1
|
Abou-El-Naga IF. Calcium/calmodulin-dependent protein kinase II in Schistosoma: Relation to praziquantel action and resistance. Mol Biochem Parasitol 2025; 263:111686. [PMID: 40414509 DOI: 10.1016/j.molbiopara.2025.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/07/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) performs diverse essential functions through integrating a range of calcium signals. In Schistosoma, two Calmodulin (CaM) genes are characterized. CaMKII exhibits distinct expression patterns across the developmental stages of the parasite. Its significance lies in sustaining Schistosoma survival and maintaining calcium homeostasis. As it is a calcium sensing protein, its function is closely related to the efficacy of praziquantel, the mainstay drug against schistosomiasis. The relationship between CaMKII and praziquantel involves several potential factors. Praziquantel induces an increased calcium influx into Schistosoma that binds CaM and activates CaMKII, which in turn mitigates the effect of the drug and potentially contributes to praziquantel resistance in several ways. By maintaining calcium homeostasis, CaMKII opposes the surge in calcium influx induced by praziquantel. It modulates voltage-gated calcium channels and reduces calcium influx. It also inhibits ryanodine receptors and inositol triphosphate receptors, thus preventing the release of calcium from the sarcoplasmic/endoplasmic reticulum. CaMKII activates nuclear factor-κB and subsequently activates sarco/endoplasmic reticulum calcium-ATPase (SERCA), which increases calcium uptake into the sarcoplasmic/endoplasmic reticulum and decreases cytosolic calcium. Nuclear factor-κB, activated by CaMKII may lead to up-regulation of P-glycoprotein, which facilitates praziquantel efflux. CaMKII also activates calcineurin that inhibits SERCA. Given its pivotal role in Schistosoma homeostasis and survival, CaMKII emerges as a promising target for novel anthelmintic therapies, and its modulation might enhance the efficacy of praziquantel.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
2
|
Thomas CM, Timson DJ. The Schistosoma mansoni tegumental allergen protein, SmTAL1: Binding to an IQ-motif from a voltage-gated ion channel and effects of praziquantel. Cell Calcium 2020; 86:102161. [PMID: 31981914 DOI: 10.1016/j.ceca.2020.102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 11/28/2022]
Abstract
SmTAL1 is a calcium binding protein from the parasitic worm, Schistosoma mansoni. Structurally it is comprised of two domains - an N-terminal EF-hand domain and a C-terminal dynein light chain (DLC)-like domain. The protein has previously been shown to interact with the anti-schistosomal drug, praziquantel (PZQ). Here, we demonstrated that both EF-hands in the N-terminal domain are functional calcium ion binding sites. The second EF-hand appears to be more important in dictating affinity and mediating the conformational changes which occur on calcium ion binding. There is positive cooperativity between the four calcium ion binding sites in the dimeric form of SmTAL1. Both the EF-hand domain and the DLC-domain dimerise independently suggesting that both play a role in forming the SmTAL1 dimer. SmTAL1 binds non-cooperatively to PZQ and cooperatively to an IQ-motif from SmCav1B, a voltage-gated calcium channel. PZQ tends to strengthen this interaction, although the relationship is complex. These data suggest the hypothesis that SmTAL1 regulates at least one voltage-gated calcium channel and PZQ interferes with this process. This may be important in the molecular mechanism of this drug. It also suggests that compounds which bind SmTAL1, such as six from the Medicines for Malaria Box identified in this work, may represent possible leads for the discovery of novel antagonists.
