1
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
2
|
Bhosale NK, Parija SC. Balamuthia mandrillaris: An opportunistic, free-living ameba - An updated review. Trop Parasitol 2021; 11:78-88. [PMID: 34765527 PMCID: PMC8579774 DOI: 10.4103/tp.tp_36_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Balamuthia mandrillaris is an opportunistic, free-living ameba that is pathogenic to humans. It has a worldwide distribution but is mainly detected in warmer regions. Balamuthia infections are rare but have been reported in both immunocompetent and immunocompromised individuals of all ages. B. mandrillaris can enter through wounds on the skin or the nose and cause cutaneous lesions and the usually fatal Balamuthia amebic encephalitis (BAE). Infection usually spreads from the lungs or through nerve fibers, and attacks the central nervous system, forming granulomatous lesions and necrosis in the brain. Balamuthia infection is usually chronic, and patients initially present with nonspecific symptoms, including headache, nausea, myalgia, and low-grade fever. As the disease progresses, the patient becomes paralyzed and comatose, often leading to death. Lack of knowledge of predisposing factors, specific treatment, and standardized detection tools have resulted in a nearly cent percent fatality rate. Although only about 200 cases have been reported worldwide since its characterization in the 1990s, the number of reported cases has increased over the years. BAE is an emerging disease and a major health concern. Few patients have survived Balamuthia infections with antimicrobial treatment that has largely been empirical. Early diagnosis is the key and requires familiarity with the disease and a high degree of suspicion on the part of the diagnostician. There are currently no specific treatment and prevention recommendations. This review highlights our current understanding of B. mandrillaris in terms of its pathogenicity, genomics, and novel diagnostic and therapeutic approaches against BAE infections.
Collapse
Affiliation(s)
- Namrata K Bhosale
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India
| | | |
Collapse
|
3
|
Sarink MJ, van der Meijs NL, Denzer K, Koenderman L, Tielens AGM, van Hellemond JJ. Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 2021; 38:230-245. [PMID: 34758928 DOI: 10.1016/j.pt.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. can cause devastating brain infections in humans which almost always result in death. The symptoms of the three infections overlap, but brain inflammation and the course of the disease differ, depending on the amoeba that is responsible. Understanding the differences between these amoebae can result in the development of strategies to prevent and treat these infections. Recently, numerous scientific advancements have been made in the understanding of pathogenicity mechanisms in general, and the basic biology, epidemiology, and the human immune response towards these amoebae in particular. In this review, we combine this knowledge and aim to identify which factors can explain the differences between the lethal brain infections caused by N. fowleri, B. mandrillaris, and Acanthamoeba spp.
Collapse
Affiliation(s)
- Maarten J Sarink
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Nadia L van der Meijs
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kristin Denzer
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Jaap J van Hellemond
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Cope JR, Landa J, Nethercut H, Collier SA, Glaser C, Moser M, Puttagunta R, Yoder JS, Ali IK, Roy SL. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974-2016. Clin Infect Dis 2020; 68:1815-1822. [PMID: 30239654 DOI: 10.1093/cid/ciy813] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. METHODS The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed. Several sources were used to complete entries in the registry, including case report forms, CDC laboratory results, published case reports, and media information. SAS© version 9.3 software was used to calculate descriptive statistics and frequencies. RESULTS We identified 109 case reports of Balamuthia disease between 1974 and 2016. Most (99%) had encephalitis. The median age was 36 years (range 4 months to 91 years). Males accounted for 68% of the case patients. California had the highest number of case reports, followed by Texas and Arizona. Hispanics constituted 55% for those with documented ethnicity. Exposure to soil was commonly reported. Among those with a known outcome, 90% of patients died. CONCLUSIONS Balamuthia disease in the United States is characterized by a highly fatal encephalitis that affects patients of all ages. Hispanics were disproportionately affected. The southwest region of the United States reported the most cases. Clinician awareness of Balamuthia as a cause of encephalitis might lead to earlier diagnosis and initiation of treatment, resulting in better outcomes.
