1
|
Wang A, Bolnick D. Among-Population Differentiation in the Tapeworm Proteome through Prediction of Excretory/Secretory and Transmembrane Proteins in Schistocephalus solidus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.618520. [PMID: 39554047 PMCID: PMC11565730 DOI: 10.1101/2024.10.25.618520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Parasites secrete and excrete a variety of molecules evolve to help establish and sustain infections within hosts. Parasite adaptation to their host may lead to between-population divergence in these excretory and secretory products (ESPs), but few studies have tested for intraspecific variation in helminth proteomes. Methods Schistocephalus solidus is a cestode that parasitizes three spined stickleback, Gasterosteus aculeatus . We used an ultra-performance liquid chromatography-mass spectrometry protocol to characterize the ESP and whole-body proteome of S. solidus. Specifically, we characterized the proteome of S. solidus at the plerocercoid stage from wild caught stickleback from three lakes on Vancouver Island (British Columbia, Canada) and one lake in Alaska (United States). We tested for differences in proteome composition among the four populations and specifically between ESPs and body tissue. Results Overall, we identified 1362 proteins in the total proteome of S. solidus, with 542 of the 1362 proteins detected exclusively in the ESPs. Of the ESP proteins, we found signaling peptides and transmembrane proteins that were previously not detected or characterized in S. solidus. We also found protein spectrum counts greatly varied between all lake populations. Conclusions These population-level differences were observed in both ESP and tissue types. Our study suggests that S. solidus can excrete and secrete a wide range of proteins which are distinct among populations. These differences might reflect plastic responses to host genotype differences, or evolved adaptations by Schistocephalus to different local host populations.
Collapse
|
2
|
Menezes SA, Tasca T. Extracellular vesicles in parasitic diseases - from pathogenesis to future diagnostic tools. Microbes Infect 2024; 26:105310. [PMID: 38316376 DOI: 10.1016/j.micinf.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.
Collapse
Affiliation(s)
- Saulo Almeida Menezes
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
3
|
Schemiko Almeida K, Rossi SA, Alves LR. RNA-containing extracellular vesicles in infection. RNA Biol 2024; 21:37-51. [PMID: 39589334 PMCID: PMC11601058 DOI: 10.1080/15476286.2024.2431781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Kayo Schemiko Almeida
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Suélen Andreia Rossi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
4
|
Carvalho-Kelly LF, Freitas-Mesquita AL, Ferreira Pralon C, de Souza-Maciel E, Meyer-Fernandes JR. Identification and characterization of an ectophosphatase activity involved in Acanthamoeba castellanii adhesion to host cells. Eur J Protistol 2023; 91:126026. [PMID: 37871554 DOI: 10.1016/j.ejop.2023.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.
Collapse
Affiliation(s)
| | | | - Clara Ferreira Pralon
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
5
|
Garcez EM, Gomes N, Moraes AS, Pogue R, Uenishi RH, Hecht M, Carvalho JL. Extracellular vesicles in the context of Chagas Disease - A systematic review. Acta Trop 2023; 242:106899. [PMID: 36935050 DOI: 10.1016/j.actatropica.2023.106899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi (Tc)-derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells-derived EVs, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.
