1
|
Mandal A, Ghosh P, Das S. Synthesis of dihydropyrimidinones via urea-based multicomponent reactions. Org Biomol Chem 2025; 23:5064-5080. [PMID: 40327393 DOI: 10.1039/d5ob00180c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Multicomponent reactions (MCRs) have emerged as powerful tools in organic chemistry, enabling the rapid and efficient assembly of complex molecular architectures. Urea-based multicomponent reactions have gained significant attention due to their versatility and broad applicability. In this review, we highlight recent developments in this area, with a focus on dihydropyrimidinones, and provide an in-depth analysis of the diverse synthetic pathways and applications of urea-based MCRs, shedding light on their fundamental mechanisms, reaction conditions, and potential for green and sustainable synthesis.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| | - Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India. rs_anirban.nbu.ac.in
| |
Collapse
|
2
|
Molaei S, Farhadi G, Talezari M, Gholizadeh N, Mahnam K, Keivanloo A, Sepehri S. One-pot synthesis of polyhydroquinoline-1,2,3-triazole hybrids in deep eutectic solvent as anti-leishmanial agents and molecular modeling studies. J Biomol Struct Dyn 2024; 42:4834-4850. [PMID: 37325813 DOI: 10.1080/07391102.2023.2224897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The novel hybrids with 1,2,3-triazole and polyhydroquinoline scaffolds were successfully synthesized by multicomponent reaction of propargyloxybenzaldehyde, 1,3-cyclohexadione, ethylacetoacetate and ammonium acetate followed through click reaction in the presence of deep eutectic solvent ChCl/ZnCl2 as an efficient catalyst. Their anti-leishmanial activity was evaluated against amastigote and promastigote forms of L. tropica, L. major, and two different species of L. infantum. Furthermore, to determine the cytotoxicity of the hybrids, they were evaluated against the murine macrophage cell line J774.A1. Based on the results, three hybrids showed the highest antileishmanial activity. However, they revealed low cytotoxicity. Hybrid 6j was the most potent compound against both the forms of all leishmanial types, with IC50 = 13.5 and 11.9 µg/mL for L. major, 37.5 and 25 µg/mL for L. tropica, 17.5 and 20 µg/mL for L. infantum (MCAN/IR//96/LON49) and 35.5 and 30 µg/mL for L. infantum (MCAN/ES/98/LIM-877), respectively. Finally, molecular docking and molecular dynamics simulations were also performed to identify possible mechanism antileishmanial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghazaleh Farhadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Talezari
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Negin Gholizadeh
- Students Research Committee, Public Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Abkar Aras M, Moshtaghi Zonouz A. Synthesis of novel adamantane-containing dihydropyrimidines utilizing Biginelli condensation reaction. J Sulphur Chem 2023. [DOI: 10.1080/17415993.2023.2166348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mina Abkar Aras
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Adeleh Moshtaghi Zonouz
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
Gawdzik B, Kowalczyk P, Koszelewski D, Brodzka A, Masternak J, Kramkowski K, Wypych A, Ostaszewski R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. MEMBRANES 2022; 12:membranes12020238. [PMID: 35207159 PMCID: PMC8878598 DOI: 10.3390/membranes12020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Herein, we present biological studies on 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) obtained via Biginelli reaction catalyzed by NH4Cl under solvent-free conditions. Until now, DHPMs have not been tested for biological activity against pathogenic E. coli strains. We tested 16 newly synthesized DHPMs as antimicrobial agents on model E. coli strains (K12 and R2–R4). Preliminary cellular studies using MIC and MBC tests and digestion of Fpg after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than typically used antibiotics, such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains based on the model strains used and may be engaged in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the pandemic era.
