1
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Yan L, Li Y, Li R, Liu M, He X, Yang X, Cho WC, Ayaz M, Kandil OM, Yang Y, Song H, Zheng Y. Comparative characterization of microRNA-71 of Echinococcus granulosus exosomes. Parasite 2023; 30:55. [PMID: 38084936 PMCID: PMC10714675 DOI: 10.1051/parasite/2023060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic echinococcosis (CE) is a global zoonotic disease caused by Echinococcus granulosus, posing a great threat to human and animal health. MiRNAs are small regulatory noncoding RNA involved in the pathogenesis of parasitic diseases, possibly via exosomes. Egr-miR-71 has been identified as one of the miRNAs in the blood of CE patients, but its secretory characteristics and functions remains unclear. Herein, we studied the secretory and biological activity of exosomal egr-miR-71 and its immunoregulatory functions in sheep peripheral blood mononuclear cells (PBMCs). Our results showed that egr-miR-71 was enriched in the exosome secreted by protoscoleces with biological activity. These egr-miR-71-containing exosomes were easily internalized and then induced the dysregulation of cytokines (IL-10 and TNF-α), nitric oxide (NO) and key components (CD14 and IRF5) in the LPS/TLR4 pathway in the coincubated sheep PBMCs. Similarly, egr-miR-71 overexpression also altered the immune functions but exhibited obvious differences in regulation of the cytokines and key components, preferably inhibiting proinflammatory cytokines (IL-1α, IL-1β and TNF-α). These results demonstrate that exosomal egr-miR-71 is bioactive and capacity of immunomodulation of PBMCs, potentially being involved in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Lujun Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Yating Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Xuedong He
- College of Animal sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fujian-Taiwan Key Laboratory of Animal Pathogen Biology Fuzhou 350002 China
| | - Xing Yang
-
Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University Dali 671000 Yunnan China
| | - William C. Cho
-
Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong SAR China
| | - Mazhar Ayaz
-
Cholistan University of Veterinary and Animal Sciences Bahawalpur 73000 Pakistan
| | - Omnia M. Kandil
-
Depterment of Parasitology and Animal Disease, Veterinary Research Institute, National Research Centre Giza 12622 Egypt
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|