Collapse
Affiliation(s)
- Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Nélio Gomes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Aline Silva Moraes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil
| | - Rosa Harumi Uenishi
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Mariana Hecht
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
7
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Rossi IV, Nunes MAF, Sabatke B, Ribas HT, Winnischofer SMB, Ramos ASP, Inal JM, Ramirez MI. An induced population of Trypanosoma cruzi epimastigotes more resistant to complement lysis promotes a phenotype with greater differentiation, invasiveness, and release of extracellular vesicles. Front Cell Infect Microbiol 2022; 12:1046681. [PMID: 36590580 PMCID: PMC9795005 DOI: 10.3389/fcimb.2022.1046681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi, which uses blood-feeding triatomine bugs as a vector to finally infect mammalian hosts. Upon entering the host, the parasite needs to effectively evade the attack of the complement system and quickly invade cells to guarantee an infection. In order to accomplish this, T. cruzi expresses different molecules on its surface and releases extracellular vesicles (EVs). Methods Here, we have selected a population of epimastigotes (a replicative form) from T. cruzi through two rounds of exposure to normal human serum (NHS), to reach 30% survival (2R population). This 2R population was characterized in several aspects and compared to Wild type population. Results The 2R population had a favored metacyclogenesis compared with wild-type (WT) parasites. 2R metacyclic trypomastigotes had a two-fold increase in resistance to complementmediated lysis and were at least three times more infective to eukaryotic cells, probably due to a higher GP82 expression in the resistant population. Moreover, we have shown that EVs from resistant parasites can transfer the invasive phenotype to the WT population. In addition, we showed that the virulence phenotype of the selected population remains in the trypomastigote form derived from cell culture, which is more infective and also has a higher rate of release of trypomastigotes from infected cells. Conclusions Altogether, these data indicate that it is possible to select parasites after exposure to a particular stress factor and that the phenotype of epimastigotes remained in the infective stage. Importantly, EVs seem to be an important virulence fator increasing mechanism in this context of survival and persistence in the host.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Graduate Program in Cell and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil,Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil
| | | | - Bruna Sabatke
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,Graduate Program in Microbiology, Pathology and Parasitology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Hennrique Taborda Ribas
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sheila Maria Brochado Winnischofer
- Graduate Program in Biochemistry Sciences, Federal University of Paraná, Curitiba, PR, Brazil,Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Jameel Malhador Inal
- School of Human Sciences, London Metropolitan University, London, United Kingdom,School of Life and Medical Sciences, University of Hertfordshire, London, United Kingdom
| | - Marcel Ivan Ramirez
- Carlos Chagas Institute, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba, PR, Brazil,*Correspondence: Marcel Ivan Ramirez,
| |
Collapse
|
9
|
Gutierrez BC, Ancarola ME, Volpato-Rossi I, Marcilla A, Ramirez MI, Rosenzvit MC, Cucher M, Poncini CV. Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy. Front Cell Infect Microbiol 2022; 12:980817. [PMID: 36467728 PMCID: PMC9710384 DOI: 10.3389/fcimb.2022.980817] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Izadora Volpato-Rossi
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Antonio Marcilla
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de Valencia, Valencia, Spain
| | - Marcel Ivan Ramirez
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
10
|
Extracellular Vesicles in Trypanosoma cruzi Infection: Immunomodulatory Effects and Future Perspectives as Potential Control Tools against Chagas Disease. J Immunol Res 2022; 2022:5230603. [PMID: 36033396 PMCID: PMC9402373 DOI: 10.1155/2022/5230603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is a neglected tropical disease and a major public health problem affecting more than 6 million people worldwide. Many challenges remain in the quest to control Chagas disease: the diagnosis presents several limitations and the two available treatments cause several side effects, presenting limited efficacy during the chronic phase of the disease. In addition, there are no preventive vaccines or biomarkers of therapeutic response or disease outcome. Trypomastigote form and T. cruzi-infected cells release extracellular vesicles (EVs), which are involved in cell-to-cell communication and can modulate the host immune response. Importantly, EVs have been described as promising tools for the development of new therapeutic strategies, such as vaccines, and for the discovery of new biomarkers. Here, we review and discuss the role of EVs secreted during T. cruzi infection and their immunomodulatory properties. Finally, we briefly describe their potential for biomarker discovery and future perspectives as vaccine development tools for Chagas Disease.
Collapse
|
11
|
Dantas-Pereira L, Menna-Barreto R, Lannes-Vieira J. Extracellular Vesicles: Potential Role in Remote Signaling and Inflammation in Trypanosoma cruzi-Triggered Disease. Front Cell Dev Biol 2022; 9:798054. [PMID: 34988085 PMCID: PMC8721122 DOI: 10.3389/fcell.2021.798054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) act as cell communicators and immune response modulators and may be employed as disease biomarkers and drug delivery systems. In infectious diseases, EVs can be released by the pathogen itself or by the host cells (infected or uninfected), potentially impacting the outcome of the immune response and pathological processes. Chagas disease (CD) is caused by infection by the protozoan Trypanosoma cruzi and is the main cause of heart failure in endemic areas. This illness attracted worldwide attention due to the presence of symptomatic seropositive subjects in North America, Asia, Oceania, and Europe. In the acute phase of infection, nonspecific signs, and symptoms contribute to miss diagnosis and early etiological treatment. In this phase, the immune response is crucial for parasite control; however, parasite persistence, dysregulated immune response, and intrinsic tissue factors may contribute to the pathogenesis of chronic CD. Most seropositive subjects remain in the indeterminate chronic form, and from 30 to 40% of the subjects develop cardiac, digestive, or cardio-digestive manifestations. Identification of EVs containing T. cruzi antigens suggests that these vesicles may target host cells and regulate cellular processes and the immune response by molecular mechanisms that remain to be determined. Parasite-released EVs modulate the host-parasite interplay, stimulate intracellular parasite differentiation and survival, and promote a regulatory cytokine profile in experimental models of CD. EVs derived from the parasite-cell interaction inhibit complement-mediated parasite lysis, allowing evasion. EVs released by T. cruzi-infected cells also regulate surrounding cells, maintaining a proinflammatory profile. After a brief review of the basic features of EVs, the present study focuses on potential participation of T. cruzi-secreted EVs in cell infection and persistence of low-grade parasite load in the chronic phase of infection. We also discuss the role of EVs in shaping the host immune response and in pathogenesis and progression of CD.
