1
|
Mehmood N, Akram MW, Majeed MI, Nawaz H, Aslam MA, Naman A, Wasim M, Ghaffar U, Kamran A, Nadeem S, Kanwal N, Imran M. Surface-enhanced Raman spectroscopy for the characterization of bacterial pellets of Staphylococcus aureus infected by bacteriophage. RSC Adv 2024; 14:5425-5434. [PMID: 38348301 PMCID: PMC10859908 DOI: 10.1039/d3ra07575c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Drug-resistant pathogenic bacteria are a major cause of infectious diseases in the world and they have become a major threat through the reduced efficacy of developed antibiotics. This issue can be addressed by using bacteriophages, which can kill lethal bacteria and prevent them from causing infections. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for studying the degradation of infectious bacteria by the interaction of bacteriophages to break the vicious cycle of drug-resistant bacteria and help to develop chemotherapy-independent remedial strategies. The phage (viruses)-sensitive Staphylococcus aureus (S. aureus) bacteria are exposed to bacteriophages (Siphoviridae family) in the time frame from 0 min (control) to 50 minutes with intervals of 5 minutes and characterized by SERS using silver nanoparticles as SERS substrate. This allows us to explore the effects of the bacteriophages against lethal bacteria (S. aureus) at different time intervals. The differentiating SERS bands are observed at 575 (C-C skeletal mode), 620 (phenylalanine), 649 (tyrosine, guanine (ring breathing)), 657 (guanine (COO deformation)), 728-735 (adenine, glycosidic ring mode), 796 (tyrosine (C-N stretching)), 957 (C-N stretching (amide lipopolysaccharides)), 1096 (PO2 (nucleic acid)), 1113 (phenylalanine), 1249 (CH2 of amide III, N-H bending and C-O stretching (amide III)), 1273 (CH2, N-H, C-N, amide III), 1331 (C-N stretching mode of adenine), 1373 (in nucleic acids (ring breathing modes of the DNA/RNA bases)) and 1454 cm-1 (CH2 deformation of saturated lipids), indicating the degradation of bacteria and replication of bacteriophages. Multivariate data analysis was performed by employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to study the biochemical differences in the S. aureus bacteria infected by the bacteriophage. The SERS spectral data sets were successfully differentiated by PLS-DA with 94.47% sensitivity, 98.61% specificity, 94.44% precision, 98.88% accuracy and 81.06% area under the curve (AUC), which shows that at 50 min interval S. aureus bacteria is degraded by the replicating bacteriophages.
Collapse
Affiliation(s)
- Nasir Mehmood
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Waseem Akram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abdul Naman
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Wasim
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Usman Ghaffar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Ali Kamran
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Sana Nadeem
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Naeema Kanwal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha (61413) Saudi Arabia
| |
Collapse
|
2
|
Martin E, Williams HEL, Pitoulias M, Stevens D, Winterhalter C, Craggs TD, Murray H, Searle MS, Soultanas P. DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA-DnaD interaction. Nucleic Acids Res 2019; 47:2101-2112. [PMID: 30534966 PMCID: PMC6393240 DOI: 10.1093/nar/gky1220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
The homotetrameric DnaD protein is essential in low G+C content gram positive bacteria and is involved in replication initiation at oriC and re-start of collapsed replication forks. It interacts with the ubiquitously conserved bacterial master replication initiation protein DnaA at the oriC but structural and functional details of this interaction are lacking, thus contributing to our incomplete understanding of the molecular details that underpin replication initiation in bacteria. DnaD comprises N-terminal (DDBH1) and C-terminal (DDBH2) domains, with contradicting bacterial two-hybrid and yeast two-hybrid studies suggesting that either the former or the latter interact with DnaA, respectively. Using Nuclear Magnetic Resonance (NMR) we showed that both DDBH1 and DDBH2 interact with the N-terminal domain I of DnaA and studied the DDBH2 interaction in structural detail. We revealed two families of conformations for the DDBH2-DnaA domain I complex and showed that the DnaA-interaction patch of DnaD is distinct from the DNA-interaction patch, suggesting that DnaD can bind simultaneously DNA and DnaA. Using sensitive single-molecule FRET techniques we revealed that DnaD remodels DnaA-DNA filaments consistent with stretching and/or untwisting. Furthermore, the DNA binding activity of DnaD is redundant for this filament remodelling. This in turn suggests that DnaA and DnaD are working collaboratively in the oriC to locally melt the DNA duplex during replication initiation.
