1
|
Contreras-Ortiz JME, Hernández-Mendoza D, Márquez-Dueñas C, Manning-Cela R, Santillán M. In vitro characterization of Trypanosoma cruzi infection dynamics in skeletal and cardiac myotubes models suggests a potential cell-to-cell transmission in mediating cardiac pathology. PLoS Negl Trop Dis 2024; 18:e0012288. [PMID: 38913744 PMCID: PMC11226117 DOI: 10.1371/journal.pntd.0012288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/05/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Chagas disease predominantly affects the heart, esophagus, and colon in its chronic phase. However, the precise infection mechanisms of the causal agent Trypanosoma cruzi in these tissue types remain incompletely understood. This study investigated T. cruzi infection dynamics in skeletal (SM) and cardiac myotubes (CM) differentiated from H9c2(2-1) myoblasts (control). SM and CM were generated using 1% fetal bovine serum (FBS) without or with retinoic acid, respectively. Initial invasion efficiencies and numbers of released parasites were equivalent between undifferentiated and differentiated cells (~0.3-0.6%). Concomitantly, parasite motility patterns were similar across cell lines. However, CM demonstrated significantly higher infection kinetics over time, reaching 13.26% infected cells versus 3.12% for SM and 3.70% for myoblasts at later stages. Cellular automata modeling suggested an enhanced role for cell-to-cell transmission in driving the heightened parasitism observed in CM. The increased late-stage susceptibility of CM, potentially mediated by cell-to-cell transfer mechanisms of the parasite, aligns with reported clinical tropism patterns. The myotube infection models provide novel insights into Chagas disease pathogenesis that are not fully attainable through in vivo examination alone. Expanding knowledge in this area could aid therapeutic development for this neglected illness.
Collapse
Affiliation(s)
- José María Eloy Contreras-Ortiz
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo Leon, México
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CDMX, Ciudad de México, México
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Toluca, México
| | - Daniel Hernández-Mendoza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo Leon, México
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CDMX, Ciudad de México, México
| | - Claudia Márquez-Dueñas
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo Leon, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CDMX, Ciudad de México, México
| | - Moisés Santillán
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo Leon, México
| |
Collapse
|
2
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
3
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Barreto de Albuquerque J, Silva Dos Santos D, Stein JV, de Meis J. Oral Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental Infection? From Target Tissues, Parasite Evasion, and Immune Response. Front Immunol 2018; 9:1734. [PMID: 30100907 PMCID: PMC6072848 DOI: 10.3389/fimmu.2018.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Collapse
Affiliation(s)
| | - Danielle Silva Dos Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Life and death of Trypanosoma cruzi in presence of metals. Biometals 2017; 30:955-974. [PMID: 29081021 DOI: 10.1007/s10534-017-0064-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi has many molecules that need metallic elements to work, allowing cell invasion and the establishment of infection, causing Chagas disease. Nonetheless, knowledge regarding how the parasites address metals and maintain homeostasis is lacking. To study this relationship, zinc, cadmium and mercury were chosen. Epimastigote, trypomastigote and intracellular forms of T. cruzi were incubated with these metals for different times and at different concentrations. In general, epimastigotes were the most sensitive and trypomastigotes the most resistant to metals. ZnCl2 induced low toxic effects to all parasite forms. Although the parasites were very sensitive to the toxic effects of CdCl2 and HgCl2, pretreatment with ZnCl2 decreased the death rate. The trypomastigotes pretreated with CdCl2 were unable to infect the host cells, and the treated intracellular forms were damaged after 2 h of incubation, when the toxic effects were poorly reverted. New insights on metal toxicity mechanisms are provided, helping to understand how metallic ions influence the parasite's biochemical and physiological processes.