Collapse
Affiliation(s)
- Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
- Correspondence: (B.G.); (P.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: (B.G.); (P.K.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (D.K.); (A.B.); (R.O.)
| |
Collapse
|
5
|
Rashidnejad H, Kordi MA, Pesyan NN, Allahyari-devin M, Frashchi AH, Ramezanitaghartapeh M. Cascade Synthesis of 1,4-Butanediol Monomesylate Glycoconjugates: Anticancer Candidates for Leukemia. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
7
|
Kamdem BP, Elizabeth FI. The Role of Nitro (NO 2-), Chloro (Cl), and Fluoro (F) Substitution in the Design of Antileishmanial and Antichagasic Compounds. Curr Drug Targets 2021; 22:379-398. [PMID: 33371845 DOI: 10.2174/1389450121666201228122239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas diseases are among the most severe NTDs, and are caused by the Leishmania sp and Trypanosoma cruzi, respectively. Glucantime, pentamidine, and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, are known to improve biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluorosynthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand-searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth mentioning that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro-, and chloro-groups in the compound backbone. All in all, nitro and halogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as the baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts in in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.
Collapse
Affiliation(s)
- Boniface P Kamdem
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Mohammadi-Ghalehbin B, Najafi S, Razzaghi-Asl N. Synthesis and antileishmanial effect of a few cyclic and non-cyclic n-aryl enamino amide derivatives. Res Pharm Sci 2020; 15:340-349. [PMID: 33312212 PMCID: PMC7714019 DOI: 10.4103/1735-5362.293512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose The prevalence of leishmaniasis is reported in more than 98 countries and Iran is one of the endemic areas. There is no vaccine for this disease and few effective drugs are available to treat it. Moreover, drug resistance to the disease is increasing. During the past decade, several in vitro and in vivo studies have been performed on dihydropyrimidine derivatives as antileishmanial agents. Experimental approach In the present project, a few 6-methyl-4-aryl-N-aryl dihydropyrimidinone/thiones (A7-A11) and N-heteroaryl-3-(para-methoxy benzyl) amino but-enamides (A1-A6) were synthesized, structurally characterized, and finally subjected to in vitro anti-leishmanial effect against Leishmania major promastigotes. Findings / Results Results of the study showed that compound A10, 4-(3-chlorophenyl)-6-methyl-N-phenyl- 2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide, exhibited superior anti-leishmanial effect with IC50 value of 52.67 µg/mL (more active than standard drug Glucantim® with IC50 71000 ± 390 µg/mL). Conclusion and implications It was demonstrated that some dihydropyrimidine thiones were able to inhibit Leishmania major promastigotes. Structure-activity relationship evaluations indicated that more electron-poor rings such as isoxazole afforded higher activity within A1-A6 series and in these derivatives, N-benzothiazole rings reinforced anti-leishmanial activity concerning thiazole. It was also observed that higher anti-parasite activities of A10 and A11 concerning A7-A9 might be related to the incorporation of the sulfur atom into C2 position, replacement of N-thiazole carboxamide by N-phenyl carboxamide on C5 position of dihydropyrimidine ring, and also replacement of para with meta-substituted phenyls within C4 of dihydropyrimidine ring. The results may help unveil new 4-aryl-5-carboxamide dihydropyrimidines as potential anti-leishmanial agents and their further structural modification toward more potent derivatives.
Collapse
Affiliation(s)
- Behnam Mohammadi-Ghalehbin
- Department of Microbiology and Parasitology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, I.R. Iran.,Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
| | - Sima Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran.,Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, I.R. Iran
| |
Collapse
|
9
|
Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci 2019; 239:117073. [PMID: 31751581 DOI: 10.1016/j.lfs.2019.117073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022]
Abstract
AIMS Recently, strategies of cancer treatment using combination of agents with distinct molecular mechanism(s) of action are considered more promising due to its high efficacy and reduced systemic toxicity. The study is aimed to improve the efficacy of selective estrogen receptor modulator, Centchroman (CC) by combination with the phytoestrogen Genistein (GN). METHODS Cytotoxicity was evaluated by Sulforhodamine B assay. Cell cycle analysis was done through flow cytometry. Further, Apoptosis was analyzed using Annexin V/PI staining, tunel assay and electron microscopic examination and verified using western blot analysis. In order to validate the in vitro results, in vivo analysis was performed using 4T1-syngeneic mouse model. KEY FINDINGS In this study, we report that the dietary isoflavone genistein (GN) synergistically improved antineoplasticity of CC in breast cancer by arresting cells at G2/M phase culminating in ROS dependent apoptosis. The combination of CC plus GN caused dysregulation of Bax and Bcl-2 ratio inducing mitochondrial dysfunction, activation of Caspase-3/7, -9 and PARP cleavage. Further, combination significantly suppresses phosphorylation of PI3K/Akt/NF-κB, enhancing apoptosis. Additionally, combination markedly reduced tumor growth compared to CC and GN alone in mouse 4T1 breast tumor model. SIGNIFICANCE Together, these studies suggest that GN represents a potential adjunct molecule whose role in CC induced apoptosis deserves attention.