Collapse
Affiliation(s)
- Eleyna Martin
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence may also be addressed to Mark S. Searle. Tel: +44 115 9513567; Fax: +44 115 9513564;
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- To whom correspondence should be addressed. Tel: +44 115 9513525; Fax: +44 115 9513564;
| |
Collapse
|
3
|
Matsumoto Y, Yasukawa J, Ishii M, Hayashi Y, Miyazaki S, Sekimizu K. A critical role of mevalonate for peptidoglycan synthesis in Staphylococcus aureus. Sci Rep 2016; 6:22894. [PMID: 26961421 PMCID: PMC4790635 DOI: 10.1038/srep22894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022] Open
Abstract
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, a mevalonate synthetase, is required for the growth of Staphylococcus aureus. However, the essential role of the enzyme in cell growth has remained unclear. Here we show that three mutants possessed single-base substitutions in the mvaA gene, which encodes HMG-CoA reductase, show a temperature-sensitive phenotype. The phenotype was suppressed by the addition of mevalonate or farnesyl diphosphate, which is a product synthesized from mevalonate. Farnesyl diphosphate is a precursor of undecaprenyl phosphate that is required for peptidoglycan synthesis. The rate of peptidoglycan synthesis was decreased in the mvaA mutants under the non-permissive conditions and the phenotype was suppressed by the addition of mevalonate. HMG-CoA reductase activities of mutant MvaA proteins in the temperature sensitive mutants were lower than that of wild-type MvaA protein. Our findings from genetic and biochemical analyses suggest that mevalonate produced by HMG-CoA reductase is required for peptidoglycan synthesis for S. aureus cell growth.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Jyunichiro Yasukawa
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Masaki Ishii
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Yohei Hayashi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| |
Collapse
|
4
|
Kyuma T, Kimura S, Hanada Y, Suzuki T, Sekimizu K, Kaito C. Ribosomal RNA methyltransferases contribute toStaphylococcus aureusvirulence. FEBS J 2015; 282:2570-84. [DOI: 10.1111/febs.13302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/03/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsuhiko Kyuma
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; Japan
| | - Yuichi Hanada
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| | - Chikara Kaito
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Japan
| |
Collapse
|
5
|
Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol 2014; 11:127-33. [DOI: 10.1038/nchembio.1710] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/08/2014] [Indexed: 12/28/2022]
|
6
|
Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, Li X, Tateishi K, Park JA, Xia G, Matsushita M, Takahashi K, Park HJ, Peschel A, Lee BL. Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J Biol Chem 2013; 288:30956-68. [PMID: 24045948 DOI: 10.1074/jbc.m113.509893] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection.
Collapse
Affiliation(s)
- Kenji Kurokawa
- From the National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 2013; 18:266-77. [PMID: 23461534 PMCID: PMC3657122 DOI: 10.1111/gtc.12040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Evolution has led to diversification of all living organisms from a common ancestor. Consequently, all living organisms use a common method to duplicate their genetic information and thus pass on their inherited traits to their offspring. To duplicate chromosomal DNA, double-stranded DNA must first be unwound by helicase, which is loaded to replication origins and activated during the DNA replication initiation step. In this review, we discuss the common features of, and differences in, replicative helicases between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Yan Li
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima City, Shizuoka, 411-8540, Japan
| | | |
Collapse
|
8
|
The primosomal protein DnaD inhibits cooperative DNA binding by the replication initiator DnaA in Bacillus subtilis. J Bacteriol 2012; 194:5110-7. [PMID: 22821970 DOI: 10.1128/jb.00958-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DnaA is an AAA+ ATPase and the conserved replication initiator in bacteria. Bacteria control the timing of replication initiation by regulating the activity of DnaA. DnaA binds to multiple sites in the origin of replication (oriC) and is required for recruitment of proteins needed to load the replicative helicase. DnaA also binds to other chromosomal regions and functions as a transcription factor at some of these sites. Bacillus subtilis DnaD is needed during replication initiation for assembly of the replicative helicase at oriC and during replication restart at stalled replication forks. DnaD associates with DnaA at oriC and at other chromosomal regions bound by DnaA. Using purified proteins, we found that DnaD inhibited the ability of DnaA to bind cooperatively to DNA and caused a decrease in the apparent dissociation constant. These effects of DnaD were independent of the ability of DnaA to bind or hydrolyze ATP. Other proteins known to regulate B. subtilis DnaA also affect DNA binding, whereas much of the regulation of Escherichia coli DnaA affects nucleotide hydrolysis or exchange. We found that the rate of nucleotide exchange for B. subtilis DnaA was high and not affected by DnaD. The rapid exchange is similar to that of Staphylococcus aureus DnaA and in contrast to the low exchange rate of Escherichia coli DnaA. We suggest that organisms in which DnaA has a high rate of nucleotide exchange predominantly regulate the DNA binding activity of DnaA and that those with low rates of exchange regulate hydrolysis and exchange.
