1
|
Nanglu K, Lerosey-Aubril R, Weaver JC, Ortega-Hernández J. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nat Commun 2023; 14:3832. [PMID: 37414759 PMCID: PMC10325964 DOI: 10.1038/s41467-023-39012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Tunicates are an evolutionarily significant subphylum of marine chordates, with their phylogenetic position as the sister-group to Vertebrata making them key to unraveling our own deep time origin. Tunicates greatly vary with regards to morphology, ecology, and life cycle, but little is known about the early evolution of the group, e.g. whether their last common ancestor lived freely in the water column or attached to the seafloor. Additionally, tunicates have a poor fossil record, which includes only one taxon with preserved soft-tissues. Here we describe Megasiphon thylakos nov., a 500-million-year-old tunicate from the Marjum Formation of Utah, which features a barrel-shaped body with two long siphons and prominent longitudinal muscles. The ascidiacean-like body of this new species suggests two alternative hypotheses for early tunicate evolution. The most likely scenario posits M. thylakos belongs to stem-group Tunicata, suggesting that a biphasic life cycle, with a planktonic larva and a sessile epibenthic adult, is ancestral for this entire subphylum. Alternatively, a position within the crown-group indicates that the divergence between appendicularians and all other tunicates occurred 50 million years earlier than currently estimated based on molecular clocks. Ultimately, M. thylakos demonstrates that fundamental components of the modern tunicate body plan were already established shortly after the Cambrian Explosion.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
2
|
The pericardium of Oikopleura dioica (Tunicata, Appendicularia) contains two distinct cell types and is rotated by 90 degrees to the left. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe planktonic Oikopleura dioica belongs to Tunicata, the probable sister taxon to Craniota, and might show plesiomorphic characters, conserved from the common lineage of Tunicata and Craniota. In O. dioica a pericardium in a position similar to other chordates but also to the heart and pericardium of craniates is found. Surprisingly, little is known about the ultrastructure of the pericardium in O. dioica. Here, we show based on electron microscopy that the pericardium is completely lined by a single layer of 16 epithelial cells: 6 epithelial myocardial cells on the left side of the pericardium and 10 peritoneal cells constituting the right side. One of the peritoneal cells, situated at the ventral border between peritoneal cells and myocardial cells has an extension that anchors the pericardium to the basal lamina beneath the latero-ventral epidermis. The primary body cavity of O. dioica appears quite uniformly clear in electron microscopic aspect but several sheets, resembling the basal lamina of the pericardium cross the larger spaces of the body cavity and connect to the pericardial basal lamina. This is the first detailed description of two distinct cell types in the epithelial lining of the pericardium of O. dioica. In comparison with other chordates, we conclude that two cell types can be reconstructed for the last common ancestor of Chordata at least. The position of the pericardium at the intersection of trunk and tail in combination with the basal-lamina like sheets spanning the hemocoel is probably of importance for the function of the circulation of the hemocoelic fluid. Similar to the tail, the axis of the pericardium is shifted through 90 degrees to the left as compared to the main body axis of the trunk and we infer that this shift is an apomorphic character of Appendicularia.
Collapse
|
3
|
Braun K, Leubner F, Stach T. Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea. Cladistics 2020; 36:259-300. [PMID: 34618973 DOI: 10.1111/cla.12405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phylogenetic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata. "Thaliacea" is found to be paraphyletic with Pyrosomatida as sister taxon to monophyletic Ascidiacea and the relationship between Doliolida and Salpida is unresolved in the analysis of morphological characters; however, the analysis of the combined data reconstructs Thaliacea as monophyletic nested within paraphyletic "Ascidiacea". Therefore, both datasets differ in the interpretation of the evolution of the complex holoplanktonic life history of thaliacean taxa. According to the phenotypic data, this evolution occurred in the plankton, whereas from the combined dataset a secondary transition into the plankton from a sessile ascidian is inferred. Besides these major differences, both analyses are in accord on many phylogenetic groupings, although both phylogenetic reconstructions invoke a high degree of homoplasy. In conclusion, this study represents the first serious attempt to utilize the potential phylogenetic information present in phenotypic characters to elucidate the inter-relationships of this diverse marine taxon in a consistent cladistic framework.
