MRT decreased by 72.8% (p = 0.04), 49.0% (p = 0.04) and 48.5% (p = 0.04) with RT2Gy×3 f’x in the concurrent regimen, respectively. Additionally, the T1/2 and MRT decreased by 58.8% (p = 0.01) and 57.8% (p = 0.01) in the concurrent RT9Gy×3 f’x group when compared with the control group, respectively. The biodistribution of cabozantinib in the heart increased by 271.4% (p = 0.04) and 120.0% (p = 0.04) with RT2Gy×3 f’x in the concurrent and sequential regimens compared to the concurrent regimen, respectively. Additionally, the biodistribution of cabozantinib in the heart increased by 107.1% (p = 0.01) with the RT9Gy×3 f’x sequential regimen. Compared to the RT9Gy×3 f’x concurrent regimen, the RT9Gy×3 f’x sequential regimen increased the biodistribution of cabozantinib in the heart (81.3%, p = 0.02), liver (110.5%, p = 0.02), lung (125%, p = 0.004) and kidneys (87.5%, p = 0.048). No cabozantinib was detected in the brain in any of the groups. The AUC of cabozantinib is not modulated by irradiation and is not affected by treatment strategies. However, the biodistribution of cabozantinib in the heart is modulated by off-target irradiation and SBRT doses simultaneously. The impact of the biodistribution of cabozantinib with RT9Gy×3 f’x is more significant with the sequential regimen than with the concurrent regimen.
Collapse
Affiliation(s)
- Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (Y.-J.C.)
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Pei-Ying Hsieh
- Department of Oncology and Hematology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Physical Therapy Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yu-Jen Chen
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (Y.-J.C.)
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, Taipei 112, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Narayan HK, Sheline K, Wong V, Kuo D, Choo S, Yoon J, Leger K, Kutty S, Fradley M, Tremoulet A, Ky B, Armenian S, Guha A. Cardiovascular toxicities with pediatric tyrosine kinase inhibitor therapy: An analysis of adverse events reported to the Food and Drug Administration. Pediatr Blood Cancer 2023; 70:e30059. [PMID: 36385736 DOI: 10.1002/pbc.30059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
We sought to examine cardiovascular toxicities associated with tyrosine kinase inhibitors in pediatrics. We examined 1624 pediatric adverse events with imatinib, dasatinib, sorafenib, pazopanib, crizotinib, and ruxolitinib reported to the Food and Drug Administration between January 1, 2015, and August 14, 2020. There were 102 cardiovascular event reports. Hypertension was the most commonly reported cardiovascular event and was most frequently associated with sorafenib and pazopanib. The presence of infection increased the reporting odds of cardiovascular events overall and specifically cardiac arrest, heart failure, and hypertension. These data provide early insight into cardiovascular toxicities with tyrosine kinase inhibitor use in pediatrics.
Collapse
Affiliation(s)
- Hari K Narayan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Karyn Sheline
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Victor Wong
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Dennis Kuo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sun Choo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Janet Yoon
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Kasey Leger
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Shelby Kutty
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Fradley
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adriana Tremoulet
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Bonnie Ky
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saro Armenian
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Avirup Guha
- Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
25
|
Franczyk B, Rysz J, Ławiński J, Ciałkowska-Rysz A, Gluba-Brzózka A. Cardiotoxicity of Selected Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Renal Cell Carcinoma. Biomedicines 2023; 11:181. [PMID: 36672689 PMCID: PMC9855533 DOI: 10.3390/biomedicines11010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most frequent malignant neoplasms of the kidney. The therapeutic options available for the treatment of advanced or metastatic RCC include vascular endothelial growth factor receptor (VEGFR)-targeted molecules, for example, tyrosine kinase inhibitors (TKI). Various VEGFR-TKIs proved to be effective in the treatment of patients with solid tumours. The combination of two drugs may prove most beneficial in the treatment of metastatic RCC; however, it also enhances the risk of toxicity compared to monotherapy. Specific VEGFR-TKIs (e.g., sunitinib, sorafenib or pazopanib) may increase the rate of cardiotoxicity in metastatic settings. VEGF inhibitors modulate multiple signalling pathways; thus, the identification of the mechanism underlying cardiotoxicity appears challenging. VEGF signalling is vital for the maintenance of cardiomyocyte homeostasis and cardiac function; therefore, its inhibition can be responsible for the reported adverse effects. Disturbed growth factor signalling pathways may be associated with endothelial dysfunction, impaired revascularization, the development of dilated cardiomyopathy, cardiac hypertrophies and altered peripheral vascular load. Patients at high cardiovascular risk at baseline could benefit from clinical follow-up in the first 2-4 weeks after the introduction of targeted molecular therapy; however, there is no consensus concerning the surveillance strategy.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| |
Collapse
|
26