Collapse
Affiliation(s)
- Charlotte M Thomas
- School of Biological Sciences and Institute for Global Food Security, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
3
|
Zheng Y, Guo X, Su M, Chen X, Jin X, Ding J, Wang Z, Bo X, Ayaz M, Kutyrev I, Jia W, Zhang X, Zhang J. Identification of emu-TegP11, an EF-hand domain-containing tegumental protein of Echinococcus multilocularis. Vet Parasitol 2018; 255:107-113. [PMID: 29773130 DOI: 10.1016/j.vetpar.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
Tegumental proteins (TegPs) are a group of proteins that coat on the surface of worms, mainly being involved in ion uptake and immune evasion. Echinococcus species have many TegPs, but none of them have been characterized and their role remains unclear. The genome-wide analysis revealed that there were at least 14 tegp genes (tegp1 - 14) in Echinococcus species, the majority of which were found to contain an EF-hand domain or a dynein light chain-like domain or both. Despite low identity, all TegP11 proteins from 25 flatworms were conserved in structure. Echinococcus multilocularis TegP11 (emu-TegP11) was verified to be secreted by extracellular vesicles and to be localized in different spatiotemporal patterns in protoscoleces. Moreover, emu-TegP11 was also shown to have weak or no Ca2+-binding capacity. In treated macrophages, emu-TegP11 interfered with the small RNA-induced silencing pathway via inducing ectopic expression of some key component genes. Additionally, emu-TegP11 remarkably promoted NO secretion possibly by upregulation of inos gene expression (p < 0.05). It was further shown that emu-TegP11 acted as a suppressor of inflammation, with il-12B and il-1β being significantly down-regulated (p < 0.01), and il-10 and il-4 being significantly upregulated (p < 0.05). The study demonstrates a regulatory role of emu-TegP11, likely acting as a immunomodulator to be involved in regulation of host immune system during Echinococcus infection.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Meng Su
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xiaoqian Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhengrong Wang
- Xinjiang Academy of Agricultural and Reclamation Science/State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Shihezi 832000, China
| | - Xinwen Bo
- Xinjiang Academy of Agricultural and Reclamation Science/State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Shihezi 832000, China
| | - Mazhar Ayaz
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ivan Kutyrev
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, Sakhyanovoi St. 6, 670047 Ulan-Ude, Russia
| | - Wanzhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases; WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China.
| |
Collapse
|
4
|
A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 2017; 44:1005-10. [PMID: 27528745 DOI: 10.1042/bst20150270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/23/2022]
Abstract
There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains with C-terminal dynein light chain-like domains. Data are accumulating on the biochemistry and cell biology of these proteins. However, little is known about their functions in vivo Schistosoma mansoni expresses 13 family members (SmTAL1-SmTAL13). Three of these (SmTAL1, SmTAL2 and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have different molecular properties. Although their overall folds are predicted to be similar, small changes in the EF-hand domains result in differences in their ion binding properties. Whereas SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be unable to bind any divalent cations. Similar biochemical diversity has been seen in the CaBP proteins from Fasciola hepatica Four family members are known (FhCaBP1-4). All of these bind to calcium ions. However, FhCaBP4 dimerizes in the presence of calcium ions, FhCaBP3 dimerizes in the absence of calcium ions and FhCaBP2 dimerizes regardless of the prevailing calcium ion concentration. In both the SmTAL and FhCaBP families, the proteins also differ in their ability to bind calmodulin antagonists and related drugs. Interestingly, SmTAL1 interacts with praziquantel (the drug of choice for treating schistosomiasis). The pharmacological significance (if any) of this finding is unknown.
Collapse
|
5
|
Cheung S, Thomas CM, Timson DJ. FhCaBP1 (FH22): A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Exp Parasitol 2016; 170:109-115. [PMID: 27693219 DOI: 10.1016/j.exppara.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022]
Abstract
FH22 has been previously identified as a calcium-binding protein from the common liver fluke, Fasciola hepatica. It is part of a family of at least four proteins in this organism which combine an EF-hand containing N-terminal domain with a C-terminal dynein light chain-like domain. Here we report further biochemical properties of FH22, which we propose should be renamed FhCaBP1 for consistency with other family members. Molecular modelling predicted that the two domains are linked by a flexible region and that the second EF-hand in the N-terminal domain is most likely the calcium ion binding site. Native gel electrophoresis demonstrated that the protein binds both calcium and manganese ions, but not cadmium, magnesium, strontium, barium, cobalt, copper(II), iron (II), nickel, zinc, lead or potassium ions. Calcium ion binding alters the conformation of the protein and increases its stability towards thermal denaturation. FhCaBP1 is a dimer in solution and calcium ions have no detectable effect on the protein's ability to dimerise. FhCaBP1 binds to the calmodulin antagonists trifluoperazine and chlorpromazine. Overall, the FhCaBP1's biochemical properties are most similar to FhCaBP2 a fact consistent with the close sequence and predicted structural similarity between the two proteins.