Collapse
Affiliation(s)
- Katrin Braun
- Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 2, 10115, Berlin, Germany
| | - Fanny Leubner
- Animal Evolution and Biodiversity, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Thomas Stach
- Molekulare Parasitologie, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 14, 10115, Berlin, Germany
| |
Collapse
|
4
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Stach T, Anselmi C. High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years. BMC Biol 2015; 13:113. [PMID: 26700477 PMCID: PMC4690324 DOI: 10.1186/s12915-015-0218-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. RESULTS Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. CONCLUSIONS Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses.
Collapse
Affiliation(s)
- Thomas Stach
- Institut für Biologie, Kompetenzzentrum Elektronenmikroskopie, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 14, 10115, Berlin, Germany.
| | - Chiara Anselmi
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
6
|
Pennati R, Ficetola GF, Brunetti R, Caicci F, Gasparini F, Griggio F, Sato A, Stach T, Kaul-Strehlow S, Gissi C, Manni L. Morphological Differences between Larvae of the Ciona intestinalis Species Complex: Hints for a Valid Taxonomic Definition of Distinct Species. PLoS One 2015; 10:e0122879. [PMID: 25955391 PMCID: PMC4425531 DOI: 10.1371/journal.pone.0122879] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
The cosmopolitan ascidian Ciona intestinalis is the most common model species of Tunicata, the sister-group of Vertebrata, and widely used in developmental biology, genomics and evolutionary studies. Recently, molecular studies suggested the presence of cryptic species hidden within the C. intestinalis species, namely C. intestinalis type A and type B. So far, no substantial morphological differences have been identified between individuals belonging to the two types. Here we present morphometric, immunohistochemical, and histological analyses, as well as 3-D reconstructions, of late larvae obtained by cross-fertilization experiments of molecularly determined type A and type B adults, sampled in different seasons and in four different localities. Our data point to quantitative and qualitative differences in the trunk shape of larvae belonging to the two types. In particular, type B larvae exhibit a longer pre-oral lobe, longer and relatively narrower total body length, and a shorter ocellus-tail distance than type A larvae. All these differences were found to be statistically significant in a Discriminant Analysis. Depending on the number of analyzed parameters, the obtained discriminant function was able to correctly classify > 93% of the larvae, with the remaining misclassified larvae attributable to the existence of intra-type seasonal variability. No larval differences were observed at the level of histology and immunohistochemical localization of peripheral sensory neurons. We conclude that type A and type B are two distinct species that can be distinguished on the basis of larval morphology and molecular data. Since the identified larval differences appear to be valid diagnostic characters, we suggest to raise both types to the rank of species and to assign them distinct names.
Collapse
Affiliation(s)
- Roberta Pennati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della Terra, Università di Milano Bicocca, Milano, Italy
- Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes, Grenoble, France
| | | | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Francesca Griggio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Atsuko Sato
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Thomas Stach
- Humboldt-Universität zu Berlin, Institut fur Lebenswissenschaften, Vergleichende Zoologie, Berlin, Germany
| | | | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail: (CG); (LM)
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- * E-mail: (CG); (LM)
| |
Collapse
|
7
|
Nishida H, Stach T. Cell Lineages and Fate Maps in Tunicates: Conservation and Modification. Zoolog Sci 2014; 31:645-52. [DOI: 10.2108/zs140117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Thomas Stach
- lnstitute of Biology, Comparative Zoology, Humboldt-Unlversity Berlin, 10115 Berlin, Germany
| |
Collapse
|
8
|
Perseke M, Golombek A, Schlegel M, Struck TH. The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Mol Phylogenet Evol 2013; 66:898-905. [DOI: 10.1016/j.ympev.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/09/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
9
|
Savel'eva AV, Temereva EN, Dautov SS. The organization of body cavity in appendicularians (Chordata: Appendicularia) is not typical of deuterostomia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 448:41-44. [PMID: 23479018 DOI: 10.1134/s0012496613010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- A V Savel'eva
- Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
| | | | | |
Collapse
|
10
|
Stach T, Braband A, Podsiadlowski L. Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis. Mol Phylogenet Evol 2010; 55:860-70. [DOI: 10.1016/j.ympev.2010.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 01/22/2023]
|
11
|
|