1
|
Krasnov BR, Shenbrot GI, Khokhlova IS. Nestedness of flea assemblages harboured by small mammalian hosts revisited: phylogenetic and functional nestedness do not follow compositional nestedness. Parasitol Res 2024; 123:111. [PMID: 38270673 DOI: 10.1007/s00436-024-08132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
We studied compositional, phylogenetic, and functional nestedness in the flea assemblages of 14 host species across regions. Our main questions were (a) are a host's flea assemblages compositionally, phylogenetically, or functionally nested? (b) Do similar processes drive these nestedness facets? (d) Are a host's biological traits associated with nestedness of its flea assemblages? Rows of host matrices were ordered by decreasing species richness/the sum of the branch lengths of a phylogenetic tree/functional dendrogram or by decreasing region area or by increasing distance from the centre of a host's geographic range. None of the matrices sorted by species richness/sum of branch lengths were nested from a compositional perspective, but they were significantly nested from phylogenetic and functional perspectives. Compositional, phylogenetic, and functional nestedness of matrices sorted by region area or by distance from the host's geographic range centre varied between hosts. In some hosts, flea assemblages were nested from all three perspectives independently of how matrix rows were sorted, whereas in other hosts, the occurrence of significant nestedness depended on the order of the matrix rows. The degree of phylogenetic and functional nestedness for matrices sorted by the sum of branch lengths was associated with a host species' morphoecological traits and the latitude of its geographic range. We conclude that consideration of nestedness based solely on species composition does not allow a comprehensive understanding of the patterns of parasite community structure. Nestedness should also be considered from phylogenetic and functional perspectives.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Beersheba, Israel.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Beersheba, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Beersheba, Israel
| |
Collapse
|
2
|
Junsiri W, Islam SI, Thiptara A, Jeenpun A, Sangkhapaitoon P, Thongcham K, Phakphien R, Taweethavonsawat P. First report of Strongylidae nematode from pilot whale ( Globicephala macrorhynchus) by molecular analysis reveals the cosmopolitan distribution of the taxon. Front Vet Sci 2023; 10:1313783. [PMID: 38162478 PMCID: PMC10755461 DOI: 10.3389/fvets.2023.1313783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
This study investigates the identification, genetic composition, and placement in the evolutionary tree of a particular nematode species found in a short-finned pilot whale in the Gulf of Thailand. To accomplish this, we utilized various methods, including microscopic observations, molecular techniques, and comparative analyses to better understand the characteristics of this parasite. Initially, we concentrated on studying the 18s rDNA sequence through nested PCR, resulting in a 774-bp product. After conducting a BLASTn analysis, we discovered that there were only a few sequences in the GeneBank that shared similarities with our nematode, particularly with Cyathostomum catinatum, although the percent identity was relatively low. To confirm the uniqueness of our sequence, we constructed a phylogenetic tree that demonstrated a distinct branch for our nematode, suggesting significant genetic differentiation from C. catinatum. Additionally, we sequenced a 399-bp section of the ITS2 gene using PCR, and the resulting data showed a close association with the Strongylidae family, specifically with Cylicocyclus insigne. This was further confirmed by BLASTn and CD-HIT-est results, which indicated a 99 and ~94% sequence homology with C. insigne, respectively. The ITS2 phylogenetic tree also supported the position of our isolated sequence within the Strongylidae family, clustering closely with C.insigne. Our findings shed light on the genetic connections, taxonomy, and evolutionary trends within the Strongylidae family, with a particular focus on the widespread nature of the Cylicocyclus genus. This study emphasizes the importance of utilizing molecular techniques and interdisciplinary approaches to gain insight into nematode diversity, evolution, and ecological dynamics in marine environments.
Collapse
Affiliation(s)
- Witchuta Junsiri
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sk Injamamul Islam
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Auyarat Thiptara
- Epidemiology and Information Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Autthaporn Jeenpun
- Epidemiology and Information Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Piyanan Sangkhapaitoon
- Animal Diagnostic Group, Veterinary Research and Development Center (Upper Southern Region), Nakhon Sri Thammarat, Thailand
| | - Khunanont Thongcham
- Marine Endangered Species Unit, Marine and Coastal Resource Research Center, Lower Gulf of Thailand, Department of Marine and Coastal Resources, Thailand
| | - Rattanakorn Phakphien
- Marine Endangered Species Unit, Marine and Coastal Resource Research Center, Lower Gulf of Thailand, Department of Marine and Coastal Resources, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Biomarkers in Animal Parasitology Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Junker K, Horak IG, Boomker J, Krasnov BR. Nestedness and beta diversity of gastrointestinal helminth communities in common warthogs, Phacochoerus africanus (Suidae), at 2 localities in South Africa. Parasitology 2023; 150:911-921. [PMID: 37553973 PMCID: PMC10577656 DOI: 10.1017/s0031182023000719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Few studies have investigated the ecological interactions between wild species of Suidae and their parasites, leaving our knowledge concerning this host–parasite system fragmented. In the present study, we applied network studies to analyse community nestedness in helminth assemblages of common warthogs, Phacochoerus africanus (Gmelin) (Suidae). Helminth data were compiled from 95 warthogs, including young and adult males and females, from 2 different conservation areas in Mpumalanga and Limpopo Provinces, South Africa, collected monthly over a period of 1 year each. The aim was to study the effect of host sex, age and season of sampling on the structure of helminth infracommunities harboured by the warthogs and to search for non-random structural patterns in the warthog–helminth interaction networks. Furthermore, we investigated the influence of a warthog's age, sex and season of sampling on beta diversity and dark diversity of their helminth infracommunities. Lastly, we asked whether the effects of host sex, age and sampling season on helminth communities differed between the 2 localities. We found that helminth communities of warthogs were nested and host–parasite interactions were influenced by all 3 factors as well as combinations thereof. However, the resulting patterns differed at the 2 localities, indicating that local environmental processes are important drivers of community structure.
