1
|
Liu P, Ren D, Li G, Xu X, Presotto L, Liu W, Zhao N, Li D, Chen M, Wang J, Liu X, Zhao C, Lu L, Liu Q. Ectoparasites enhance survival by suppressing host exploration and limiting dispersal. Nat Commun 2025; 16:4318. [PMID: 40346081 PMCID: PMC12064801 DOI: 10.1038/s41467-025-59601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Parasites enhance their fitness by manipulating host dispersal. However, the strategies used by ectoparasites to influence host movement and the underlying mechanisms remain poorly understood. Here, we show that ectoparasites alter metabolic activity in specific brain regions of mice, with evidence pointing to a potential role for microglial activation in the prefrontal cortex. This activation appears to contribute to synaptic changes and altered neuronal differentiation, particularly in GABAergic neurons. Consequently, exploratory behavior decreases-an effect likely mediated through the skin-brain axis. In both indoor and field experiments with striped hamsters, ectoparasites reduce host exploration and modify their dispersal patterns. This behavioral shift ultimately restricts the host's distribution, enabling parasites to avoid environmental pressures. Our findings reveal that ectoparasites limit host dispersal to improve their own fitness, offering key insights for parasite control strategies that promote health and preserve ecological stability within the One Health framework.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongsheng Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Xu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luca Presotto
- Department of physics G. Occhialini, University of Milano-Bicocca, Milano, MI, Italy
- Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wei Liu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunchun Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Wang Z, Wang L, Guo C, Wang Z, Lun X, Ji H, Shang M, Wang X, Liu Q. Effects of Different Levels of Flea Infestation on Gut Microbiota of Brandt's Voles ( Lasiopodomys brandtii) in China. Animals (Basel) 2025; 15:669. [PMID: 40075951 PMCID: PMC11899220 DOI: 10.3390/ani15050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Brandt's vole is a common small rodent, and its gut microbiota is critical to host health and immune function. The parasitic fleas commonly found in Brandt's voles cause an immune response, but their impact on the gut microbiota remains unclear. According to the level of flea infestation, Brandt's voles were divided into the control group, low-infestation group, and high-infestation group. The changes in the microbial community composition, abundance, and diversity of the gut microbiota were evaluated using 16S rRNA sequencing. Flea infestation significantly affected body weight, food intake, and gut microbiota structure. The low-infestation group exhibited the most pronounced changes in weight and food intake, while the high-infestation group showed the least. In the 4th week, 16S rRNA sequencing revealed an increase in alpha diversity and alterations in microbial composition. Beta-diversity analysis indicated significant differences in the intestinal microbiota between the experimental groups and the control group. By the 8th week, these differences had diminished, suggesting that the microbiota had stabilized or recovered over time. Overall, parasitic flea infestation significantly alters the diversity, structure, and characteristic microbial enrichment of the gut microbiota in Brandt's voles, potentially impacting host metabolism, immunity, and growth. While this study lasted 8 weeks, the long-term health effects of flea infestation may persist. Future research should elucidate the interaction mechanisms between parasites and hosts, define the time frames and mechanisms of these long-term impacts, and provide theoretical support for animal health management and disease control.
Collapse
Affiliation(s)
- Zhenxu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.W.); (X.L.)
| | - Lu Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.W.); (H.J.); (M.S.); (X.W.)
| | - Chenran Guo
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (C.G.); (Z.W.)
| | - Zihao Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (C.G.); (Z.W.)
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.W.); (X.L.)
| | - Haoqiang Ji
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.W.); (H.J.); (M.S.); (X.W.)
| | - Meng Shang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.W.); (H.J.); (M.S.); (X.W.)
| | - Xiaoxu Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.W.); (H.J.); (M.S.); (X.W.)
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.W.); (X.L.)
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (L.W.); (H.J.); (M.S.); (X.W.)