|
Wanting H, Jian Z, Chaoxin X, Cheng Y, Chengjian Z, Lin Z, Dan C. Using a zebrafish xenograft tumor model to compare the efficacy and safety of VEGFR-TKIs. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04560-7. [PMID: 36609710 DOI: 10.1007/s00432-022-04560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE We constructed a zebrafish xenograft tumor model to compare and quantify the antiangiogenic efficacy and safety of nine vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs), axitinib, lenvatinib, pazopanib, apatinib, cabozantinib, sunitinib, semaxanib, sorafenib, and regorafenib, in parallel. METHODS CT26 and GL261 tumor cells were implanted into the perivitelline space of Tg (flk1: eGFP) zebrafish to construct a xenograft tumor model. VEGFR-TKIs' antiangiogenic efficacy was quantified using AngioTool software, and the median effective dose (ED50) was calculated. The toxicity was evaluated by calculating the median lethal dose (LD50) and gross morphological changes. Cardiac toxicity was further assessed by heart rate, heart rhythm, the distance between the sinus venosus (SV) and bulbus arteriosus (BA), and pericardial edema. RESULTS Using the zebrafish xenograft tumor model, we found that all nine VEGFR-TKIs exhibited antiangiogenic abilities, but the effectiveness of semaxanib was worse than that of other VEGFR-TKIs. Meanwhile, the zebrafish toxicity assay showed that all tested VEGFR-TKIs were associated with cardiac-related toxicity, especially apatinib and axitinib, which caused serious pericardial edema in zebrafish at relatively low concentrations. A narrow therapeutic window was found for most VEGFR-TKIs, and the simultaneous occurrence of toxic effects of semaxanib was recognized. CONCLUSION Our findings showed the potential of using a zebrafish xenograft tumor model to accelerate VEGFR-TKI screening and further the development of more efficient and less toxic VEGFR-TKIs.
Collapse
Affiliation(s)
- Hou Wanting
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhong Jian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Xiao Chaoxin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Cheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Zhao Chengjian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China
| | - Zhou Lin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| | - Cao Dan
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
27
|
Liang C, Zhu D, Xia W, Hong Z, Wang QS, Sun Y, Yang YC, Han SQ, Tang LL, Lou J, Wu MM, Zhang ZR. Inhibition of YAP by lenvatinib in endothelial cells increases blood pressure through ferroptosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166586. [PMID: 36374802 DOI: 10.1016/j.bbadis.2022.166586] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Lenvatinib, a multitarget tyrosine kinase inhibitor (TKI), increases the incidence of severe hypertension and thus the incidence of cardiovascular complications. Inhibition of ferroptosis, a newly recognized type of cell death, alleviates endothelial dysfunction. Here, we report that lenvatinib-induced hypertension is associated with ferroptosis of endothelial cells. RNA sequencing (RNA-seq) showed that lenvatinib led to ferroptosis of endothelial cells and that administration of mouse with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, dramatically ameliorated lenvatinib-induced hypertension and reversed lenvatinib-induced impairment of endothelium-dependent relaxation (EDR). Furthermore, lenvatinib significantly reduced glutathione peroxidase 4 (GPX4) expressions in the mouse aorta and human umbilical vein endothelial cells (HUVECs) and increased lipid peroxidation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) levels in HUVECs. Immunofluorescence and Western blotting showed that lenvatinib significantly reduced Yes-associated protein (YAP) nuclear translocation but not cytoplasmic YAP expression in HUVECs. The data, generated from both in vivo and in vitro, showed that lenvatinib reduced total YAP (t-YAP) expression and increased the phosphorylation of YAP at both Ser127 and Ser397, without affecting YAP mRNA levels in HUVECs. XMU-MP-1 mediated YAP activation or YAP overexpression effectively attenuated the lenvatinib-induced decrease in GPX4 expression and increases in LDH release and MDA levels. In addition, overexpression of YAP in HUVECs ameliorated lenvatinib-induced decrease in the mRNA and protein levels of spermidine/spermine N (1)-acetyltransferase-1 (SAT1), heme oxygenase-1 (HO-1), and ferritin heavy chain 1 (FTH1). Taken together, our data suggest that lenvatinib-induced inhibition of YAP led to ferroptosis of endothelial cells and subsequently resulted in vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Chen Liang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Di Zhu
- Departments of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Wei Xia
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Zi Hong
- Departments of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Qiu-Shi Wang
- Departments of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Yu Sun
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Yan-Chao Yang
- Departments of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Song-Qi Han
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Liang-Liang Tang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Jie Lou
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Ming-Ming Wu
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, PR China; Departments of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Harbin Medical University, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, PR China.