Collapse
|
6
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Liu H, Li M, Cai S, He X, Shao Y, Lu X. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1050-1057. [PMID: 27649890 DOI: 10.1093/abbs/gmw093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Cancer Institute of Integrative Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Bellera CL, Balcazar DE, Vanrell MC, Casassa AF, Palestro PH, Gavernet L, Labriola CA, Gálvez J, Bruno-Blanch LE, Romano PS, Carrillo C, Talevi A. Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem 2015; 93:338-48. [DOI: 10.1016/j.ejmech.2015.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
|
9
|
Mukherjee S, Mukhopadhyay A, Andriani G, Machado FS, Ashton AW, Huang H, Weiss LM, Tanowitz HB. Trypanosoma cruzi invasion is associated with trogocytosis. Microbes Infect 2015; 17:62-70. [PMID: 25448052 PMCID: PMC4302017 DOI: 10.1016/j.micinf.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Trogocytosis was originally thought to be restricted to the interaction of cells of the immune system with cancer cells. Such membrane exchanges are probably a general process in cell biology, and membrane exchange has been demonstrated to occur between non-immune cells within an organism. Herein, we report that membrane and protein exchange, consistent with trogocytosis, between Trypanosoma cruzi (both the Brazil and Tulahuen strains) and the mammalian cells it infects. Transfer of labeled membrane patches was monitored by labeling of either parasites or host cells, i.e. human foreskin fibroblasts and rat myoblasts. Trypomastigotes and amastigotes transferred specific surface glycoproteins to the host cells along with membranes. Exchange of membranes between the parasite and host cells occurred during successful invasion. Extracellular amastigotes did not transfer membrane patches and were did not transfer either membranes or proteins to the host cells. Membrane exchange was also found to occur between interacting epimastigotes in cell-free culture and may be important in parasite-parasite interactions as well. Further studies should provide new insights into pathogenesis and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, NY, USA.
| | - Aparna Mukhopadhyay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA; Department of Physiology, Presidency University, Kolkata, India
| | | | - Fabiana Simão Machado
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary, Laboratory of Medical Investigation, Faculty of Medicine, and the Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, N.S.W., Australia
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA
| | - Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, NY, USA; Department of Medicine, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
10
|
Baum LG, Garner OB, Schaefer K, Lee B. Microbe-Host Interactions are Positively and Negatively Regulated by Galectin-Glycan Interactions. Front Immunol 2014; 5:284. [PMID: 24995007 PMCID: PMC4061488 DOI: 10.3389/fimmu.2014.00284] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Microbe–host interactions are complex processes that are directly and indirectly regulated by a variety of factors, including microbe presentation of specific molecular signatures on the microbial surface, as well as host cell presentation of receptors that recognize these pathogen signatures. Cell surface glycans are one important class of microbial signatures that are recognized by a variety of host cell lectins. Host cell lectins that recognize microbial glycans include members of the galectin family of lectins that recognize specific glycan ligands on viruses, bacteria, fungi, and parasites. In this review, we will discuss the ways that the interactions of microbial glycans with host cell galectins positively and negatively regulate pathogen attachment, invasion, and survival, as well as regulate host responses that mitigate microbial pathogenesis.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Katrin Schaefer
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| | - Benhur Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA ; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
11
|
DTU I isolates of Trypanosoma cruzi induce upregulation of Galectin-3 in murine myocarditis and fibrosis. Parasitology 2014; 141:849-58. [PMID: 24533969 DOI: 10.1017/s0031182013002254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas heart disease is a major public concern since 30% of infected patients develop cardiac alterations. The relationship between Trypanosoma cruzi discrete typing units (DTUs) and the biological properties exhibited by the parasite population has yet to be elucidated. In this study, we analysed the expression of α-smooth muscle actin (α-SMA) and galectin-3 (Gal-3) associated with cardiac extracellular matrix (ECM) remodelling a murine chronic cardiomyopathy induced by Tc I genotypes. We found the induction of myocarditis was associated with the upregulation of Col I, α-SMA, Gal-3, IFN-γ and IL-13, as analysed by q-PCR. In myocardial areas of fibrosis, the intensity of myocarditis and significant ECM remodelling correlated with the presence of Col I-, Gal-3- and α-SMA-positive cells. These results are promising for the further efforts to evaluate the relevance of Gal-3 in Chagas heart disease, since this galectin was proposed as a prognosis marker in heart failure patients.