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; (C.G.); (Z.W.)
| |
Collapse
|
3
|
Eidelman A, Cohen C, Navarro-Castilla Á, Filler S, Gutiérrez R, Bar-Shira E, Shahar N, Garrido M, Halle S, Romach Y, Barja I, Tasker S, Harrus S, Friedman A, Hawlena H. The dynamics between limited-term and lifelong coinfecting bacterial parasites in wild rodent hosts. ACTA ACUST UNITED AC 2019; 222:jeb.203562. [PMID: 31285244 DOI: 10.1242/jeb.203562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Interactions between coinfecting parasites may take various forms, either direct or indirect, facilitative or competitive, and may be mediated by either bottom-up or top-down mechanisms. Although each form of interaction leads to different evolutionary and ecological outcomes, it is challenging to tease them apart throughout the infection period. To establish the first step towards a mechanistic understanding of the interactions between coinfecting limited-term bacterial parasites and lifelong bacterial parasites, we studied the coinfection of Bartonella sp. (limited-term) and Mycoplasma sp. (lifelong), which commonly co-occur in wild rodents. We infected Bartonella- and Mycoplasma-free rodents with each species, and simultaneously with both, and quantified the infection dynamics and host responses. Bartonella benefited from the interaction; its infection load decreased more slowly in coinfected rodents than in rodents infected with Bartonella alone. There were no indications for bottom-up effects, but coinfected rodents experienced various changes, depending on the infection stage, in their body mass, stress levels and activity pattern, which may further affect bacterial replication and transmission. Interestingly, the infection dynamics and changes in the average coinfected rodent traits were more similar to the chronic effects of Mycoplasma infection, whereas coinfection uniquely impaired the host's physiological and behavioral stability. These results suggest that parasites with distinct life history strategies may interact, and their interaction may be asymmetric, non-additive, multifaceted and dynamic through time. Because multiple, sometimes contrasting, forms of interactions are simultaneously at play and their relative importance alternates throughout the course of infection, the overall outcome may change under different ecological conditions.
Collapse
Affiliation(s)
- Anat Eidelman
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Carmit Cohen
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.,Infection Prevention & Control Unit, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Álvaro Navarro-Castilla
- Department of Biology, Faculty of Sciences, University Autonomous of Madrid, Madrid 28049, Spain
| | - Serina Filler
- School of Veterinary Sciences, University of Bristol, Langford BS40 5DU, UK
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Enav Bar-Shira
- Section of Immunology, Department of Animal Sciences, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Mario Garrido
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Snir Halle
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Yoav Romach
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Isabel Barja
- Department of Biology, Faculty of Sciences, University Autonomous of Madrid, Madrid 28049, Spain.,Center for Research on Biodiversity and Global Change (CIBC-UAM), University Autonomous of Madrid, Madrid 28049, Spain
| | - Séverine Tasker
- School of Veterinary Sciences, University of Bristol, Langford BS40 5DU, UK
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aharon Friedman
- Section of Immunology, Department of Animal Sciences, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
4
|
Roth JD, Dobson FS, Criscuolo F, Uhlrich P, Zahariev A, Bergouignan A, Viblanc VA. Subtle short-term physiological costs of an experimental augmentation of fleas in wild Columbian ground squirrels. ACTA ACUST UNITED AC 2019; 222:jeb.203588. [PMID: 31138632 DOI: 10.1242/jeb.203588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022]
Abstract
Parasites affect many aspects of host physiology and behavior, and thus are generally thought to negatively impact host fitness. However, changes in form of short-term parasite effects on host physiological markers have generally been overlooked in favor of fitness measures. Here, we studied flea (Oropsylla idahoensis and Oropsylla opisocroistis tuberculata) parasitism on a natural population of Columbian ground squirrels (Urocitellus columbianus) in Sheep River Provincial Park, AB, Canada. Fleas were experimentally added to adult female U. columbianus at physiologically demanding times, including birth, lactation and weaning of their young. The body mass of adult females, as well as their oxidative stress and immunity were recorded multiple times over the active season under flea-augmented and control conditions. We also measured the prevalence of an internal parasite (Trypanosoma otospermophili). Doubly labeled water (DLW) was intra-peritoneally injected at peak lactation to examine energy expenditure. Effects of parasites on oxidative stress were only observed after offspring were weaned. There was no direct effect of experimentally heightened flea prevalence on energy use. A short-term 24 h mass loss (-17 g) was detected briefly after parasite addition, likely due to U. columbianus preferentially allocating time for grooming. Our parasite augmentation did not strongly affect hosts and suggested that short-term physiological effects were unlikely to culminate in long-term fitness consequences. Columbian ground squirrels appear to rapidly manage parasite costs, probably through grooming.
Collapse
Affiliation(s)
- Jeffrey D Roth
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Alexandre Zahariev
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Audrey Bergouignan
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| |
Collapse
|