Collapse
|
10
|
Kaushik S, Shyam H, Sharma R, Balapure AK. Dietary isoflavone daidzein synergizes centchroman action via induction of apoptosis and inhibition of PI3K/Akt pathway in MCF-7/MDA MB-231 human breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:116-124. [PMID: 29496164 DOI: 10.1016/j.phymed.2018.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/14/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite advancements in the prognosis and management of breast cancer, it remains a major cause of mortality in women worldwide. Centchroman (CC), an oral contraceptive has been found to exhibit anti-cancer potential against a wide range of cancer including breast cancer. PURPOSE The present study is intended to evaluate the ability of soy isoflavone Daidzein (DZ) in enhancing the efficacy of CC in Human Breast Cancer Cells (HBCCs). METHODS/STUDY DESIGN Sulforhodamine B assay was employed to determine the cytotoxicity induced by 10 µM CC & 50 µM DZ separately and together in MCF-7/MDA MB-231 HBCCs and non-tumorigenic Human Mammary Epithelial Cells (HMECs) MCF-10A as a control. Combination Index (CI) analysis was executed using CompuSyn software. Further, apoptosis was assessed using Annexin V/PI, AO/PI staining and tunel assay. Cell cycle, reactive oxygen species generation and mitochondrial membrane potential alteration was determined using flow cytometry. Western blot analysis was performed to check the expression of respective proteins. RESULTS The results suggest that the combination exerts elevated toxicity as compared to control and each drug per se without affecting HMECs MCF-10A. This therefore implies cancer cell specific action of CC plus DZ administered together. Additionally, combination index analysis suggests synergistic action of CC and DZ combination in HBCCs. Cell cycle analysis, Annexin V/PI staining, tunel assay and western blot analysis confirms the induction of apoptosis by combination in HBCCs. Interestingly, western blot analysis also revealed that the combination down-regulated the expression of proteins involved in cell survival i.e. PI3K, Akt and mTOR, suggesting inhibition of cell survival pathway. CONCLUSION The results overall demonstrate that CC plus DZ has higher anticancer efficacy as compared to either drug alone. Hence, the combination of CC plus DZ may offer a novel strategy for the management of breast cancer.
Collapse
Affiliation(s)
- Shweta Kaushik
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu 600113, India
| | - Hari Shyam
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ramesh Sharma
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil K Balapure
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu 600113, India.
| |
Collapse
|
11
|
Matos LHS, Masson FT, Simeoni LA, Homem-de-Mello M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. Eur J Med Chem 2017; 143:1779-1789. [PMID: 29133039 DOI: 10.1016/j.ejmech.2017.10.073] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Dihydropyrimidinones are heterocycles with a pyrimidine moiety in the ring nucleus, which, in recent decades, have aroused interest in medicinal chemistry due to alleged versatile biological activity. In this systematic review, we describe the currently published activities of dihydropyrimidinone derivatives. Between 1990 and December 31st, 2016, 115 articles outlined biological activities or toxicity of DHPM derivatives, 12 of those involved in vivo experiments. The main activities associated with this class of compounds are antitumoral (43 articles), anti-inflammatory (12 articles), antibacterial (20 articles) and calcium channel antagonism/inhibition (14 articles). Antitumoral activity is the main biological property evaluated, since the main representative compound of this class (monastrol) is a known Eg5 kinesin inhibitor. This review depicts a variety of other pharmacological activities associated with DHPM derivatives, but the main findings are essentially in vitro characteristics of the substances. This review presents the current state of the art of DHPM biological activities and demonstrates that there is still a need for further in vivo studies to better delineate the pharmacological potential of this class of substances.