Collapse
Affiliation(s)
- Jennifer R Cope
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet Landa
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.,James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, Maryland
| | - Hannah Nethercut
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.,Oak Ridge Institute for Science and Education, Tennessee
| | - Sarah A Collier
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Melanie Moser
- Office of Financial Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Raghuveer Puttagunta
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jonathan S Yoder
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ibne K Ali
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L Roy
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
5
|
Lares-Jiménez LF, Borquez-Román MA, Alfaro-Sifuentes R, Meza-Montenegro MM, Casillas-Hernández R, Lares-Villa F. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189:28-33. [PMID: 29673623 DOI: 10.1016/j.exppara.2018.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The presence of free-living amoebae of the genera Naegleria, Acanthamoeba and Balamuthia, which contain pathogenic species for humans and animals, has been demonstrated several times and in different natural aquatic environments in the northwest of Mexico. With the aim of continuing the addition of knowledge about immunology of pathogenic free-living amoebae, 118 sera from children and adolescents, living in three villages, were studied. Humoral IgG response against B. mandrillaris, N. fowleri and Acanthamoeba sp. genotype T4, was analyzed in duplicate to titers 1: 100 and 1: 500 by enzyme-linked immunosorbent assay (ELISA). Children and adolescents ages ranged between 5 and 16 years old, with a mean of 9 years old, 55% males. All tested sera were positive for the 1: 100 dilution, and in the results obtained with the 1: 500 dilution, 116 of 118 (98.3%) were seropositive for N. fowleri, 101 of 118 (85.6%) were seropositive for Acanthamoeba sp. genotype T4, and 43 of 118 (36.4%) were seropositive for B. mandrillaris. The statistical analysis showed different distributions among the three communities and for the three species of pathogenic free-living amoebae, including age. Lysed and complete cells used as Balamuthia antigens gave differences in seropositivity.
Collapse
Affiliation(s)
- Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Rosalía Alfaro-Sifuentes
- Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | | | - Ramón Casillas-Hernández
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Doctorado en Ciencias en Biotecnología, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico; Programa de Maestría en Ciencias en Recursos Naturales, Instituto Tecnológico de Sonora, Cd. Obregón, Son, Mexico.
| |
Collapse
|
6
|
Roy SL, Atkins JT, Gennuso R, Kofos D, Sriram RR, Dorlo TPC, Hayes T, Qvarnstrom Y, Kucerova Z, Guglielmo BJ, Visvesvara GS. Assessment of blood-brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol Res 2015; 114:4431-9. [PMID: 26329128 DOI: 10.1007/s00436-015-4684-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Balamuthia mandrillaris, a free-living ameba, causes rare but frequently fatal granulomatous amebic encephalitis (GAE). Few patients have survived after receiving experimental drug combinations, with or without brain lesion excisions. Some GAE survivors have been treated with a multi-drug regimen including miltefosine, an investigational anti-leishmanial agent with in vitro amebacidal activity. Miltefosine dosing for GAE has been based on leishmaniasis dosing because no data exist in humans concerning its pharmacologic distribution in the central nervous system. We describe results of limited cerebrospinal fluid (CSF) and serum drug level testing performed during clinical management of a child with fatal GAE who was treated with a multiple drug regimen including miltefosine. Brain biopsy specimens, CSF, and sera were tested for B. mandrillaris using multiple techniques, including culture, real-time polymerase chain reaction, immunohistochemical techniques, and serology. CSF and serum miltefosine levels were determined using a liquid chromatography method coupled to tandem mass spectrometry. The CSF miltefosine concentration on hospital admission day 12 was 0.4 μg/mL. The serum miltefosine concentration on day 37, about 80 h post-miltefosine treatment, was 15.3 μg/mL. These are the first results confirming some blood-brain barrier penetration by miltefosine in a human, although with low-level CSF accumulation. Further evaluation of brain parenchyma penetration is required to determine optimal miltefosine dosing for Balamuthia GAE, balanced with the drug's toxicity profile. Additionally, the Balamuthia isolate was evaluated by real-time polymerase chain reaction (PCR), demonstrating genetic variability in 18S ribosomal RNA (18S rRNA) sequences and possibly signaling the first identification of multiple Balamuthia strains with varying pathogenicities.