| |
Collapse
|
28
|
Liu J, Peng Y, Inuzuka H, Wei W. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Semin Cancer Biol 2022; 86:269-279. [PMID: 35798235 PMCID: PMC11000491 DOI: 10.1016/j.semcancer.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
Abstract
Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
29
|
Wang Y, Cui C, Ren X, Dong X, Cui W. Cardiovascular toxicity associated with angiogenesis inhibitors: A comprehensive pharmacovigilance analysis based on the FDA Adverse Event Reporting System database from 2014 to 2021. Front Cardiovasc Med 2022; 9:988013. [PMID: 36312283 PMCID: PMC9606330 DOI: 10.3389/fcvm.2022.988013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023] Open
Abstract
Background The profiles of cardiovascular toxicity associated with angiogenesis inhibitors, including intravenous monoclonal antibodies (mAbs) and oral tyrosine kinase inhibitors (TKIs), targeting vascular endothelial growth factor (VEGF) remain poorly elucidated in real-world settings. This pharmacovigilance analysis aimed to comprehensively investigate the frequency, spectrum, timing, and outcomes of cardiovascular toxicities associated with angiogenesis inhibitors and to explore the differences in such patterns between mAbs and TKIs. Methods Disproportionality analysis was performed by leveraging reports from the FDA Adverse Event Reporting System (FAERS) database from 2014 to 2021. Cardiovascular adverse events (AEs) were grouped into nine narrow categories using the Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs). Reporting odds ratio (ROR) and information components (ICs) were calculated with statistical shrinkage transformation formulas and a lower limit of 95% confidence interval (CI) for ROR (ROR025) > 1 or IC (IC025) > 0, with at least three reports being considered statistically significant. Results A total of 757,577 reports of angiogenesis inhibitors and 70,668 (9.3%) reports of cardiovascular AEs were extracted. Significant disproportionality was detected in angiogenesis inhibitors for cardiovascular AEs (IC025/ROR025 = 0.35/1.27). Bevacizumab (31.8%), a mAb, presented the largest number of reports, followed by sunitinib (12.4%), a TKI. Hypertension (SMQ) was detected with the strongest signal value (IC025/ROR025 = 1.73/3.33), followed by embolic and thrombotic events (SMQ) (IC025/ROR025 = 0.32/1.26). Hypertension showed the shortest time to onset with a median (interquartile range) value of 23 (8, 69) days, while embolic and thrombotic events had the longest value of 51 (16, 153) days. Notably, hypertension presented the lowest proportions of death and life-threatening events (10.9%), whereas embolic and thrombotic events posed the highest (29.3%). Furthermore, both mAbs (IC025/ROR025 = 0.47/1.39) and TKIs (IC025/ROR025 = 0.30/1.23) showed increased cardiovascular AEs. Hypertension was detected in both agents (IC025/ROR025 = 1.53/2.90 for mAbs and IC025/ROR025 = 1.83/3.56 for TKIs) with a shorter time to onset of 17 (6, 48) days for TKIs than mAbs of 42 (14, 131) days. By contrast, embolic and thrombotic events were detected for mAbs (IC025/ROR025 = 0.90/1.87) without TKI (IC025/ROR025 = −0.08/0.95). Conclusion Angiogenesis inhibitors were associated with increased cardiovascular toxicity with a discrepancy between intravenous mAbs and oral TKIs, deserving distinct monitoring and appropriate management.
Collapse
Affiliation(s)
- YanFeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Dong
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Wei Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Wei Cui
| |
Collapse
|
30
|
Ma C, Wu Z, Wang X, Huang M, Wei X, Wang W, Qu H, Qiaolongbatu X, Lou Y, Jing L, Fan G. A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicol Appl Pharmacol 2022; 450:116162. [PMID: 35830948 DOI: 10.1016/j.taap.2022.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.
