1
|
Maldonado E, Canobra P, Oyarce M, Urbina F, Miralles VJ, Tapia JC, Castillo C, Solari A. In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes. Microorganisms 2024; 12:907. [PMID: 38792752 PMCID: PMC11124317 DOI: 10.3390/microorganisms12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Paz Canobra
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Matías Oyarce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Vicente J. Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46110 Valencia, Spain;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| |
Collapse
|
2
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
3
|
Maldonado E, Rojas DA, Urbina F, Valenzuela-Pérez L, Castillo C, Solari A. Trypanosoma cruzi DNA Polymerase β Is Phosphorylated In Vivo and In Vitro by Protein Kinase C (PKC) and Casein Kinase 2 (CK2). Cells 2022; 11:cells11223693. [PMID: 36429121 PMCID: PMC9688435 DOI: 10.3390/cells11223693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
DNA polymerase β plays a fundamental role in the life cycle of Trypanosoma cruzi since it participates in the kinetoplast DNA repair and replication. This enzyme can be found in two forms in cell extracts of T. cruzi epimastigotes form. The H form is a phosphorylated form of DNA polymerase β, while the L form is not phosphorylated. The protein kinases which are able to in vivo phosphorylate DNA polymerase β have not been identified yet. In this work, we purified the H form of this DNA polymerase and identified the phosphorylation sites. DNA polymerase β is in vivo phosphorylated at several amino acid residues including Tyr35, Thr123, Thr137 and Ser286. Thr123 is phosphorylated by casein kinase 2 and Thr137 and Ser286 are phosphorylated by protein kinase C-like enzymes. Protein kinase C encoding genes were identified in T. cruzi, and those genes were cloned, expressed in bacteria and the recombinant protein was purified. It was found that T. cruzi possesses three different protein kinase C-like enzymes named TcPKC1, TcPKC2, and TcPKC3. Both TcPKC1 and TcPKC2 were able to in vitro phosphorylate recombinant DNA polymerase β, and in addition, TcPKC1 gets auto phosphorylated. Those proteins contain several regulatory domains at the N-terminus, which are predicted to bind phosphoinositols, and TcPKC1 contains a lipocalin domain at the C-terminus that might be able to bind free fatty acids. Tyr35 is phosphorylated by an unidentified protein kinase and considering that the T. cruzi genome does not contain Tyr kinase encoding genes, it is probable that Tyr35 could be phosphorylated by a dual protein kinase. Wee1 is a eukaryotic dual protein kinase involved in cell cycle regulation. We identified a Wee1 homolog in T. cruzi and the recombinant kinase was assayed using DNA polymerase β as a substrate. T. cruzi Wee1 was able to in vitro phosphorylate recombinant DNA polymerase β, although we were not able to demonstrate specific phosphorylation on Tyr35. Those results indicate that there exists a cell signaling pathway involving PKC-like kinases in T. cruzi.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Lucía Valenzuela-Pérez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Christian Castillo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Correspondence: (E.M.); (A.S.)
| |
Collapse
|
4
|
Rodríguez-Durán J, Gallardo JP, Alba Soto CD, Gómez KA, Potenza M. The Kinetoplastid-Specific Protein TcCAL1 Plays Different Roles During In Vitro Differentiation and Host-Cell Invasion in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:901880. [PMID: 35846750 PMCID: PMC9280158 DOI: 10.3389/fcimb.2022.901880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.