Collapse
Affiliation(s)
- Luíza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
D'Avila H, de Souza NP, Albertoni ALDS, Campos LC, Rampinelli PG, Correa JR, de Almeida PE. Impact of the Extracellular Vesicles Derived From Trypanosoma cruzi: A Paradox in Host Response and Lipid Metabolism Modulation. Front Cell Infect Microbiol 2021; 11:768124. [PMID: 34778110 PMCID: PMC8581656 DOI: 10.3389/fcimb.2021.768124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a major public health problem, especially in the South and Central America region. Its incidence is related to poverty and presents a high rate of morbidity and mortality. The pathogenesis of Chagas disease is complex and involves many interactive pathways between the hosts and the Trypanosoma cruzi. Several factors have been implicated in parasite-host interactions, including molecules secreted by infected cells, lipid mediators and most recent, extracellular vesicles (EVs). The EVs of T. cruzi (EVsT) were reported for the first time in the epimastigote forms about 42 years ago. The EVsT are involved in paracrine communication during the infection and can have an important role in the inflammatory modulation and parasite escape mechanism. However, the mechanisms by which EVs employ their pathological effects are not yet understood. The EVsT seem to participate in the activation of macrophages via TLR2 triggering the production of cytokines and a range of other molecules, thus modulating the host immune response which promotes the parasite survival. Moreover, new insights have demonstrated that EVsT induce lipid body formation and PGE2 synthesis in macrophages. This phenomenon is followed by the inhibition of the synthesis of pro-inflammatory cytokines and antigen presentation, causing decreased parasitic molecules and allowing intracellular parasite survival. Therefore, this mini review aims to discuss the role of the EVs from T. cruzi as well as its involvement in the mechanisms that regulate the host immune response in the lipid metabolism and its significance for the Chagas disease pathophysiology.
Collapse
Affiliation(s)
- Heloisa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Núbia Pereira de Souza
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Ana Luíza da Silva Albertoni
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Laíris Cunha Campos
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Pollianne Garbero Rampinelli
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Patrícia Elaine de Almeida
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| |
Collapse
|
13
|
Orrego PR, Serrano-Rodríguez M, Cortez M, Araya JE. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules 2021; 11:biom11091322. [PMID: 34572535 PMCID: PMC8470620 DOI: 10.3390/biom11091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| | - Mayela Serrano-Rodríguez
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mauro Cortez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jorge E. Araya
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
- Center for Biotechnology and Bioengineering, CeBIB, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| |
Collapse
|
14
|
Gélvez APC, Diniz Junior JAP, Brígida RTSS, Rodrigues APD. AgNP-PVP-meglumine antimoniate nanocomposite reduces Leishmania amazonensis infection in macrophages. BMC Microbiol 2021; 21:211. [PMID: 34253188 DOI: 10.1186/s12866-021-02267-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Ana Patricia Cacua Gélvez
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - José Antonio Picanço Diniz Junior
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil
| | - Rebecca Thereza Silva Santa Brígida
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - Ana Paula Drummond Rodrigues
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.
| |
Collapse
|
15
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors 2019; 12:467. [PMID: 31597577 PMCID: PMC6784334 DOI: 10.1186/s13071-019-3725-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. Methods Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. Results EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. Conclusions The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.