Collapse
Affiliation(s)
| | - Flávia Teixeira Masson
- Department of Pharmaceutical Sciences, Health Sciences School, University of Brasilia, Brazil
| | - Luiz Alberto Simeoni
- Department of Pharmaceutical Sciences, Health Sciences School, University of Brasilia, Brazil
| | - Mauricio Homem-de-Mello
- Department of Pharmaceutical Sciences, Health Sciences School, University of Brasilia, Brazil.
| |
Collapse
|
12
|
Antinarelli LMR, Souza IDO, Glanzmann N, Almeida ADC, Porcino GN, Vasconcelos EG, da Silva AD, Coimbra ES. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp Parasitol 2016; 171:10-16. [DOI: 10.1016/j.exppara.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
|
13
|
Islamuddin M, Chouhan G, Tyagi M, Abdin MZ, Sahal D, Afrin F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front Microbiol 2014; 5:626. [PMID: 25505453 PMCID: PMC4243575 DOI: 10.3389/fmicb.2014.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml(-1) and 7.3 ± 1.85 μg ml(-1), respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0-G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml(-1). Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Maujiram Tyagi
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Malik Z Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Dinkar Sahal
- Malaria Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Farhat Afrin
- Department of Medical Laboratories Technology, Faculty of Applied Sciences, Taibah University Medina, Saudi Arabia
| |
Collapse
|
14
|
Figliuolo VR, Chaves SP, Santoro GF, Coutinho CMLM, Meyer-Fernandes JR, Rossi-Bergmann B, Coutinho-Silva R. Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis. Cytometry A 2014; 85:588-600. [PMID: 24804957 DOI: 10.1002/cyto.a.22449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Previously, we showed that treating macrophages with ATP impairs the intracellular growth of Leishmania amazonensis, and that the P2X7 purinergic receptor is overexpressed during leishmaniasis. In the present study, we directly evaluated the effect of periodate-oxidized ATP (oATP) on parasite control in Leishmania-infected macrophages. We found that oATP impaired the attachment/entrance of L. amazonensis promastigotes to C57BL/6 mouse macrophages in a P2X7 receptor-independent manner, as macrophages from P2X7(-/-) mice were similarly affected. Although oATP directly inhibited the growth of axenic promastigotes in culture, promoted rapid ultrastructural alterations, and impaired Leishmania internalization by macrophages, it did not affect intracellular parasite multiplication. Upon infection, phagosomal acidification was diminished in oATP-treated macrophages, accompanied by reduced endosomal proteolysis. Likewise, MHC class II molecules expression and ectoATPase activity was decreased by oATP added to macrophages at the time of parasite infection. These inhibitory effects were not due to a cytotoxic effect, as no additional release of lactate dehydrogenase was detected in culture supernatants. Moreover, the capacity of macrophages to produce nitric oxide and reactive oxygen species was not affected by the presence of oATP during infection. We conclude that oATP directly affects extracellular parasite integrity and macrophage functioning.