Collapse
Affiliation(s)
- Cui Ma
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Mengling Huang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Xiaona Wei
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Wei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China.
| | - Guorong Fan
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Recent advances in oncologic therapies have significantly improved overall survival for patients with malignancy. However, cardiovascular complications have not only increased in this population due to shared risk factors and pathophysiology, but also due to the therapies themselves. One key mechanism that warrants further attention is accelerated atherosclerosis due to these agents. RECENT FINDINGS Here we review recent studies focusing on four classes of anticancer agents with the potential to accelerate atherosclerosis, including breakpoint cluster region-Ableson (BCR-ABL) tyrosine kinase inhibitors, immunotherapies, androgen deprivation therapies, and vascular endothelial growth factor inhibitors. In addition to drug therapy, radiation therapy may also accelerate atherosclerosis. SUMMARY In order to optimize outcomes for patients with malignancy, enhanced efforts need to focus on mitigating common risk factors, but also recognizing enhanced atherosclerotic risk with certain oncologic therapies. For patients exposed to these agents, risk reduction with agents such as aspirin and/or statins prior to, during, and after cancer treatment may provide opportunities to improve overall outcomes.
Collapse
Affiliation(s)
- David J Reeves
- Division of Oncology, Franciscan Health and Butler University College of Pharmacy and Health Sciences
| | - Vijay U Rao
- Franciscan CardioOncology Center, IC-OS Center of Excellence, Indiana Heart Physicians, Franciscan Health, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Scott SS, Greenlee AN, Matzko A, Stein M, Naughton MT, Zaramo TZ, Schwendeman EJ, Mohammad SJ, Diallo M, Revan R, Shimmin G, Tarun S, Ferrall J, Ho TH, Smith SA. Intracellular Signaling Pathways Mediating Tyrosine Kinase Inhibitor Cardiotoxicity. Heart Fail Clin 2022; 18:425-442. [PMID: 35718417 PMCID: PMC10391230 DOI: 10.1016/j.hfc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat several cancers; however, a myriad of adverse cardiotoxic effects remain a primary concern. Although hypertension (HTN) is the most common adverse effect reported with TKI therapy, incidents of arrhythmias (eg, QT prolongation, atrial fibrillation) and heart failure are also prevalent. These complications warrant further research toward understanding the mechanisms of TKI-induced cardiotoxicity. Recent literature has given some insight into the intracellular signaling pathways that may mediate TKI-induced cardiac dysfunction. In this article, we discuss the cardiotoxic effects of TKIs on cardiomyocyte function, signaling, and possible treatments.
Collapse
|
33
|
Liu J, Huang L, Wan M, Chen G, Su M, Han F, Liu F, Xiong G, Liao X, Lu H, Li W, Cao Z. Lenvatinib induces cardiac developmental toxicity in zebrafish embryos through regulation of Notch mediated-oxidative stress generation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1310-1320. [PMID: 35119177 DOI: 10.1002/tox.23485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Due to an increasing number of abused drugs dumped into the wastewater, more and more drugs are detected in the water environment, which may affect the survival of aquatic organisms. Lenvatinib is a multi-targeted tyrosine kinase inhibitor, and is clinically used to treat differentiated thyroid cancer, renal epithelial cell carcinoma and liver cancer. However, there are few reports on the effects of lenvatinib in embryos development. In this study, zebrafish embryos were used to evaluate the effect of lenvatinib on cardiovascular development. Well-developed zebrafish embryos were selected at 6 h post fertilization (hpf) and exposed to 0.05 mg/L, 0.1 mg/L and 0.2 mg/L lenvatinib up to 72 hpf. The processed embryos demonstrated cardiac edema, decreased heart rate, prolonged SV-BA distance, inhibited angiogenesis, and blocked blood circulation. Lenvatinib caused cardiac defects in the whole stage of cardiac development and increased the apoptosis of cardiomyocyte. Oxidative stress in the processed embryos was accumulated and inhibiting oxidative stress could rescue cardiac defects induced by lenvatinib. Additionally, we found that lenvatinib downregulated Notch signaling, and the activation of Notch signaling could rescue cardiac developmental defects and downregulate oxidative stress level induced by lenvatinib. Our results suggested that lenvatinib might induce cardiac developmental toxicity through inducing Notch mediated-oxidative stress generation, raising concerns about the harm of exposure to lenvatinib in aquatic organisms.