Collapse
|
18
|
Papadaki A, Boleti H. Measurement of Acid Ecto-phosphatase Activity in Live Leishmania donovani Parasites. Bio Protoc 2019; 9:e3384. [PMID: 33654880 DOI: 10.21769/bioprotoc.3384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/29/2019] [Indexed: 01/03/2023] Open
Abstract
Acid ecto-phosphatases are enzymes that hydrolyze phosphomonoesters in the acidic pH range with their active sites facing the extacellular medium. Their activities can be measured in living cells. In bacteria and protozoan pathogens, acid ecto-phosphatases have been associated with the survival of intracellular pathogens within phagocytes through inhibition of the respiratory burst, suggesting that they act as virulence factors. Extracellular acid phosphatase activity in Leishmania (L.) donovani has been associated with the degree of promastigote virulence/infectivity. The levels of acid ecto-phosphatase activity in different Leishmania sp or even strains of the same species vary and this has been linked to their virulence. It may also be related to their ability to survive and multiply in the insect host. Acid phosphatase enzymatic activity can be measured in crude membrane fractions and in membrane fractions enriched in plasma membrane, however, in these cases, the intracellular acid phosphatases, mainly localized in lysosomes, contribute to the final result. Therefore, measuring phosphatase activity at the surface of live cells in acidic pH range is the only accurate way to measure acid ecto-phosphatase activity. This assay is performed at 25 °C or 37 °C for 30 min using as substrate the generic phosphatase substrate p-nitrophenyl phosphate (pNPP), in a citrate buffer, with or without sodium tartrate (L(+)-tartaric acid), as histidine acid phosphatases are classified according to their sensitivity to tartate inhibition. The steps of the protocol consist of pelleting cells in suspension, in this case Leishmania promastigotes, washing twice with HEPES buffer, resuspending the cells in the substrate reaction mixture and terminating the reaction by the addition of 0.5 N NaOH. The cells are removed by centrifugation and the absorbance of the reaction product (p-nitrophenolate=pNP) in the supernatant is measured at 405 nm. The enzymatic activity (A405 values) is normalized for the mean number of cells/ml used for each independent experiment.
Collapse
Affiliation(s)
- Amalia Papadaki
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens 11521, GREECE
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, Athens 11521, GREECE.,Light Microscopy Unit, Hellenic Pasteur Institute, Athens 11521, GREECE
| |
Collapse
|
19
|
Chávez ASO, O'Neal AJ, Santambrogio L, Kotsyfakis M, Pedra JHF. Message in a vesicle - trans-kingdom intercommunication at the vector-host interface. J Cell Sci 2019; 132:132/6/jcs224212. [PMID: 30886004 DOI: 10.1242/jcs.224212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vector-borne diseases cause over 700,000 deaths annually and represent 17% of all infectious illnesses worldwide. This public health menace highlights the importance of understanding how arthropod vectors, microbes and their mammalian hosts interact. Currently, an emphasis of the scientific enterprise is at the vector-host interface where human pathogens are acquired and transmitted. At this spatial junction, arthropod effector molecules are secreted, enabling microbial pathogenesis and disease. Extracellular vesicles manipulate signaling networks by carrying proteins, lipids, carbohydrates and regulatory nucleic acids. Therefore, they are well positioned to aid in cell-to-cell communication and mediate molecular interactions. This Review briefly discusses exosome and microvesicle biogenesis, their cargo, and the role that nanovesicles play during pathogen spread, host colonization and disease pathogenesis. We then focus on the role of extracellular vesicles in dictating microbial pathogenesis and host immunity during transmission of vector-borne pathogens.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Retana Moreira L, Rodríguez Serrano F, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis 2019; 13:e0007163. [PMID: 30789912 PMCID: PMC6383987 DOI: 10.1371/journal.pntd.0007163] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the obligate intracellular parasite that causes Chagas disease. The pathogenesis of this disease is a multifactorial complex process that involves a large number of molecules and particles, including the extracellular vesicles. The presence of EVs of T. cruzi was first described in 1979 and, since then, research regarding these particles has been increasing. Some of the functions described for these EVs include the increase in heart parasitism and the immunomodulation and evasion of the host immune response. Also, EVs may be involved in parasite adhesion to host cells and host cell invasion. METHODOLOGY/PRINCIPAL FINDINGS EVs (exosomes) of the Pan4 strain of T. cruzi were isolated by differential centrifugation, and measured and quantified by TEM, NTA and DLS. The effect of EVs in increasing the parasitization of Vero cells was evaluated and the ED50 was calculated. Changes in cell permeability induced by EVs were evaluated in Vero and HL-1 cardiomyocyte cells using cell viability techniques such as trypan blue and MTT assays, and by confocal microscopy. The intracellular mobilization of Ca2+ and the disruption of the actin cytoskeleton induced by EVs over Vero cells were followed-up in time using confocal microscopy. To evaluate the effect of EVs over the cell cycle, cell cycle analyses using flow cytometry and Western blotting of the phosphorylated and non-phosphorylated protein of Retinoblastoma were performed. CONCLUSION/SIGNIFICANCE The incubation of cells with EVs of trypomastigotes of the Pan4 strain of T. cruzi induce a number of changes in the host cells that include a change in cell permeability and higher intracellular levels of Ca2+ that can alter the dynamics of the actin cytoskeleton and arrest the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete mitosis. These changes aid the invasion of host cells and augment the percentage of cell parasitization.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