Collapse
|
12
|
Bellera CL, Balcazar DE, Alberca L, Labriola CA, Talevi A, Carrillo C. Identification of levothyroxine antichagasic activity through computer-aided drug repurposing. ScientificWorldJournal 2014; 2014:279618. [PMID: 24592161 PMCID: PMC3926237 DOI: 10.1155/2014/279618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022] Open
Abstract
Cruzipain (Cz) is the major cysteine protease of the protozoan Trypanosoma cruzi, etiological agent of Chagas disease. A conformation-independent classifier capable of identifying Cz inhibitors was derived from a 163-compound dataset and later applied in a virtual screening campaign on the DrugBank database, which compiles FDA-approved and investigational drugs. 54 approved drugs were selected as candidates, 3 of which were acquired and tested on Cz and T. cruzi epimastigotes proliferation. Among them, levothyroxine, traditionally used in hormone replacement therapy in patients with hypothyroidism, showed dose-dependent inhibition of Cz and antiproliferative activity on the parasite.
Collapse
Affiliation(s)
- Carolina L. Bellera
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Darío E. Balcazar
- Instituto de Ciencia y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Saladillo 2468, Ciudad Autónoma de Buenos Aires (C1440FFX), Argentina
| | - Lucas Alberca
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Carlos A. Labriola
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Argentinean National Council of Scientific and Technical Research (CONICET), Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires (C1405BWE), Argentina
| | - Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 y 115, La Plata (B1900AJI) Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencia y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Saladillo 2468, Ciudad Autónoma de Buenos Aires (C1440FFX), Argentina
| |
Collapse
|
13
|
Johndrow C, Nelson R, Tanowitz H, Weiss LM, Nagajyothi F. Trypanosoma cruzi infection results in an increase in intracellular cholesterol. Microbes Infect 2014; 16:337-44. [PMID: 24486184 DOI: 10.1016/j.micinf.2014.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 01/25/2023]
Abstract
Chagasic cardiomyopathy caused by Trypanosoma cruzi is a major health concern in Latin America and among immigrant populations in non-endemic areas. T. cruzi has a high affinity for host lipoproteins and uses the low density lipoprotein receptor (LDLr) for invasion. Herein, we report that T. cruzi infection is associated with an accumulation of LDL and cholesterol in tissues in both acute and chronic murine Chagas disease. Similar findings were observed in tissue samples from a human case of Chagasic cardiomyopathy. T. cruzi infection of cultured cells displayed increased invasion with increasing cholesterol levels in the medium. Studies of infected host cells demonstrated alterations in their cholesterol regulation. T. cruzi invasion/infection via LDLr appears to be involved in changes in intracellular cholesterol homeostasis. The observed changes in intracellular lipids and associated oxidative stress due to these elevated lipids may contribute to the development of Chagasic cardiomyopathy.
Collapse
Affiliation(s)
| | - Randin Nelson
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Herbert Tanowitz
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M Weiss
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Mattos EC, Tonelli RR, Colli W, Alves MJM. The Gp85 surface glycoproteins from Trypanosoma cruzi. Subcell Biochem 2014; 74:151-180. [PMID: 24264245 DOI: 10.1007/978-94-007-7305-9_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosoma cruzi strains show distinctive characteristics as genetic polymorphism and infectivity. Large repertoires of molecules, such as the Gp85 glycoproteins, members of the Gp85/Trans-sialidase superfamily, as well as multiple signaling pathways, are associated with invasion of mammalian cells by the parasite. Due to the large number of expressed members, encoded by more than 700 genes, the research focused on this superfamily conserved sequences is discussed. Binding sites to laminin have been identified at the N-terminus of the Gp85 molecules. Interestingly, the T. cruzi protein phosphorylation profile is changed upon parasite binding to laminin (or fibronectin), particularly the cytoskeletal proteins such as those from the paraflagellar rod and the tubulins, which are both markedly dephosphorylated. Detailed analysis of the signaling cascades triggered upon T. cruzi binding to extracellular matrix (ECM) proteins revealed the involvement of the MAPK/ERK pathway in this event. At the C-terminus, the conserved FLY sequence is a cytokeratin-binding domain and is involved in augmented host cell invasion in vitro and high levels of parasitemia in vivo. FLY, which is associated to tissue tropism and preferentially binds to the heart vasculature may somehow be correlated with the severe cardiac form, an important clinical manifestation of chronic Chagas' disease.
