1
|
A Novel Ex Vivo Drug Assay for Assessing the Transmission-Blocking Activity of Compounds on Field-Isolated Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother 2022; 66:e0100122. [PMID: 36321830 PMCID: PMC9764978 DOI: 10.1128/aac.01001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 μM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 μM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.
Collapse
|
2
|
The malERA Refresh Consultative Panel on Tools for Malaria Elimination. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. PLoS Med 2017; 14:e1002455. [PMID: 29190291 PMCID: PMC5708606 DOI: 10.1371/journal.pmed.1002455] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
3
|
Gebru T, Ajua A, Theisen M, Esen M, Ngoa UA, Issifou S, Adegnika AA, Kremsner PG, Mordmüller B, Held J. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon. Malar J 2017; 16:176. [PMID: 28446190 PMCID: PMC5406886 DOI: 10.1186/s12936-017-1827-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte development in the circulation or by interrupting gamete development and fertilization in the mosquito following ingestion. So far, most studies on antibody responses to sexual stage antigens have focused on a subset of gametocyte-surface antigens, even though inhibitory Ab responses to other gametocyte antigens might also play a role in controlling gametocyte density and fertility. Limited information is available on natural antibody response to the surfaces of gametocyte-infected erythrocytes. METHODS Ab responses to surface antigens of erythrocytes infected by in vitro differentiated Plasmodium falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P. falciparum was evaluated in malaria-exposed children and adults from Gabon. Serum samples from two Phase I clinical trials conducted in Gabon were analysed by microscopic and flow-cytometric immunofluorescence assay. RESULTS Adults had a higher Ab response compared to children. Ab reactivity was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive correlation to anti-gametocyte Ab responses in adults, but not in children. Children infected with Ascaris lumbricoides had a significantly higher anti-gametocyte Ab response compared to non-infected children. CONCLUSION The current data suggest that antigens exposed on the gametocyte-infected red blood cells are recognized by serum antibodies from malaria-exposed children and semi-immune adults. This anti-gametocyte immune response may be influenced by natural exposure and vaccination. Modulation of the natural immune response to gametocytes by co-infecting parasites should be investigated further and may have an important impact on malaria control strategies.
Collapse
Affiliation(s)
- Tamirat Gebru
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Medical Laboratory Sciences, College of Medical and Health Sciences, Haramaya University, Harar, Ethiopia
| | - Anthony Ajua
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Center for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Ulysse Ateba Ngoa
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saadou Issifou
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Fondation pour la Recherche Scientifique (FORS), Cotonou, Benin
| | - Ayola A Adegnika
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon. .,German Centre for Infection Research (DZIF), Partner Site Lambaréné, Gabon.
| |
Collapse
|
4
|
Griffin P, Pasay C, Elliott S, Sekuloski S, Sikulu M, Hugo L, Khoury D, Cromer D, Davenport M, Sattabongkot J, Ivinson K, Ockenhouse C, McCarthy J. Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission. PLoS Negl Trop Dis 2016; 10:e0005139. [PMID: 27930652 PMCID: PMC5145139 DOI: 10.1371/journal.pntd.0005139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes. METHODS Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7-9 days. RESULTS The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds. CONCLUSION The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions. Further work is required to validate transmission and increase its prevalence. TRIAL REGISTRATION Anzctr.org.au ACTRN12613001008718.
Collapse
Affiliation(s)
- Paul Griffin
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- Q-Pharm Pty Ltd, Brisbane, Australia
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Cielo Pasay
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | | | - Silvana Sekuloski
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Maggy Sikulu
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - Leon Hugo
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
| | - David Khoury
- University of New South Wales, Sydney, Australia
| | | | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen Ivinson
- PATH, Malaria Vaccine Initiative, Washington, DC, United States
| | | | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Abdul-Ghani R, Mahdy MAK, Saif-Ali R, Alkubati SA, Alqubaty AR, Al-Mikhlafy AA, Al-Eryani SM, Al-Mekhlafi AM, Alhaj A. Glucose-6-phosphate dehydrogenase deficiency among Yemeni children residing in malaria-endemic areas of Hodeidah governorate and evaluation of a rapid diagnostic test for its detection. Malar J 2016; 15:327. [PMID: 27329471 PMCID: PMC4915072 DOI: 10.1186/s12936-016-1372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic enzymopathy worldwide, is associated with an acute haemolytic anaemia in individuals exposed to primaquine. The present study aimed to determine G6PD deficiency among Yemeni children in malaria-endemic areas as well as to assess the performance of the CareStart™ G6PD rapid diagnostic test (RDT) for its detection. METHODS A cross-sectional study recruiting 400 children from two rural districts in Hodeidah governorate was conducted. Socio-demographic data and blood samples were collected and G6PD deficiency was qualitatively detected in fresh blood in the field using the CareStart™ G6PD RDT, while the enzymatic assay was used to quantitatively measure enzyme activity. Performance of the CareStart™ G6PD RDT was assessed by calculating its sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) against the reference enzymatic assay. RESULTS The ranges of enzyme activity were 0.14-18.45 and 0.21-15.94 units/g haemoglobin (U/gHb) for males and females, respectively. However, adjusted male median G6PD activity was 5.0 U/gHb. Considering the adjusted male median as representing 100 % normal enzyme activity, the prevalence rates of G6PD deficiency were 12.0 and 2.3 % at the cut-off activities of ≤60 and ≤10 %, respectively. Multivariable analysis showed that gender, district of residence and consanguinity between parents were independent risk factors for G6PD deficiency at the cut-off activity of ≤30 % of normal. The CareStart™ G6PD RDT showed 100 % sensitivity and NPV for detecting G6PD deficiency at the cut-off activities of ≤10 and ≤20 % of normal activity compared to the reference enzymatic method. However, it showed specificity levels of 90.0 and 95.4 % as well as positive/deficient predictive values (PPVs) of 18.0 and 66.0 % at the cut-off activities of ≤10 and ≤20 %, respectively, compared to the reference method. CONCLUSIONS G6PD deficiency with enzyme activity of ≤60 % of normal is prevalent among 12.0 % of children residing in malaria-endemic areas of Hodeidah governorate, with 2.3 % having severe G6PD deficiency. Gender, district of residence and consanguinity between parents are significant independent predictors of G6PD deficiency at the cut-off activity of ≤30 % of normal among children in malaria-endemic areas of Hodeidah. The CareStart™ G6PD RDT proved reliable as a point-of-care test to screen for severely G6PD-deficient patients, with 100 % sensitivity and NPV, and it can be used for making clinical decisions prior to the administration of primaquine in malaria elimination strategies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Mohammed A. K. Mahdy
- />Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Reyadh Saif-Ali
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Sameer A. Alkubati
- />Department of Critical Care Nursing, Faculty of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | - Abdulhabib R. Alqubaty
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Abdullah A. Al-Mikhlafy
- />Department of Community Medicine, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Samira M. Al-Eryani
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Abdusalam M. Al-Mekhlafi
- />Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
| | - Ali Alhaj
- />Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| |
Collapse
|
7
|
Abdul-Ghani R, Basco LK, Beier JC, Mahdy MAK. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malar J 2015; 14:413. [PMID: 26481312 PMCID: PMC4617745 DOI: 10.1186/s12936-015-0936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring
of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Leonardo K Basco
- Unité de Recherche 198, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut de Recherche pour le Développement, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France.
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|