Collapse
|
9
|
Abstract
Much of our knowledge of the initiation of DNA replication comes from studies in the gram-negative model organism Escherichia coli. However, the location and structure of the origin of replication within the E. coli genome and the identification and study of the proteins which constitute the E. coli initiation complex suggest that it might not be as universal as once thought. The archetypal low-G+C-content gram-positive Firmicutes initiate DNA replication via a unique primosomal machinery, quite distinct from that seen in E. coli, and an examination of oriC in the Firmicutes species Bacillus subtilis indicates that it might provide a better model for the ancestral bacterial origin of replication. Therefore, the study of replication initiation in organisms other than E. coli, such as B. subtilis, will greatly advance our knowledge and understanding of these processes as a whole. In this minireview, we highlight the structure-function relationships of the Firmicutes primosomal proteins, discuss the significance of their oriC architecture, and present a model for replication initiation at oriC.
Collapse
|
10
|
Primosomal proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in Bacillus subtilis. J Bacteriol 2010; 193:640-8. [PMID: 21097613 DOI: 10.1128/jb.01253-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The initiation of DNA replication requires the binding of the initiator protein, DnaA, to specific binding sites in the chromosomal origin of replication, oriC. DnaA also binds to many sites around the chromosome, outside oriC, and acts as a transcription factor at several of these. In low-G+C Gram-positive bacteria, the primosomal proteins DnaD and DnaB, in conjunction with loader ATPase DnaI, load the replicative helicase at oriC, and this depends on DnaA. DnaD and DnaB also are required to load the replicative helicase outside oriC during replication restart, independently of DnaA. Using chromatin immunoprecipitation, we found that DnaD and DnaB, but not the replicative helicase, are associated with many of the chromosomal regions bound by DnaA in Bacillus subtilis. This association was dependent on DnaA, and the order of recruitment was the same as that at oriC, but it was independent of a functional oriC and suggests that DnaD and DnaB do not require open complex formation for the stable association with DNA. These secondary binding regions for DnaA could be serving as a reservoir for excess DnaA, DnaD, and DnaB to help properly regulate replication initiation and perhaps are analogous to the proposed function of the datA locus in Escherichia coli. Alternatively, DnaD and DnaB might modulate the activity of DnaA at the secondary binding regions. All three of these proteins are widely conserved and likely have similar functions in a range of organisms.
Collapse
|
11
|
Matsuo M, Kurokawa K, Lee BL, Sekimizu K. Shuttle vectors derived from pN315 for study of essential genes in Staphylococcus aureus. Biol Pharm Bull 2010; 33:198-203. [PMID: 20118540 DOI: 10.1248/bpb.33.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the par to rep region of the 24653 bp plasmid pN315, which is present in Staphylococcus aureus strain N315, we constructed three vectors that can be shuttled between Escherichia coli and S. aureus and maintained stably in S. aureus. Due to plasmid incompatibility, the resident plasmid in S. aureus cells can be replaced via transformation with an entering plasmid, which carries a different drug resistance gene. To evaluate the applicability of this plasmid-based approach for identifying genes essential for S. aureus cell growth, the chromosomal mraY gene, which is involved in peptidoglycan biosynthesis, was deleted in cells harboring a resident plasmid with an intact mraY gene. The resultant disruptant was then transformed with an empty vector. Cells with a chromosomal mraY deletion but lacking the plasmid supplying mraY could not be recovered, suggesting that mraY is indispensable for staphylococcal cell growth or viability. In contrast, other two genes were shown to be dispensable by this system. Thus, the pN315-based plasmids appear to be useful for studying genes essential for S. aureus cell growth.