Collapse
Affiliation(s)
- Eliciane C Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, Cidade Universitária, São Paulo, Brazil
| | | | | | | |
Collapse
|
15
|
Abstract
Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.
Collapse
|
16
|
Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 2013; 8:e77283. [PMID: 24204787 PMCID: PMC3813737 DOI: 10.1371/journal.pone.0077283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.
Collapse
|
17
|
Bellera CL, Balcazar DE, Alberca L, Labriola CA, Talevi A, Carrillo C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects. J Chem Inf Model 2013; 53:2402-8. [PMID: 23906322 DOI: 10.1021/ci400284v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cruzipain (Cz) is the major cystein protease of the protozoan Trypanosoma cruzi , etiological agent of Chagas disease. From a 163 compound data set, a 2D-classifier capable of identifying Cz inhibitors was obtained and applied in a virtual screening campaign on the DrugBank database, which compiles FDA-approved and investigational drugs. Fifty-four approved drugs were selected as candidates, four of which were acquired and tested on Cz and T. cruzi epimastigotes. Among them, the antiparkinsonian and antidiabetic drug bromocriptine and the antiarrhythmic amiodarone showed dose-dependent inhibition of Cz and antiproliferative activity on the parasite.
Collapse
Affiliation(s)
- Carolina L Bellera
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata , 47 y 115, La Plata (B1900AJI), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Barrias ES, de Carvalho TMU, De Souza W. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front Immunol 2013; 4:186. [PMID: 23914186 PMCID: PMC3730053 DOI: 10.3389/fimmu.2013.00186] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.
Collapse
Affiliation(s)
- Emile Santos Barrias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro Duque de Caxias, Rio de Janeiro, Brazil
| | - Tecia Maria Ulisses de Carvalho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia, Instituto Nacional de Metrologia, Qualidade e Tecnologia – Inmetro Duque de Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Castillo C, Villarroel A, Duaso J, Galanti N, Cabrera G, Maya JD, Kemmerling U. Phospholipase C gamma and ERK1/2 Mitogen Activated Kinase Pathways are differentially modulated by Trypanosoma cruzi during tissue invasion in human placenta. Exp Parasitol 2013; 133:12-7. [DOI: 10.1016/j.exppara.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/08/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
20
|
Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology 2012; 140:147-59. [PMID: 23010131 DOI: 10.1017/s0031182012001394] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease or American trypanosomiasis is a pathology affecting about 8-11 million people in Mexico, Central America, and South America, more than 300 000 persons in the United States as well as an indeterminate number of people in other non-endemic countries such as USA, Spain, Canada and Switzerland. The aetiological agent is Trypanosoma cruzi, a protozoan transmitted by multiple routes; among them, congenital route emerges as one of the most important mechanisms of spreading Chagas disease worldwide even in non-endemic countries and the oral route as the responsible of multiple outbreaks of acute Chagas disease in regions where the vectorial route has been interrupted. The aim of this review is to illustrate the recent research and advances in host-pathogen interaction making a model of how the virulence factors of the parasite would interact with the physiology and immune system components of the placental barrier and gastrointestinal tract in order to establish a response against T. cruzi infection. This review also presents the epidemiological, clinical and diagnostic features of congenital and oral Chagas disease in order to update the reader about the emerging scenarios of Chagas disease transmission.
Collapse
|
21
|
Involvement of TSSA (trypomastigote small surface antigen) in Trypanosoma cruzi invasion of mammalian cells. Biochem J 2012; 444:211-8. [PMID: 22428617 DOI: 10.1042/bj20120074] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca(2+)-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a ~2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.
Collapse
|
22
|
|
23
|
Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 2012; 139:735-43. [PMID: 22310218 DOI: 10.1017/s0031182011002344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.