Collapse
Affiliation(s)
- Jessica Rodríguez-Durán
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Juan Pablo Gallardo
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Catalina Dirney Alba Soto
- Instituto de Microbiología y Parasitología Médica, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Andrea Gómez
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Mariana Potenza
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
- *Correspondence: Mariana Potenza, ;
| |
Collapse
|
5
|
Güiza J, García A, Arriagada J, Gutiérrez C, González J, Márquez-Miranda V, Alegría-Arcos M, Duarte Y, Rojas M, González-Nilo F, Sáez JC, Vega JL. Unnexins: Homologs of innexin proteins in Trypanosomatidae parasites. J Cell Physiol 2021; 237:1547-1560. [PMID: 34779505 DOI: 10.1002/jcp.30626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
Large-pore channels, including those formed by connexin, pannexin, innexin proteins, are part of a broad family of plasma membrane channels found in vertebrates and invertebrates, which share topology features. Despite their relevance in parasitic diseases such as Chagas and malaria, it was unknown whether these large-pore channels are present in unicellular organisms. We identified 14 putative proteins in Trypanosomatidae parasites as presumptive homologs of innexin proteins. All proteins possess the canonical motif of the innexin family, a pentapeptide YYQWV, and 10 of them share a classical membrane topology of large-pore channels. A sequence similarity network analysis confirmed their closeness to innexin proteins. A bioinformatic model showed that a homolog of Trypanosoma cruzi (T. cruzi) could presumptively form a stable octamer channel with a highly positive electrostatic potential in the internal cavities and extracellular entrance due to the notable predominance of residues such as Arg or Lys. In vitro dye uptake assays showed that divalent cations-free solution increases YO-PRO-1 uptake and hyperosmotic stress increases DAPI uptake in epimastigotes of T. cruzi. Those effects were sensitive to probenecid. Furthermore, probenecid reduced the proliferation and transformation of T. cruzi. Moreover, probenecid or carbenoxolone increased the parasite sensitivity to antiparasitic drugs commonly used in therapy against Chagas. Our study suggests the existence of innexin homologs in unicellular organisms, which could be protein subunits of new large-pore channels in unicellular organisms.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Aníbal García
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Javiera Arriagada
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Gutiérrez
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge González
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta (CIIBBA), Universidad de Antofagasta, Antofagasta, Chile.,Molecular Parasitology Unit, Medical Technology Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | | | | | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Instituto de Neurosciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Instituto de Neurosciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratory of Gap Junction Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.,Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta (CIIBBA), Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
6
|
Calcium Signaling Involves Na+/H+ Exchanger and IP3 Receptor Activation in T. cruzi Epimastigotes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The calcium ion (Ca2+) plays a fundamental role in the metabolism and cell physiology of eukaryotic cells. In general, increases in cytosolic Ca2+ may come from both of the extracellular environment through specific channels and/or calcium release from intracellular stores. The mechanism by which the ion calcium (Ca2+) is released from intracellular stores in higher eukaryotes is well known; however, in lower eukaryotes is still a subject of study. In the present work, it was elucidated that Trypanosoma cruzi epimastigotes can release Ca2+ from intracellular stores in response to high osmolarity, in a process involving a protein kinase-regulated Na+/H+ exchanger present in the acidocalsisomes of the parasite. In addition, we demonstrated that epimastigote membranes are able to release Ca2+ in response to exogenous activators of both inositol 1,4,5-triphosphate (IP3) and Ryanodine receptors. Furthermore, we also summarize the involvement of calcium-related signaling pathways in biochemical and morphological changes triggered by hyperosmotic stress in T. cruzi epimastigotes.
Collapse
|
7
|
Chagas-Lima AC, Pereira MG, Fampa P, Lima MS, Kluck GEG, Atella GC. Bioactive lipids regulate Trypanosoma cruzi development. Parasitol Res 2019; 118:2609-2619. [DOI: 10.1007/s00436-019-06331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
|
8
|
Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Mol Biochem Parasitol 2018; 224:6-16. [PMID: 30016698 DOI: 10.1016/j.molbiopara.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
The Chagas disease agent Trypanosoma cruzi proliferates in the insect vector as highly endocytic epimastigotes that store nutrients, including lipids in reservosomes (lysosome related compartments). Although nutrient storage is important for epimastigote transformation into infective metacyclics, the epimastigote lipid droplets (LDs) remain uncharacterized. Here, we characterized the epimastigote LDs and examined their relationship with the endocytic pathway. Fluorescence microscopy using BODIPY showed that LDs have high neutral lipid content and harbor Rab18, differently from other lipid-rich organelles (such as reservosomes). Using transmission electron microscopy (TEM), we observed a close relationship between LDs and the endoplasmic reticulum, mitochondria and glycosomes. We developed a reproducible protocol to isolate LDs, and showed (by HTPLC and GC/MS analyses) that they have 89% neutral lipids and 11% phospholipids, which are likely to form the LD monolayer seen by TEM. The LD neutral lipids were mostly sterols, although triacylglycerol, diacylglycerol, monoacylglycerol and free fatty acids (FFA) were also found. Endocytosis of 3H-labeled cholesterol-BSA showed that internalized cholesterol is stored in LDs mostly in the cholesteryl ester form. Together, these results suggest that exogenous cholesterol internalized by endocytosis reaches the reservosomes and is then stored into LDs after esterification.