Collapse
Affiliation(s)
- Sharon L Roy
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| | - Jane T Atkins
- Methodist Children's Hospital, San Antonio, TX, 78229, USA
| | | | - Danny Kofos
- Methodist Children's Hospital, San Antonio, TX, 78229, USA
| | - Rama R Sriram
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Thomas P C Dorlo
- Department of Pharmacy and Pharmacology, Slotervaart Hospital-The Netherlands Cancer Institute, 1066 EC, Amsterdam, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, Utrecht, The Netherlands
| | - Teresa Hayes
- Department of Pathology, Methodist Hospital, San Antonio, TX, 78229, USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Zuzana Kucerova
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - B Joseph Guglielmo
- Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Govinda S Visvesvara
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
7
|
Parija SC, Dinoop K, Venugopal H. Management of granulomatous amebic encephalitis: Laboratory diagnosis and treatment. Trop Parasitol 2015; 5:23-8. [PMID: 25709949 PMCID: PMC4326989 DOI: 10.4103/2229-5070.149889] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/22/2015] [Indexed: 11/04/2022] Open
Abstract
Granulomatous amebic encephalitis is a life-threatening central nervous system (CNS) infection caused by the free-living amoebae Acanthamoeba spp., Balamuthia mandrillaris and Sappinia pedata. The disease has a subacute to chronic onset affecting commonly the immunocompromised population with high mortality rate. The diagnosis of this disease entity requires high suspicion with appropriate sample collection and testing by the laboratory experts. Radiological investigations are nonspecific and commonly confused with CNS tuberculosis, neurocysticercosis, disseminated encephalomyelitis, viral encephalitis etc., delaying the accurate diagnosis of these cases. Early diagnosis plays a crucial role in the survival of these cases since appropriate management can be initiated. No single drug is effective; hence multiple antibiotics targeting various proteins or receptors are required for successful treatment. A combination of surgical and medical interventions involving multiple specialty experts is required to prevent death and morbidity in survivors.
Collapse
Affiliation(s)
- Subhash Chandra Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Kp Dinoop
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Hrudya Venugopal
- Department of General Medicine, Coimbatore Medical College Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Schunder E, Gillmaier N, Kutzner E, Eisenreich W, Herrmann V, Lautner M, Heuner K. Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii. J Biol Chem 2015; 289:21040-54. [PMID: 24904060 DOI: 10.1074/jbc.m114.570085] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Legionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions. For this purpose, A. castellanii was 13C-labeled by incubation in buffer containing [U-(13)C(6)]glucose. Subsequently, these 13C-prelabeled amoebae were infected with L. pneumophila wild type or some mutants defective in putative key enzymes or regulators of carbon metabolism. 13C-Isotopologue compositions of amino acids from bacterial and amoebal proteins were then determined by mass spectrometry. In a comparative approach, the profiles documented the efficient uptake of Acanthamoeba amino acids into the LCV and further into L. pneumophila where they served as precursors for bacterial protein biosynthesis. More specifically, A. castellanii synthesized from exogenous [U-13C6]glucose unique isotopologue mixtures of several amino acids including Phe and Tyr, which were also observed in the same amino acids from LCV-grown L. pneumophila. Minor but significant differences were only detected in the isotopologue profiles of Ala, Asp, and Glu from the amoebal or bacterial protein fractions, respectively, indicating partial de novo synthesis of these amino acids by L. pneumophila. The similar isotopologue patterns in amino acids from L. pneumophila wild type and the mutants under study reflected the robustness of amino acid usage in the LCV of A. castellannii.
Collapse
|
9
|
Kiderlen AF, Radam E, Laube U, Martínez AJ. Resistance to Intranasal Infection with Balamuthia mandrillaris
Amebae is T-Cell Dependent. J Eukaryot Microbiol 2014; 62:26-33. [DOI: 10.1111/jeu.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/19/2014] [Accepted: 08/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Albrecht F. Kiderlen
- Division for Mycotic, Parasitic and Mycobacterial Infections; Robert Koch Institute; Nordufer 20 13353 Berlin Germany
| | - Elke Radam
- Division for Mycotic, Parasitic and Mycobacterial Infections; Robert Koch Institute; Nordufer 20 13353 Berlin Germany
| | - Ulrike Laube
- Division for Mycotic, Parasitic and Mycobacterial Infections; Robert Koch Institute; Nordufer 20 13353 Berlin Germany
| | - A. Julio Martínez
- Department of Pathology; Presbyterian Hospital and University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania 15231 USA
| |
Collapse
|
10
|
Jackson BR, Kucerova Z, Roy SL, Aguirre G, Weiss J, Sriram R, Yoder J, Foelber R, Baty S, Derado G, Stramer SL, Winkelman V, Visvesvara GS. Serologic survey for exposure following fatal Balamuthia mandrillaris infection. Parasitol Res 2014; 113:1305-11. [PMID: 24458652 DOI: 10.1007/s00436-014-3769-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Granulomatous amebic encephalitis (GAE) from Balamuthia mandrillaris, a free-living ameba, has a case fatality rate exceeding 90% among recognized cases in the USA. In August 2010, a GAE cluster occurred following transplantation of infected organs from a previously healthy landscaper in Tucson, AZ, USA, who died from a suspected stroke. As B. mandrillaris is thought to be transmitted through soil, a serologic survey of landscapers and a comparison group of blood donors in southern Arizona was performed. Three (3.6%) of 83 serum samples from landscapers and 11 (2.5%) of 441 serum samples from blood donors were seropositive (p = 0.47). On multivariable analysis, county of residence was associated with seropositivity, whereas age, sex, and ethnicity were not. Exposure to B. mandrillaris, previously unexamined in North America, appears to be far more common than GAE in Southern Arizona. Risk factors for disease progression and the ameba's geographic range should be examined.