Collapse
|
24
|
Weiss LM, Tanowitz HB. Cutting-edge methodologies applied to the challenges of Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:xxi-xxvi. [PMID: 21820548 DOI: 10.1016/b978-0-12-385863-4.00020-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi, an organism that is endemic to Latin America. While Chagas disease is primarily a vector-borne illness, new cases are emerging in non-endemic areas due to globalization of immigration and non-vectorial transmission routes. This article discusses the mode of transmission, evolving epidemiology, pathogenesis, diagnosis, treatment and prevention and control of the disease.
Collapse
|
27
|
Nagajyothi F, Weiss LM, Silver DL, Desruisseaux MS, Scherer PE, Herz J, Tanowitz HB. Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS Negl Trop Dis 2011; 5:e953. [PMID: 21408103 PMCID: PMC3051337 DOI: 10.1371/journal.pntd.0000953] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/05/2011] [Indexed: 11/23/2022] Open
Abstract
Background Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood. Methodology/Principal Findings In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart. Conclusions/Significance These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection. Trypanosoma cruzi, an intracellular protozoan parasite that causes Chagas disease in humans and results in the development of cardiomyopathy, is a major health problem in endemic areas. This parasite can invade a wide variety of mammalian cells. The mechanisms by which these parasites invade their host cells are not completely understood. Our study highlights, for the first time, that the Low Density Lipoprotein receptor (LDLr) is important in the invasion and the subsequent fusion of the parasitophorous vacuole with host lysosomes. We demonstrate that T. cruzi directly binds to LDLr, and inhibition or disruption of LDLr significantly decreases parasite entry. Additionally, we have determined that this cross-linking triggers the accumulation of LDLr and phosphotidylinositol phosphates in coated pits, which initiates a signaling cascade that results in the recruitment of lysosomes, possibly via the sorting motif in the cytoplasmic tail of LDLr, to the site of adhesion/invasion. Studies of infected CD1 mice demonstrate that LDLs accumulate in infected heart and that LDLr co-localize with internalized parasites. Overall, this study demonstrates that LDLr and its family members, engaged mainly in lipoprotein transportation, are also involved in T. cruzi entry into host cells and this interaction likely contributes to the progression of chronic cardiomyopathy.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Preface. ADVANCES IN PARASITOLOGY 2011. [DOI: 10.1016/b978-0-12-385895-5.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Nde PN, Johnson CA, Pratap S, Cardenas TC, Kleshchenko YY, Furtak VA, Simmons KJ, Lima MF, Villalta F. Gene network analysis during early infection of human coronary artery smooth muscle cells by Trypanosoma cruzi and Its gp83 ligand. Chem Biodivers 2010; 7:1051-64. [PMID: 20491065 DOI: 10.1002/cbdv.200900320] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, infects heart and muscle cells leading to cardiac arrest, followed by death. The genetic architectures in the early T. cruzi infection process of human cells are unknown. To understand the genetic architectures of the early invasion process of T. cruzi, we conducted gene transcription microarray analysis, followed by gene network construction of the host cell response in primary human coronary artery smooth muscle (HCASM) cells infected with T. cruzi or exposed to T. cruzi gp83, a ligand used by the trypanosome to bind host cells. Using seven RT-PCR verified up-regulated genes (FOSB, ATF5, INPP1, CCND2, THBS1, LAMC1, and APLP2) as the seed for network construction, we built an interaction network of the early T. cruzi infection process containing 165 genes, connected by 598 biological interactions. This interactome network is centered on the BCL6 gene as a hub. Silencing the expression of two seed genes (THBS1 and LAMC1) by RNAi reduced T. cruzi infection. Overall, our results elucidate the significant and complex process involved in T. cruzi infection of HCASM cells at the transcriptome level. This is the first elucidation into the interactome network in human cells caused by T. cruzi and its gp83 ligand.