21
|
Rossi IV, Gavinho B, Ramirez MI. Isolation and Characterization of Extracellular Vesicles Derived from Trypanosoma cruzi. Methods Mol Biol 2019; 1955:89-104. [PMID: 30868521 DOI: 10.1007/978-1-4939-9148-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-surrounded structures that participate in cellular communications, which comprise exosomes and microvesicles. These vesicles have different biogenesis, and their physiological and pathological roles in chronic and infectious diseases are under constant investigation. In Chagas disease, Trypanosoma cruzi EVs have been described using different approaches. The isolation of T. cruzi-derived EVs has been done mainly using the differential centrifugation technique, and different strategies have been employed for characterization of them. Here, we describe the method to isolate EVs by differential centrifugation and a detection protocol for EVs in T. cruzi-host cell interaction to allow further investigations about this parasite.
Collapse
Affiliation(s)
- Izadora Volpato Rossi
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Programa de Pós-Graduação em Microbiologia, Patologia e Parasitologia da Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Bruno Gavinho
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Programa de Pós-Graduação em Microbiologia, Patologia e Parasitologia da Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcel Ivan Ramirez
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
- Fundação Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Alcantara CDL, de Souza W, da Cunha E Silva NL. Tridimensional Electron Microscopy Analysis of the Early Endosomes and Endocytic Traffic in Trypanosoma cruzi Epimastigotes. Protist 2018; 169:887-910. [PMID: 30447618 DOI: 10.1016/j.protis.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi epimastigotes internalize macromolecules avidly by endocytosis. Previously, we identified a tubule-vesicular network likely to correspond to the early-endosomes. However, a detailed ultrastructural characterization of these endosomes was missing. Here, we combined endocytosis assays with ultrastructural data from high-resolution electron microscopy to produce a 3D analysis of epimastigote endosomes and their interactions with endocytic organelles. We showed that endocytic cargo was found in carrier vesicles budding from the cytopharynx. These vesicles appeared to fuse with a tubule-vesicular network of early endosomes identified by ultrastructural features including the presence of intermembrane invaginations and coated membrane sections. Within the posterior region of the cell, endosomes localized preferentially on the side nearest to the cytopharynx microtubules. At 4°C, cargo accumulated at a shortened cytopharynx, and subsequent temperature shift to 12°C led to slow cargo delivery to endosomes and, later, to reservosomes. Bridges between reservosomes and endosomes resemble heterotypic fusion. Reservosomes are excluded from the posterior end of the cell, with no preferential cargo delivery to reservosomes closer to the nucleus. Our 3D analysis indicates that epimastigotes accomplish high-speed endocytic traffic by cargo transfer to a bona fide early-endosome and then directly from endosomes to reservosomes, via multiple and simultaneous heterotypic fusion events.
Collapse
Affiliation(s)
- Carolina de Lima Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil.
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L da Cunha E Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
23
|
Abstract
Extracellular vesicles (EVs) are released by a wide number of cells including blood cells, immune system cells, tumour cells, adult and embryonic stem cells. EVs are a heterogeneous group of vesicles (~30-1000 nm) including microvesicles and exosomes. The physiological release of EVs represents a normal state of the cell, raising a metabolic equilibrium between catabolic and anabolic processes. Moreover, when the cells are submitted to stress with different inducers or in pathological situations (malignancies, chronic diseases, infectious diseases.), they respond with an intense and dynamic release of EVs. The EVs released from stimulated cells vs those that are released constitutively may themselves differ, both physically and in their cargo. EVs contain protein, lipids, nucleic acids and biomolecules that can alter cell phenotypes or modulate neighbouring cells. In this review, we have summarized findings involving EVs in certain protozoan diseases. We have commented on strategies to study the communicative roles of EVs during host-pathogen interaction and hypothesized on the use of EVs for diagnostic, preventative and therapeutic purposes in infectious diseases. This kind of communication could modulate the innate immune system and reformulate concepts in parasitism. Moreover, the information provided within EVs could produce alternatives in translational medicine.