Collapse
Affiliation(s)
- Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jinggangshan University, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| |
Collapse
|
34
|
Bergler-Klein J, Rainer PP, Wallner M, Zaruba MM, Dörler J, Böhmer A, Buchacher T, Frey M, Adlbrecht C, Bartsch R, Gyöngyösi M, Fürst UM. Cardio-oncology in Austria: cardiotoxicity and surveillance of anti-cancer therapies : Position paper of the Heart Failure Working Group of the Austrian Society of Cardiology. Wien Klin Wochenschr 2022; 134:654-674. [PMID: 35507087 PMCID: PMC9065248 DOI: 10.1007/s00508-022-02031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Survival in cancer is continuously improving due to evolving oncological treatment. Therefore, cardiovascular short-term and long-term side effects gain crucial importance for overall outcome. Cardiotoxicity not only presents as heart failure, but also as treatment-resistant hypertension, acute coronary ischemia with plaque rupture or vasospasm, thromboembolism, arrhythmia, pulmonary hypertension, diastolic dysfunction, acute myocarditis and others. Recent recommendations have proposed baseline cardiac risk assessment and surveillance strategies. Major challenges are the availability of monitoring and imaging resources, including echocardiography with speckle tracking longitudinal strain (GLS), serum biomarkers such as natriuretic peptides (NT-proBNP) and highly sensitive cardiac troponins. This Austrian consensus encompasses cardiotoxicity occurrence in frequent antiproliferative cancer drugs, radiotherapy, immune checkpoint inhibitors and cardiac follow-up considerations in cancer survivors in the context of the Austrian healthcare setting. It is important to optimize cardiovascular risk factors and pre-existing cardiac diseases without delaying oncological treatment. If left ventricular ejection fraction (LVEF) deteriorates during cancer treatment (from >10% to <50%), or myocardial strain decreases (>15% change in GLS), early initiation of cardioprotective therapies (angiotensin-converting enzyme inhibitors, angiotensin or beta receptor blockers) is recommended, and LVEF should be reassessed before discontinuation. Lower LVEF cut-offs were recently shown to be feasible in breast cancer patients to enable optimal anticancer treatment. Interdisciplinary cardio-oncology cooperation is pivotal for optimal management of cancer patients.
Collapse
Affiliation(s)
- Jutta Bergler-Klein
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Markus Wallner
- Division of Cardiology, Medical University of Graz, Graz, Austria.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Dörler
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Armin Böhmer
- Department of Internal Medicine 1, Krems University Clinic, Krems, Austria
| | - Tamara Buchacher
- Department of Internal Medicine and Cardiology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Maria Frey
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Rupert Bartsch
- Department of Medicine 1, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, University Clinic of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ursula-Maria Fürst
- Department of Internal Medicine, Hospital of the Brothers of St. John of God (Krankenhaus Barmherzige Brüder) Salzburg, Salzburg, Austria
| |
Collapse
|
35
|
Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N. Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines 2022; 10:biomedicines10030520. [PMID: 35327322 PMCID: PMC8945454 DOI: 10.3390/biomedicines10030520] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Ernestina Marianna De Francesco
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Maria Grazia Muoio
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Hematology Fondazione Cà Granda, IRCCS Policlinico, 20122 Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
- Correspondence: (T.A.); (N.A.)
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (T.A.); (N.A.)
| |
Collapse
|
36
|
Hypoxia signaling and oxygen metabolism in cardio-oncology. J Mol Cell Cardiol 2022; 165:64-75. [PMID: 34979102 DOI: 10.1016/j.yjmcc.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
Cardio-oncology is a rapidly growing field in cardiology that focuses on the management of cardiovascular toxicities associated with cancer-directed therapies. Tumor hypoxia is a central driver of pathologic tumor growth, metastasis, and chemo-resistance. In addition, conditions that mimic hypoxia (pseudo-hypoxia) play a causal role in the pathogenesis of numerous types of cancer, including renal cell carcinoma. Therefore, therapies targeted at hypoxia signaling pathways have emerged over the past several years. Though efficacious, these therapies are associated with significant cardiovascular toxicities, ranging from hypertension to cardiomyopathy. This review focuses on oxygen metabolism in tumorigenesis, the role of targeting hypoxia signaling in cancer therapy, and the relevance of oxygen metabolism in cardio-oncology. This review will specifically focus on hypoxia signaling mediated by hypoxia-inducible factors and the prolyl hydroxylase oxygen-sensing enzymes, the cardiovascular effects of specific cancer targeted therapies mediated on VEGF and HIF signaling, hypoxic signaling in cardiovascular disease, and the role of oxygen in anthracycline cardiotoxicity. The implications of these therapies on myocardial biology and cardiac function are discussed, underlining the fine balance of hypoxia signaling in cardiac homeostasis. Understanding these cardiovascular toxicities will be important to optimize treatment for cancer patients while mitigating potentially severe cardiovascular side effects.
Collapse
|
37
|
Orlandi P, Solini A, Banchi M, Brunetto MR, Cioni D, Ghiadoni L, Bocci G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals (Basel) 2021; 14:ph14100995. [PMID: 34681219 PMCID: PMC8539163 DOI: 10.3390/ph14100995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Anna Solini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Maurizia Rossana Brunetto
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Dania Cioni
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Lorenzo Ghiadoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
- Correspondence: ; Tel.: +39-0502218756
| |
Collapse
|