Collapse
Affiliation(s)
- Brendan R Jackson
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30333, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lorenzo-Morales J, Cabello-Vílchez AM, Martín-Navarro CM, Martínez-Carretero E, Piñero JE, Valladares B. Is Balamuthia mandrillaris a public health concern worldwide? Trends Parasitol 2013; 29:483-8. [PMID: 23988231 DOI: 10.1016/j.pt.2013.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Balamuthia mandrillaris is an opportunistic, free-living amoeba that can cause skin lesions and the typically fatal Balamuthia amoebic encephalitis (BAE) both in immunocompromised and immunocompetent individuals. Available data for BAE cases indicate that this disease is difficult to detect because knowledge of predisposing factors is lacking, causing a challenge for diagnosing BAE. The number of reported BAE cases is increasing worldwide, and this is a major concern because little is known about the pathogen, no standardized detection tools are available, and most of the treatments are almost empirical. The recently reported cases, novel diagnostics tools, and successful therapeutic approaches against BAE infections are reviewed here.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of The Canary Islands, University of La Laguna, Avenida Astrofísico Francisco Sánchez SN, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri are mitochondria-bearing, free-living eukaryotic amebae that have been known to cause infections of the central nervous system (CNS) of humans and other animals. Several species of Acanthamoeba belonging to several different genotypes cause an insidious and chronic disease, granulomatous amebic encephalitis (GAE), principally in immunocompromised hosts including persons infected with HIV/AIDS. Acanthamoeba spp., belonging to mostly group 2, also cause infection of the human cornea, Acanthamoeba keratitis. Balamuthia mandrillaris causes GAE in both immunocompromised and immunocompetent hosts mostly in the very young or very old individuals. Both Acanthamoeba spp. and B. mandrillaris also cause a disseminated disease including the lungs, skin, kidneys, and uterus. Naegleria fowleri, on the other hand, causes an acute and fulminating, necrotizing infection of the CNS called primary amebic meningoencephalitis (PAM) in children and young adults with a history of recent exposure to warm fresh water. Additionally, another free-living ameba Sappinia pedata, previously described as S. diploidea, also has caused a single case of amebic meningoencephalitis. In this review the biology of these amebae, clinical manifestations, molecular and immunological diagnosis, and epidemiological features associated with GAE and PAM are discussed.
Collapse
Affiliation(s)
- Govinda S Visvesvara
- Division of Foodborne, Waterborne & Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
13
|
Bravo FG, Seas C. Balamuthia Mandrillaris Amoebic Encephalitis: An Emerging Parasitic Infection. Curr Infect Dis Rep 2012; 14:391-6. [DOI: 10.1007/s11908-012-0266-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Stidd DA, Root B, Weinand ME, Anton R. Granulomatous amoebic encephalitis caused by Balamuthia mandrillaris in an immunocompetent girl. World Neurosurg 2011; 78:715.e7-12. [PMID: 22120559 DOI: 10.1016/j.wneu.2011.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/12/2011] [Accepted: 10/24/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Balamuthia mandrillaris is a recently recognized cause of a rare, devastating infection, granulomatous amoebic encephalitis (GAE). Presenting symptoms of GAE are nonspecific and can last for months before becoming clinically significant. Once the infection involves the central nervous system, death often results within days to weeks. A high degree of clinical suspicion is needed to correctly diagnose this infection because definitive diagnostic tests are presently limited, and even then there are only sparse data concerning effective treatment. The importance of early diagnosis is emphasized because delay likely contributes to the extremely high mortality with this infection. METHODS This study presents a previously healthy, immunocompetent 2-year-old female patient who succumbed to GAE secondary to B. mandrillaris, with the intention of raising awareness of this devastating infection. RESULTS Balamuthia amoebic encephalitis is a devastating form of amoebic encephalitis that is increasingly reported in the literature. CONCLUSIONS GAE should be considered for a patient with atypical encephalitis and single or multiple lesions with surrounding edema evident on neurodiagnostic imaging.