Collapse
Affiliation(s)
- V R Figliuolo
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brasil
| | | | | | | | | | | | | |
Collapse
|
15
|
Islamuddin M, Sahal D, Afrin F. Apoptosis-like death in Leishmania donovani promastigotes induced by eugenol-rich oil of Syzygium aromaticum. J Med Microbiol 2013; 63:74-85. [PMID: 24161990 DOI: 10.1099/jmm.0.064709-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Leishmaniasis consists of a complex spectrum of infectious diseases with worldwide distribution of which visceral leishmaniasis or kala-azar caused by Leishmania donovani is the most devastating. In the absence of vaccines, chemotherapy remains the mainstay for the control of leishmaniasis. The drugs of choice are expensive and associated with multiple adverse side effects. Because of these limitations, the development of new antileishmanial compounds is imperative and plants offer prospects in this regard. The present work was conducted to study the antileishmanial potential of oil from Syzygium aromaticum flower buds (clove). The S. aromaticum oil was characterized by gas chromatography and GC-MS and eugenol as well as eugenyl acetate were found to be the most abundant compounds, composing 59.75 % and 29.24 %, respectively of the oil. Our findings have shown that eugenol-rich essential oil from S. aromaticum (EROSA) possesses significant activity against L. donovani, with 50 % inhibitory concentration of 21 ± 0.16 µg ml(-1) and 15.24 ± 0.14 µg ml(-1), respectively, against promastigotes and intracellular amastigotes. Alterations in cellular morphology and growth reversibility assay substantiated the leishmanicidal activity of EROSA. The leishmanicidal effect was mediated via apoptosis as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labelling (TUNEL) assay, dyskinetoplastidy, cell cycle arrest at sub-G0-G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation. EROSA presented no adverse cytotoxic effects against murine macrophages even at 200 µg ml(-1). Our studies authenticate the promising antileishmanial activity of EROSA, which is mediated by programmed cell death, and, accordingly, EROSA may be a source of novel agents for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Dinkar Sahal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| |
Collapse
|
16
|
Hardebeck LKE, Johnson CA, Hudson GA, Ren Y, Watt M, Kirkpatrick CC, Znosko BM, Lewis M. Predicting DNA-intercalator binding: the development of an arene-arene stacking parameter from SAPT analysis of benzene-substituted benzene complexes. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura K. E. Hardebeck
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Charles A. Johnson
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Graham A. Hudson
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Yi Ren
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Michelle Watt
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Charles C. Kirkpatrick
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Brent M. Znosko
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| | - Michael Lewis
- Department of Chemistry; Saint Louis University; 3501 Laclede Avenue Saint Louis MO 63103 USA
| |
Collapse
|
17
|
Weingärtner A, Kemmer G, Müller FD, Zampieri RA, Gonzaga dos Santos M, Schiller J, Pomorski TG. Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment. PLoS One 2012; 7:e42070. [PMID: 22870283 PMCID: PMC3411662 DOI: 10.1371/journal.pone.0042070] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and 31P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.
Collapse
Affiliation(s)
- Adrien Weingärtner
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Helmholtz Center for Infektion Research, Braunschweig, Germany
| | - Gerdi Kemmer
- Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | | | - Ricardo Andrade Zampieri
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Thomas Günther Pomorski
- Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
18
|
Sahi S, Tewatia P, Ghosal S. Leishmania donovani pteridine reductase 1: comparative protein modeling and protein-ligand interaction studies of the leishmanicidal constituents isolated from the fruits of Piper longum. J Mol Model 2012; 18:5065-73. [PMID: 22752544 DOI: 10.1007/s00894-012-1508-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/14/2012] [Indexed: 01/15/2023]
Abstract
Visceral leishmaniasis or kala-azar is caused by the dimorphic parasite Leishmania donovani in the Indian subcontinent. Treatment options for kala-azar are currently inadequate due to various limitations. Currently, drug discovery for leishmaniases is oriented towards rational drug design; the aim is to identify specific inhibitors that target particular metabolic activities as a possible means of controlling the parasites without affecting the host. Leishmania salvages pteridin from its host and reduces it using pteridine reductase 1 (PTR1, EC 1.5.1.33), which makes this reductase an excellent drug target. Recently, we identified six alkamides and one benzenoid compound from the n-hexane fraction of the fruit of Piper longum that possess potent leishmanicidal activity against promastigotes as well as axenic amastigotes. Based on a homology model derived for recombinant pteridine reductase isolated from a clinical isolate of L. donovani, we carried out molecular modeling and docking studies with these compounds to evaluate their binding affinity. A fairly good agreement between experimental data and the results of molecular modeling investigation of the bioactive and inactive compounds was observed. The amide group in the conjugated alkamides and the 3,4-methylenedioxystyrene moiety in the benzenoid compound acts as heads and the long aliphatic chain acts as a tail, thus playing important roles in the binding of the inhibitor to the appropriate position at the active site. The remarkably high activity of a component containing piperine and piperine isomers (3.36:1) as observed by our group prompted us to study the activities of all four isomers of piperine-piperine (2E,4E), isopiperine (2Z,4E), isochavicine (2E,4Z), and chavicine (2Z,4Z)-against LdPTR1. The maximum inhibitory effect was demonstrated by isochavicine. The identification of these predicted inhibitors of LdPTR1 allowed us to build up a stereoview of the structure of the binding site in relation to activity, affording significant information that should prove useful during the structure-based design of leishmanicidal drugs.