Collapse
|
24
|
Lovo-Martins MI, Malvezi AD, Zanluqui NG, Lucchetti BFC, Tatakihara VLH, Mörking PA, de Oliveira AG, Goldenberg S, Wowk PF, Pinge-Filho P. Extracellular Vesicles Shed By Trypanosoma cruzi Potentiate Infection and Elicit Lipid Body Formation and PGE 2 Production in Murine Macrophages. Front Immunol 2018; 9:896. [PMID: 29755471 PMCID: PMC5934475 DOI: 10.3389/fimmu.2018.00896] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
During the onset of Trypanosoma cruzi infection, an effective immune response is necessary to control parasite replication and ensure host survival. Macrophages have a central role in innate immunity, acting as an important trypanocidal cell and triggering the adaptive immune response through antigen presentation and cytokine production. However, T. cruzi displays immune evasion mechanisms that allow infection and replication in macrophages, favoring its chronic persistence. One potential mechanism is the release of T. cruzi strain Y extracellular vesicle (EV Y), which participate in intracellular communication by carrying functional molecules that signal host cells and can modulate the immune response. The present work aimed to evaluate immune modulation by EV Y in C57BL/6 mice, a prototype resistant to infection by T. cruzi strain Y, and the effects of direct EV Y stimulation of macrophages in vitro. EV Y inoculation in mice prior to T. cruzi infection resulted in increased parasitemia, elevated cardiac parasitism, decreased plasma nitric oxide (NO), reduced NO production by spleen cells, and modulation of cytokine production, with a reduction in TNF-α in plasma and decreased production of TNF-α and IL-6 by spleen cells from infected animals. In vitro assays using bone marrow-derived macrophages showed that stimulation with EV Y prior to infection by T. cruzi increased the parasite internalization rate and release of infective trypomastigotes by these cells. In this same scenario, EV Y induced lipid body formation and prostaglandin E2 (PGE2) production by macrophages even in the absence of T. cruzi. In infected macrophages, EV Y decreased production of PGE2 and cytokines TNF-α and IL-6 24 h after infection. These results suggest that EV Y modulates the host response in favor of the parasite and indicates a role for lipid bodies and PGE2 in immune modulation exerted by EVs.
Collapse
Affiliation(s)
- Maria Isabel Lovo-Martins
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aparecida Donizette Malvezi
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Bruno Fernando Cruz Lucchetti
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Admilton Gonçalves de Oliveira
- Laboratório de Microscopia Eletrônica e Microanálises, Central de Laboratórios de Pesquisa Multiusuários, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
25
|
Gonçalves CS, Ávila AR, de Souza W, Motta MCM, Cavalcanti DP. Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation. Parasit Vectors 2018; 11:83. [PMID: 29409544 PMCID: PMC5801705 DOI: 10.1186/s13071-018-2664-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. Results We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. Conclusions Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite’s fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.