Collapse
Affiliation(s)
- Kerstin Junker
- National Collection of Animal Helminths, Epidemiology, Parasites and Vectors Programme, ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort 0110, South Africa
| | - Ivan G. Horak
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Joop Boomker
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Boris R. Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
4
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
5
|
Junker K, Boomker J, Horak IG, Krasnov BR. Impact of host sex and age on the diversity of endoparasites and structure of individual-based host-parasite networks in nyalas (Tragelaphus angasii Angas) from three game reserves in KwaZulu-Natal province, South Africa. Parasitol Res 2022; 121:3249-3267. [PMID: 36071296 DOI: 10.1007/s00436-022-07653-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
In recent years, numerous studies have examined the effect of host sex and age on the structure of parasite communities in several host taxa under various environmental conditions and in different geographic regions. However, the influence of such factors on the structure of host-parasite networks has received less attention, and remarkably few studies have been carried out on large terrestrial mammals. In this study, we investigated the effects of host age and sex on the parasite infra- and component communities of nyalas (Tragelaphus angasii) and on the structure of individual-based nyala-endoparasite networks. We also aimed to evaluate to what extent these effects vary spatially and if they are mediated by conservation management. Based on a data set of internal macroparasites of 74 nyalas from three game reserves in KwaZulu-Natal province, we found that host age strongly influenced parasite community structure as well as the structure of parasite-nyala networks, whereas host sex played a minor role. However, the effects of both host sex and age were mediated by environmental conditions and thus led to different patterns at the three localities. Our findings highlight that host-parasite communities from different localities should not be pooled when conducting host-parasite network and community studies as this may bias results and mask patterns that are typical for a given locality.
Collapse
Affiliation(s)
- Kerstin Junker
- National Collection of Animal Helminths, Epidemiology, Parasites and Vectors Programme, ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa.
| | - Joop Boomker
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Ivan G Horak
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| |
Collapse
|
6
|
Llaberia-Robledillo M, Balbuena JA, Sarabeev V, Llopis-Belenguer C. Changes in native and introduced host–parasite networks. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02657-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIntroduced species can alter the dynamics and structure of a native community. Network analysis provides a tool to study host–parasite interactions that can help to predict the possible impact of biological invasions or other disturbances. In this study, we used weighted bipartite networks to assess differences in the interaction patterns between hosts and helminth parasites of native (Sea of Japan) and invasive (Black Sea and Sea of Azov) populations of Planiliza haematocheilus (Teleostei: Mugilidae). We employed three quantitative network descriptors, connectance, weighted nestedness and modularity, to gain insight into the structure of the host–parasite networks in the native and invaded areas. The role of parasite species in the networks was assessed using the betweenness centrality index. We analyzed networks encompassing the whole helminth community and subsets of species classified by their transmission strategy. The analyses were downscaled to host individual-level to consider intraspecific variation in parasite communities. We found significant differences between networks in the native and invaded areas. The latter presented a higher value of nestedness, which may indicate a co-occurrence between parasite species with many connections in the network and species with fewer interactions within the same individual-host. In addition, modularity was higher in the native area’s networks than those of the invaded area, with subgroups of host individuals that interact more frequently with certain parasite species than with others. Only the networks composed of actively transmitted parasites and ectoparasites did not show significant differences in modularity between the Sea of Azov and the Sea of Japan, which could be due to the introduction of a part of the native community into the invaded environment, with a lower diversity and abundance of species. We show that network analysis provides a valuable tool to illuminate the changes that occur in host–parasite interactions when an invasive species and its parasite community are introduced into a new area.
Collapse
|
7
|
Cardoso TDS, de Andreazzi CS, Maldonado Junior A, Gentile R. Functional traits shape small mammal-helminth network: patterns and processes in species interactions. Parasitology 2021; 148:947-955. [PMID: 33879271 PMCID: PMC8193565 DOI: 10.1017/s0031182021000640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023]
Abstract
Understanding the role of species traits in mediating ecological interactions and shaping community structure is a key question in ecology. In this sense, parasite population parameters allow us to estimate the functional importance of traits in shaping the strength of interactions among hosts and parasites in a network. The aim of this study was to survey and analyse the small mammal-helminth network in a forest reserve of the Brazilian Atlantic Forest in order to understand (i) how functional traits (type of parasite life cycle, site of infection in their host, host and parasite body length, host diet, host locomotor habit and host activity period) and abundance influence host–parasite interactions, (ii) whether these traits explain species roles, and (iii) if this relationship is consistent across different parasite population parameters (presence and absence, mean abundance and prevalence). Networks were modular and their structural patterns did not vary among the population parameters. Functional traits and abundance shaped the interactions observed between parasites and hosts. Host species abundance, host diet and locomotor habit affected their centrality and/or vulnerability to parasites. For helminths, infection niche was the main trait determining their central roles in the networks.