Collapse
Affiliation(s)
- Sarah Cheung
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
6
|
Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain. Parasitol Res 2016; 115:2879-86. [DOI: 10.1007/s00436-016-5046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 01/06/2023]
|
7
|
Hosking CG, McWilliam HEG, Driguez P, Piedrafita D, Li Y, McManus DP, Ilag LL, Meeusen ENT, de Veer MJ. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development. PLoS Negl Trop Dis 2015; 9:e0004280. [PMID: 26684756 PMCID: PMC4686158 DOI: 10.1371/journal.pntd.0004280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022] Open
Abstract
The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11–12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. Mass drug administration using the highly effective drug praziquantel (PZQ) is currently the method of choice to combat schistosomiasis. However, this treatment regime has limitations; in particular, it does not prevent re-infection and sporadic parasite resistance against PZQ is a continuing threat. The path to the successful control of schistosomiasis is highly challenging and must consider, not only the complex nature of the host-parasite interaction, but also the capacity to assess disease burden and parasite re-emergence in communities where successful control has been achieved. Furthermore, control programs must be economically sustainable in endemic countries and despite significant recent advancements the elimination of schistosomiasis may still be some time away. Accordingly, there is a definitive need to formulate innovative approaches for the development of improved diagnostic tools to accurately assess the disease burden associated with active schistosome infections. Here we describe the usefulness of a phage display library to mature antibody fragments derived from lymph node RNA of the natural buffalo host of the Asian schistosome, Schistosoma japonicum, following an experimental infection. These mature antibody fragments were able to bind native parasite proteins and could thus be used to develop a low cost and accurate point-of-care diagnostic test.
Collapse
Affiliation(s)
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Patrick Driguez
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David Piedrafita
- School of Applied Sciences and Engineering, Federation University, Churchill, Victoria, Australia
| | - Yuesheng Li
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leodevico L. Ilag
- Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Els N. T. Meeusen
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Michael J. de Veer
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 2015; 142:1375-86. [DOI: 10.1017/s0031182015000736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYFhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.
Collapse
|
9
|
Diao Y, Hua M, Shao Y, Huang W, Liu M, Ren C, Ji Y, Chen J, Shen J. Preliminary characterization and expression of Vasa-like gene in Schistosoma japonicum. Parasitol Res 2015; 114:2679-87. [PMID: 25899325 DOI: 10.1007/s00436-015-4473-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
The Vasa gene is a vital germline marker to study the origin and development of germ cells and gonads in many organisms. Until now, little information was available about the characteristics of the Vasa gene in Schistosoma japonicum (S. japonicum). In this study, we cloned the open reading frame (ORF) of the S. japonicum Vasa-like gene (Sj-Vasa). The expression pattern and tissue localization of Sj-Vasa were also analyzed. Our results showed that Sj-Vasa shared the general feature of DEAD-box family member proteins. Sj-Vasa was transcribed and expressed throughout the S. japonicum life cycle with transcription exhibiting high levels at day 24 in both male and female worms, and the expression level in the female was always higher than that in the male. Sj-Vasa protein was localized in a variety of tissues of adult schistosomes, including the gonads (ovary, vitellarium, and testes), the subtegument, and some cells of the parenchyma. To our knowledge, this is the first report of preliminary characterization and expression of the Vasa-like gene that may play an important role in the development of the worm, especially in reproductive organs of S. japonicum.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas CM, Fitzsimmons CM, Dunne DW, Timson DJ. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: Differences in ion and drug binding properties. Biochimie 2015; 108:40-7. [PMID: 25447146 PMCID: PMC4300400 DOI: 10.1016/j.biochi.2014.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/21/2014] [Indexed: 01/03/2023]
Abstract
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins' structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Collapse
Affiliation(s)
- Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | | | - David W Dunne
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|