Collapse
Affiliation(s)
- Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Laboratório de Microbiologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, RJ, Brazil
| | - Andrea Rodrigues Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Pereira Cavalcanti
- Laboratório de Microbiologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Kessler RL, Contreras VT, Marliére NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto GACA, Batista M, Soccol VT, Krieger MA, Probst CM. Recently differentiated epimastigotes fromTrypanosoma cruziare infective to the mammalian host. Mol Microbiol 2017; 104:712-736. [DOI: 10.1111/mmi.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Víctor Tulio Contreras
- Laboratorio de Protozoología, Centro de Biología Molecular de Parásitos, Facultad Ciencias de la Salud; Universidad de Carabobo; Valencia Venezuela
| | - Newmar Pinto Marliére
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group; Centro de Pesquisas René Rachou, Fiocruz; Belo Horizonte Minas Gerais Brazil
| | | | | | | | - Vanete Thomaz Soccol
- Programa de Pós-Graduação em Processos Biotecnológicos e Biotecnologia, Centro Politécnico; Universidade Federal do Paraná; Curitiba PR Brazil
| | | | | |
Collapse
|
27
|
Enzymatic characterization of clinical and environmental Cryptococcus neoformans strains isolated in Italy. Rev Iberoam Micol 2017; 34:77-82. [PMID: 28215482 DOI: 10.1016/j.riam.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cryptococcus neoformans is an encapsulated yeast causing mainly opportunistic infections. The virulence factors involved in cryptococcosis pathogenesis include the presence and the size of the polysaccharide capsule, the production of melanin by phenoloxidase, the growth at 37°C and the enzyme secretion like proteinase, phospholipase and urease. Many other enzymes are secreted by C. neoformans but their role in the fungus virulence is not yet known. AIMS In order to investigate this topic, we compared the phospholipase production between strains from patients and from bird droppings, and we examined its relationship to phenoloxidase production. We further characterized the strains by determining the activity of 19 different extracellular enzymes. METHODS Two hundred and five Italian C. neoformans clinical isolates and 32 environmental isolates were tested. Phenoloxidase production was determined by the development of brown colonies on Staib's agar. Extracellular phospholipase activity was performed using the semiquantitative egg-yolk plate method. API ZYM commercial kit was used to observe the production and the activity of 19 different extracellular enzymes. RESULTS Statistical analysis of the results showed a significantly higher phospholipase activity in the clinical isolates than in the environmental isolates. No significant difference about the phenoloxidase production between both groups was found. Regarding the 19 extracellular enzymes tested using the API ZYM commercial kit, acid phosphatase showed the highest enzymatic activity in both groups. Concerning the enzyme α-glucosidase, the clinical isolates presented a significantly higher positivity percentage than the environmental isolates. A hundred percent positivity in the enzyme leucine arylamidase production was observed in both groups, but the clinical isolates metabolized a significantly greater amount of substrate. CONCLUSIONS The higher phospholipase production in the clinical isolates group confirms the possible role of this enzyme in the cryptococcosis pathogenesis. The extracellular activities of the enzymes acid phosphatase, α-glucosidase and leucine arylamidase, tested by means of the API ZYM commercial kit, appear to be very interesting. Many studies indicate that these enzymes are involved in the virulence of bacteria and parasites; our results suggest their possible role as virulence factors in Cryptococcus infections too.
Collapse
|
28
|
Characterization and Diagnostic Application of Trypanosoma cruzi Trypomastigote Excreted-Secreted Antigens Shed in Extracellular Vesicles Released from Infected Mammalian Cells. J Clin Microbiol 2016; 55:744-758. [PMID: 27974541 DOI: 10.1128/jcm.01649-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, although endemic in many parts of Central and South America, is emerging as a global health threat through the potential contamination of blood supplies. Consequently, in the absence of a gold standard assay for the diagnosis of Chagas disease, additional antigens or strategies are needed. A proteomic analysis of the trypomastigote excreted-secreted antigens (TESA) associated with exosomal vesicles shed by T. cruzi identified ∼80 parasite proteins, with the majority being trans-sialidases. Mass spectrometry analysis of immunoprecipitation products performed using Chagas immune sera showed a marked enrichment in a subset of TESA proteins. Of particular relevance for diagnostic applications were the retrotransposon hot spot (RHS) proteins, which are absent in Leishmania spp., parasites that often confound diagnosis of Chagas disease. Interestingly, serological screens using recombinant RHS showed a robust immunoreactivity with sera from patients with clinical stages of Chagas ranging from asymptomatic to advance cardiomyopathy and this immunoreactivity was comparable to that of crude TESA. More importantly, no cross-reactivity with RHS was detected with sera from patients with malaria, leishmaniasis, toxoplasmosis, or African sleeping sickness, making this protein an attractive reagent for diagnosis of Chagas disease.