Collapse
Affiliation(s)
- David A Stidd
- Division of Neurosurgery, University of Arizona, Tucson, Arizona, USA.
| | | | | | | |
Collapse
|
15
|
Identification of antigenic targets for immunodetection of Balamuthia mandrillaris infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1297-301. [PMID: 21653740 DOI: 10.1128/cvi.05082-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The free-living amoeba Balamuthia mandrillaris causes granulomatous amoebic encephalitis (GAE) in humans. Rapid identification of balamuthiasis is critical for effective therapeutic intervention and case management. In the present study we identified target antigens for the development of a serological assay for B. mandrillaris infection. We demonstrated by silver staining that protein profiles for all eight isolates of B. mandrillaris, independent of human or animal origin or geographic origin, appeared to be similar except for some minor differences, indicating the molecular homogeneity of these strains. The profiles of all isolates, which ranged from 200 to 10 kDa, were similar, with a prominent protein visible around 30 kDa; all appeared considerably different from protein profiles of the control E6 cells and Acanthamoeba castellanii and Naegleria fowleri isolates. Western blot analysis with rabbit hyperimmune serum identified the major immunodominant antigens of 25, 50, 75, and 80 kDa; positive human sera reacted strongly with proteins around 25, 40, 50, and 75 kDa. Proteins around 40 kDa detected by human serum were not recognized by hyperimmune rabbit serum. None of the target proteins were detected by uninfected control sera. Reactivities of five patients' sera with 4 different isolates of B. mandrillaris (2 strains of human and 2 strains of animal origins) revealed that patients' sera reacted slightly differently with different B. mandrillaris isolates, although major proteins of approximately 25, 50, and 75 kDa were present in all extracts.
Collapse
|
16
|
Mätz-Rensing K, Kunze M, Zöller M, Roos C, Kiderlen AF, Ludwig C, Kaup FJ. Fatal Balamuthia mandrillaris infection in a gorilla - first case of balamuthiasis in Germany. J Med Primatol 2011; 40:437-40. [DOI: 10.1111/j.1600-0684.2011.00479.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Balamuthia mandrillaris infection of the skin and central nervous system: an emerging disease of concern to many specialties in medicine. Curr Opin Infect Dis 2011; 24:112-7. [DOI: 10.1097/qco.0b013e3283428d1e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kiderlen AF, Radam E, Schuster FL, Adjogoua EV, Akoua-Koffi C, Leendertz FH. Balamuthia and Acanthamoeba-binding antibodies in West African human sera. Exp Parasitol 2010; 126:28-32. [DOI: 10.1016/j.exppara.2009.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/26/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
|
19
|
Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip Perspect Infect Dis 2009; 2009:251406. [PMID: 19657454 PMCID: PMC2719787 DOI: 10.1155/2009/251406] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
Naegleria fowleri, Acanthamoeba spp., Balamuthia mandrillaris, and Sappinia sp. are pathogenic free-living amoebae. N. fowleri causes Primary Amoebic Meningoencephalitis, a rapidly fatal disease of the central nervous system, while Acanthamoeba spp. and B. mandrillaris cause chronic granulomatous encephalitis. Acanthamoeba spp. also can cause cutaneous lesions and Amoebic Keratitis, a sight-threatening infection of the cornea that is associated with contact lens use or corneal trauma. Sappinia pedata has been identified as the cause of a nonlethal case of amoebic encephalitis. In view of the potential health consequences due to infection with these amoebae, rapid diagnosis is critical for early treatment. Microscopic examination and culture of biopsy specimens, cerebral spinal fluid (CSF), and corneal scrapings have been used in the clinical laboratory. For amoebic keratitis, confocal microscopy has been used to successfully identify amoebae in corneal tissue. More recently, conventional and real-time PCR assays have been developed that are sensitive and specific for the amoebae. In addition, multiplex PCR assays are available for the rapid identification of these pathogens in biopsy tissue, CSF, and corneal specimens.
Collapse
|