Collapse
|
9
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
10
|
Zhou BH, Shen XJ, Wang HW, Li T, Xue FQ. Receptor for activated C kinase ortholog of second-generation merozoite in Eimeria tenella: clone, characterization, and diclazuril-induced mRNA expression. Parasitol Res 2012; 111:1447-55. [PMID: 22752697 DOI: 10.1007/s00436-012-2978-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
The receptor for activated C kinase (RACK) cDNA of second-generation merozoites of Eimeria tenella was cloned using reverse transcriptase polymerase chain reaction and rapid amplification of cDNA ends, compared with other species, and then successfully expressed using the pET-28a vector in Escherichia coli BL21 (DE3) (EtRACK). Nucleotide sequence analysis revealed that the full length of the cloned cDNA (1,264 bp) encompassed a 957-bp open reading frame encoding a polypeptide of 318 residues with an estimated molecular mass of 34.94 kDa and a theoretical isoelectric point of 5.97. Molecular analysis of EtRACK reveals the presence of seven WD40 repeat motifs. EtRACK localizes to the cytoplasm and nucleus in second-generation merozoites of E. tenella. The cDNA sequence has been submitted to the GenBank Database with accession number JQ292804. EtRACK shared 98% homology with the published sequence of a RACK protein from Toxoplasma gondii at the amino acid level (GenBank XP_002370996.1). Recombinant protein expression was induced using 1 mM of isopropyl β-D-1-thiogalactopyranoside in vitro at 30 °C. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that the 39.79-kDa fusion protein existed in unsolvable form. Quantitative real-time PCR analysis showed that compared with the control group, the level of EtRACK mRNA expression in the treatment group was downregulated by 81.3% by diclazuril treatment. The high similarity of EtRACK to previously described RACKs of other organisms, as well as its downregulated expression in second-generation merozoites induced by diclazuril, suggests that it could play a key role in the signaling event that precedes protein secretion and parasite invasion. Moreover, the downregulation of EtRACK mRNA expression also enriches studies on the mechanism of action of diclazuril on E. tenella.
Collapse
Affiliation(s)
- Bian-hua Zhou
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai 200241, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Mol Biochem Parasitol 2012; 181:61-72. [PMID: 22019385 DOI: 10.1016/j.molbiopara.2011.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
|
12
|
Kebaier C, Vanderberg JP. Initiation of Plasmodium sporozoite motility by albumin is associated with induction of intracellular signalling. Int J Parasitol 2010; 40:25-33. [PMID: 19654011 PMCID: PMC2813373 DOI: 10.1016/j.ijpara.2009.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/25/2009] [Accepted: 06/27/2009] [Indexed: 11/21/2022]
Abstract
Malaria infection is initiated when a mosquito injects Plasmodium sporozoites into a mammalian host. Sporozoites exhibit gliding motility both in vitro and in vivo. This motility is associated with the secretion of at least two proteins, circumsporozoite protein (CSP) and thrombospondin-related anonymous protein (TRAP). Both derive from micronemes, which are organelles that empty out of the apical end of the sporozoite. Sporozoite motility can be initiated in vitro by albumin added to the medium. To investigate how albumin functions in this process, we studied second messenger signalling within the sporozoite. Using pharmacological activators and inhibitors, we have concluded that gliding motility is initiated when albumin interacts with the surface of the sporozoite and that this leads to a signal transduction cascade within the sporozoite, including the elevation of intracellular cAMP, the modulation of sporozoite motility by Ca(2+) and the release of microneme proteins.
Collapse
Affiliation(s)
- Chahnaz Kebaier
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25Street, New York, NY 10010, USA
| | - Jerome P. Vanderberg
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25Street, New York, NY 10010, USA
| |
Collapse
|