Collapse
Affiliation(s)
- Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida 201308, India
| | | | | |
Collapse
|
19
|
Leishmania amazonensis: effects of oral treatment with copaiba oil in mice. Exp Parasitol 2011; 129:145-51. [PMID: 21771592 DOI: 10.1016/j.exppara.2011.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
Leishmaniasis is a severe public-health problem, with high rates of morbidity and mortality. Efforts to find new, effective and safe oral agents for the treatment of leishmaniasis have been ongoing for several decades, in order to avoid the problems with the currently used antimonials. In the present study, we found that a copaiba oil oral treatment (Group IV) caused a significant reduction in the average lesion size (1.1±0.4mm) against Leishmania amazonensis lesions compared with untreated mice (Group I) (4.4±1.3mm). To prove the safety of the oil, the toxicity and genotoxicity were also determined. Histopathological evaluation did not reveal changes in the copaiba oil-treated animals compared to the control animals. In the mutagenicity evaluation, (micronucleus test) the dose tested (2000mg/kg) showed no genotoxic effects. Morphological and ultrastructural analyses demonstrated notable changes in parasite cells treated with this oleoresin. The main ultrastructural effect was mitochondrial swelling. We also demonstrated that in vitro copaiba oil treatment of L. amazonensis led to an increase in plasma membrane permeability, and depolarization in the mitochondrial membrane potential in parasite cells. Although the mechanism of action of the oleoresin is still unclear, these findings indicate that copaiba oil is a possible new drug, which would provide a safer, shorter, less-expensive, and more easily administered treatment for leishmaniasis.
Collapse
|
20
|
Kaur J, Sundar S, Singh N. Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J Antimicrob Chemother 2010; 65:1742-8. [PMID: 20519355 DOI: 10.1093/jac/dkq189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Using the pteridine reductase (PTR1) enzyme of Leishmania as the target, the objective of our study was to find a drug candidate that can enter the clinical development process after being evaluated for safety and efficacy in animals. METHODS Monastrol (R) and (S) enantiomers were docked using the QUANTUM program into the active site of a Leishmania donovani PTR1 (LdPTR1) homology model. A structure-activity relationship based on a homology model of a recombinant enzyme was substantiated by a recombinant enzyme inhibition assay. We adapted an L. donovani (transfected with green fluorescent protein) intramacrophage amastigote screening assay as a cellular model for leishmaniasis. Furthermore, since the clinicopathological features and immunopathological mechanisms of visceral leishmaniasis (VL) in a hamster model are remarkably similar to those of human disease, systemic infection of hamsters with L. donovani was utilized to collect in vivo data for monastrol. RESULTS Both monastrol (R) and (S) enantiomers fit well in the ligand-binding pocket of LdPTR1. Monastrol exhibits a K(i) value of 0.428 microM in the recombinant enzyme inhibition assay. We confirm monastrol as a potent inhibitor of PTR1 in Leishmania; it inhibits proliferation of amastigotes with an IC(50) (50% inhibitory concentration) of 10 microM in macrophage cultures infected with an L. donovani clinical isolate, with no host cytotoxicity. We also show that in experimental animals, oral administration of a 5 mg/kg dose of monastrol on two alternate days inhibits 50% of parasite growth, giving therapeutic backing to the use of monastrol as a potent antileishmanial in human VL cases. CONCLUSIONS To our knowledge, this is the first report presenting monastrol as a potent oral antileishmanial.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Drug Target Discovery & Development Division, Central Drug Research Institute, Chattar Manzil Palace, PO Box No. 173, Lucknow-226001, CSIR, India
| | | | | |
Collapse
|
21
|
Pandey VP, Bisht SS, Mishra M, Kumar A, Siddiqi MI, Verma A, Mittal M, Sane SA, Gupta S, Tripathi RP. Synthesis and molecular docking studies of 1-phenyl-4-glycosyl-dihydropyridines as potent antileishmanial agents. Eur J Med Chem 2010; 45:2381-8. [DOI: 10.1016/j.ejmech.2010.02.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
|