Collapse
Affiliation(s)
- Pius N Nde
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, 1005 Dr. D. B. Todd Jr. Blvd., Nashville, TN 37208-3599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guiñazú N, Carrera-Silva EA, Becerra MC, Pellegrini A, Albesa I, Gea S. Induction of NADPH oxidase activity and reactive oxygen species production by a single Trypanosoma cruzi antigen. Int J Parasitol 2010; 40:1531-8. [PMID: 20637209 DOI: 10.1016/j.ijpara.2010.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Trypanosoma cruzi is an intracellular protozoan parasite that predominantly invades mononuclear phagocytes and is able to establish a persistent infection. The production of reactive oxygen species (ROS) by phagocytes is an innate defence mechanism against microorganisms. It has been postulated that ROS such as superoxide anion (O(2)), hydrogen peroxide and peroxynitrite, may play a crucial role in the control of pathogen growth. However, information on parasite molecules able to trigger ROS production is scarce. In this work, we investigated whether cruzipain, an immunogenic glycoprotein from T. cruzi, was able to trigger the oxidative burst by murine cells. By employing chemiluminiscense and flow-cytometric analysis, we demonstrated that cruzipain induced ROS production in splenocytes from non-immune and cruzipain immune C57BL/6 mice and in a Raw 264.7 macrophage cell line. We also identified an O(2)(-) molecule as one of the ROS produced after antigen stimulation. Cruzipain stimulation induced NOX2 (gp91(phox)) and p47(phox) expression, as well as the co-localisation of both NADPH oxidase enzyme subunits. In the current study, we provide evidence that cruzipain not only increased ROS production but also promoted IL-6 and IL-1β cytokine production. Taken together, we believe these results demonstrate for the first time that cruzipain, a single parasite molecule, in the absence of infection, favors oxidative burst in murine cells. This represents an important advance in the knowledge of parasite molecules that interact with the phagocyte defence mechanism.
Collapse
Affiliation(s)
- Natalia Guiñazú
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
31
|
Epting CL, Coates BM, Engman DM. Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 2010; 126:283-91. [PMID: 20599990 DOI: 10.1016/j.exppara.2010.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 12/28/2022]
Abstract
The protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular protozoan pathogen. Overlapping mechanisms ensure successful infection, yet the relationship between these cellular events and clinical disease remains obscure. This review explores the process of cell invasion from the perspective of cell surface interactions, intracellular signaling, modulation of the host cytoskeleton and endosomal compartment, and the intracellular innate immune response to infection.
Collapse
Affiliation(s)
- Conrad L Epting
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
32
|
Cardenas TC, Johnson CA, Pratap S, Nde PN, Furtak V, Kleshchenko YY, Lima MF, Villalta F. REGULATION of the EXTRACELLULAR MATRIX INTERACTOME by Trypanosoma cruzi. ACTA ACUST UNITED AC 2010; 4:72-76. [PMID: 21499436 DOI: 10.2174/1874421401004010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that the invasive trypomastigote forms of Trypanosoma cruzi use and modulate components of the extracellular matrix (ECM) during the initial process of infection. Infective trypomastigotes up-regulate the expression of laminin γ-1 (LAMC1) and thrombospondin (THBS1) to facilitate the recruitment of trypomastigotes to enhance cellular infection. Silencing the expression of LAMC1 and THBS1 by stable RNAi dramatically reduces trypanosome infection. T. cruzi gp83, a ligand that mediates the attachment of trypanosomes to cells to initiate infection, up-regulates LAMC1 expression to enhance cellular infection. Infective trypomastigotes interact with LAMC1 through galectin-3 (LGALS3), a human lectin, to enhance cellular infection. Silencing the expression of LGALS3 also reduces cellular infection. Some trypanosome surface molecules also interact with the ECM to facilitate infection. Despite the role of the ECM in T. cruzi infection, almost nothing is known about the ECM interactome networks operating in the process of T. cruzi infection. In this mini review, we critically analyze and discuss the regulation of the ECM by T. cruzi and its gp83 ligand, and present the first elucidation of the human ECM interactome network, regulated by T. cruzi and its gp83 ligand, to facilitate cellular infection. The elucidation of the human ECM interactome regulated by T. cruzi is critically important to the understanding of the molecular pathogenesis of T. cruzi infection and developing novel approaches of intervention in Chagas' disease.
Collapse
Affiliation(s)
- Tatiana C Cardenas
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN 37208-3599, USA
| | | | | | | | | | | | | | | |
Collapse
|