Collapse
Affiliation(s)
- Thiago dos Santos Cardoso
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
- Programa Fiocruz de Fomento à Inovação – INOVA FIOCRUZ, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Arnaldo Maldonado Junior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Rosana Gentile
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Kiene F, Andriatsitohaina B, Ramsay MS, Rakotondravony R, Strube C, Radespiel U. Habitat fragmentation and vegetation structure impact gastrointestinal parasites of small mammalian hosts in Madagascar. Ecol Evol 2021; 11:6766-6788. [PMID: 34141255 PMCID: PMC8207415 DOI: 10.1002/ece3.7526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Deleterious effects of habitat loss and fragmentation on biodiversity have been demonstrated in numerous taxa. Although parasites represent a large part of worldwide biodiversity, they are mostly neglected in this context. We investigated the effects of various anthropogenic environmental changes on gastrointestinal parasite infections in four small mammal hosts inhabiting two landscapes of fragmented dry forest in northwestern Madagascar. Coproscopical examinations were performed on 1,418 fecal samples from 903 individuals of two mouse lemur species, Microcebus murinus (n = 199) and M. ravelobensis (n = 421), and two rodent species, the native Eliurus myoxinus (n = 102) and the invasive Rattus rattus (n = 181). Overall, sixteen parasite morphotypes were detected and significant prevalence differences between host species regarding the most common five parasites may be explained by parasite-host specificity or host behavior, diet, and socioecology. Ten host- and habitat-related ecological variables were evaluated by generalized linear mixed modeling for significant impacts on the prevalence of the most abundant gastrointestinal parasites and on gastrointestinal parasite species richness (GPSR). Forest maturation affected homoxenous parasites (direct life cycle) by increasing Lemuricola, but decreasing Enterobiinae gen. sp. prevalence, while habitat fragmentation and vegetation clearance negatively affected the prevalence of parasites with heterogenic environment (i.e., Strongyloides spp.) or heteroxenous (indirect cycle with intermediate host) cycles, and consequently reduced GPSR. Forest edges and forest degradation likely change abiotic conditions which may reduce habitat suitability for soil-transmitted helminths or required intermediate hosts. The fragility of complex parasite life cycles suggests understudied and potentially severe effects of decreasing habitat quality by fragmentation and degradation on hidden ecological networks that involve parasites. Since parasites can provide indispensable ecological services and ensure stability of ecosystems by modulating animal population dynamics and nutrient pathways, our study underlines the importance of habitat quality and integrity as key aspects of conservation.
Collapse
Affiliation(s)
- Frederik Kiene
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Bertrand Andriatsitohaina
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
| | - Malcolm S. Ramsay
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Department of AnthropologyUniversity of TorontoTorontoCanada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l’EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Christina Strube
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
| |
Collapse
|
9
|
Fernandes FR, da Silva Abreu S, Cruz LD. Transmission networks and ectoparasite mite burdens in Oecomys paricola (Rodentia: Cricetidae). Parasitology 2021; 148:443-450. [PMID: 33256864 PMCID: PMC11010056 DOI: 10.1017/s0031182020002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 11/05/2022]
Abstract
The host contact network structure results from the movement and behaviour of hosts (e.g. degree of sociability; vagility and greater or lesser fidelity of shelters), which can generate heterogeneity in the transmission of parasites and influence the parasitic burden of individual hosts. In the current study, we tested the hypothesis that the burdens of Gigantolaelaps oudemansi mites are related to the characteristics of the transmission networks of individuals of Oecomys paricola, a solitary rodent. The study was carried out in a savannah habitat in north-eastern Brazil. In the dry season, the rodent network presented sub-groups of rodent individuals interacting with each other, whereas in the wet season, no modules were formed in the network. Mite burden was positively related to the number of connections that an individual host had with other host individuals in the dry season. The pairwise absolute difference between the mean mite burdens among individual rodents was negatively correlated with the similarities of node interactions. No relationships were observed during the wet season. There was a higher heterogeneity of mite burden among hosts in the dry season compare to that in the wet season. In solitary species, spatial organization may show seasonal variation, causing a change in the opportunities of host contacts, thereby influencing the transmission and dispersion of their ectoparasite burdens.
Collapse
Affiliation(s)
- Fernanda Rodrigues Fernandes
- Departamento de Biologia, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| | - Somayra da Silva Abreu
- Programa de Pós-graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| | - Leonardo Dominici Cruz
- Departamento de Biologia, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| |
Collapse
|