Collapse
|
29
|
Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB. PLoS One 2016; 11:e0167594. [PMID: 27930683 PMCID: PMC5145157 DOI: 10.1371/journal.pone.0167594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Collapse
|
30
|
Borges BC, Uehara IA, Dias LOS, Brígido PC, da Silva CV, Silva MJB. Mechanisms of Infectivity and Evasion Derived from Microvesicles Cargo Produced by Trypanosoma cruzi. Front Cell Infect Microbiol 2016; 6:161. [PMID: 27921011 PMCID: PMC5118865 DOI: 10.3389/fcimb.2016.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Cell invasion by the intracellular protozoans requires interaction of proteins from both the host and the parasite. Many parasites establish chronic infections, showing they have the potential to escape the immune system; for example, Trypanosoma cruzi is an intracellular parasite that causes Chagas disease. Parasite internalization into host cell requires secreted and surface molecules, such as microvesicles. The release of microvesicles and other vesicles, such as exosomes, by different eukaryotic organisms was first observed in the late twentieth century. The characterization and function of these vesicles have recently been the focus of several investigations. In this review, we discuss the release of microvesicles by T. cruzi. The molecular content of these vesicles is composed of several molecules that take place during parasite-host cell interaction and contribute to the parasite-driven mechanism of evasion from the host immune system. These new findings appear to have a profound impact on the comprehension of T. cruzi biology and highlight novel potential strategies for developing more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Bruna C Borges
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de UberlândiaUberlândia, Brazil; Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de UberlândiaUberlândia, Brazil
| | - Isadora A Uehara
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Laysa O S Dias
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Paula C Brígido
- Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Claudio V da Silva
- Laboratório de Tripanossomatídeos, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Marcelo J B Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| |
Collapse
|
31
|
Roditi I. The languages of parasite communication. Mol Biochem Parasitol 2016; 208:16-22. [DOI: 10.1016/j.molbiopara.2016.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
32
|
Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages. Parasitology 2016; 143:1409-20. [PMID: 27220404 DOI: 10.1017/s0031182016000949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.
Collapse
|
33
|
Perdomo D, Manich M, Syan S, Olivo-Marin JC, Dufour AC, Guillén N. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica. Cell Microbiol 2016; 18:1134-52. [PMID: 26857352 DOI: 10.1111/cmi.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica.
Collapse
Affiliation(s)
- Doranda Perdomo
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Paris, France
| | - Maria Manich
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | | | - Alexandre C Dufour
- Bioimage Analysis Unit, Institut Pasteur, Paris, France.,CNRS UMR 3691, Paris, France
| | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| |
Collapse
|
34
|
Carrière J, Barnich N, Nguyen HTT. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities. Rev Physiol Biochem Pharmacol 2016; 172:39-75. [PMID: 27600934 DOI: 10.1007/112_2016_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.
Collapse
Affiliation(s)
- Jessica Carrière
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France.,INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- University of Clermont Auvergne, M2iSH, UMR 1071 INSERM/University of Auvergne, Clermont-Ferrand, 63001, France. .,INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
35
|
Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends Parasitol 2015; 31:477-489. [PMID: 26433251 PMCID: PMC4685040 DOI: 10.1016/j.pt.2015.06.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism for transferring information between cells and organisms across all three kingdoms of life. In addition to their roles in normal physiology, vesicles also transport molecules from pathogens to hosts and can spread antigens as well as infectious agents. Although initially described in the host-pathogen context for their functions in immune surveillance, vesicles enable multiple modes of communication by, and between, parasites. Here we review the literature demonstrating that EVs are secreted by intracellular and extracellular eukaryotic parasites, as well as their hosts, and detail the functional properties of these vesicles in maturation, pathogenicity and survival. We further describe the prospects for targeting or exploiting these complexes in therapeutic and vaccine strategies.
Collapse
|
36
|
Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol Res 2015; 114:3567-75. [PMID: 26272631 DOI: 10.1007/s00436-015-4659-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
Parasite-host cell interaction can be modulated by a dynamic communication between extracellular vesicles (EVs). They should play key roles in cell-cell communications transferring biomolecules (miRNA, proteins, soluble factors) from one cell to another cell. While many names have been used to denominate EVs, a better comprehension to understand these vesicles is raised when we classify it according to biogenesis: originated from multivesicular bodies, named exosomes, and from plasmatic membranes, denominated microvesicles. Here, we have reviewed EV participation during the protozoan-host cell interaction and reinforced the differences and similarities between exosomes and microvesicles, suggesting different intracellular routes and functions. We also discussed perspectives to study EVs and the role of EVs in diagnosis and chemotherapies of infectious diseases.
Collapse
|
37
|
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014; 3:25040. [PMID: 25536932 PMCID: PMC4275648 DOI: 10.3402/jev.v3.25040] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/31/2022] Open
Abstract
Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.
Collapse
Affiliation(s)
- Antonio Marcilla
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain;
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria Trelis
- Departament de Biologia Cel.lular i Parasitologia, Universitat de València, Valencia, Spain
| | - Armando de Menezes-Neto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Antonio Osuna
- Institute of Biotechnology, Biochemistry and Molecular Parasitology, University of Granada, Granada, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Igor C Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|