Collapse
Affiliation(s)
- Miki Matsuo
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
12
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 PMCID: PMC2930095 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Thayaparan Paramanathan
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Micah J. McCauley
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Mark C. Williams
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
- Center for Interdisciplinary Research on Complex Systems Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| |
Collapse
|
13
|
Grainger WH, Machón C, Scott DJ, Soultanas P. DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic Acids Res 2010; 38:2851-64. [PMID: 20071750 PMCID: PMC2874997 DOI: 10.1093/nar/gkp1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Initiation of bacterial DNA replication at oriC is mediated by primosomal proteins that act cooperatively to melt an AT-rich region where the replicative helicase is loaded prior to the assembly of the replication fork. In Bacillus subtilis, the dnaD, dnaB and dnaI genes are essential for initiation of DNA replication. We established that their mRNAs are maintained in fast growing asynchronous cultures. DnaB is truncated at its C-terminus in a growth phase-dependent manner. Proteolysis is confined to cytosolic, not to membrane-associated DnaB, and affects oligomerization. Truncated DnaB is depleted at the oriC relative to the native protein. We propose that DNA-induced oligomerization is essential for its action at oriC and proteolysis regulates its localization at oriC. We show that DnaB has two separate ssDNA-binding sites one located within residues 1–300 and another between residues 365–428, and a dsDNA-binding site within residues 365–428. Tetramerization of DnaB is mediated within residues 1–300, and DNA-dependent oligomerization within residues 365–428. Finally, we show that association of DnaB with the oriC is asymmetric and extensive. It encompasses an area from the middle of dnaA to the end of yaaA that includes the AT-rich region melted during the initiation stage of DNA replication.
Collapse
Affiliation(s)
- William H Grainger
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
14
|
Smits WK, Goranov AI, Grossman AD. Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 2009; 75:452-61. [PMID: 19968790 DOI: 10.1111/j.1365-2958.2009.06999.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature-sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI-mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
15
|
Kurokawa K, Mizumura H, Takaki T, Ishii Y, Ichihashi N, Lee BL, Sekimizu K. Rapid exchange of bound ADP on the Staphylococcus aureus replication initiation protein DnaA. J Biol Chem 2009; 284:34201-10. [PMID: 19841480 DOI: 10.1074/jbc.m109.060681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but not ADP by a mechanism independent of ATP hydrolysis. Unlike E. coli DnaA, binding of ADP to S. aureus DnaA was unstable. As a result, at physiological concentrations of ATP, ADP bound to S. aureus DnaA was rapidly exchanged for ATP, thereby regenerating the ability of DnaA to form the open complex in vitro. Therefore, we examined whether formation of ADP-DnaA participates in suppression of replication initiation in vivo. Induction of the R318H mutant of the AAA+ sensor 2 protein, which has decreased intrinsic ATPase activity, caused over-initiation of chromosome replication in S. aureus, suggesting that formation of ADP-DnaA suppresses the initiation step in S. aureus. Together with the biochemical features of S. aureus DnaA, the weak ability to convert ATP-DnaA into ADP-DnaA and the instability of ADP-DnaA, these results suggest that there may be unidentified system(s) for reducing the cellular ratio of ATP-DnaA to ADP-DnaA in S. aureus and thereby delaying the re-initiation of DNA replication.
Collapse
Affiliation(s)
- Kenji Kurokawa
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Intragenic and extragenic suppressors of temperature sensitive mutations in the replication initiation genes dnaD and dnaB of Bacillus subtilis. PLoS One 2009; 4:e6774. [PMID: 19707554 PMCID: PMC2727948 DOI: 10.1371/journal.pone.0006774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/30/2009] [Indexed: 12/03/2022] Open
Abstract
Background The Bacillus subtilis genes dnaD and dnaB are essential for the initiation of DNA replication and are required for loading of the replicative helicase at the chromosomal origin of replication oriC. Wild type DnaD and DnaB interact weakly in vitro and this interaction has not been detected in vivo or in yeast two-hybrid assays. Methodology/Principal Findings We isolated second site suppressors of the temperature sensitive phenotypes caused by one dnaD mutation and two different dnaB mutations. Five different intragenic suppressors of the dnaD23ts mutation were identified. One intragenic suppressor was a deletion of two amino acids in DnaD. This deletion caused increased and detectable interaction between the mutant DnaD and wild type DnaB in a yeast two-hybrid assay, similar to the increased interaction caused by a missense mutation in dnaB that is an extragenic suppressor of dnaD23ts. We isolated both intragenic and extragenic suppressors of the two dnaBts alleles. Some of the extragenic suppressors were informational suppressors (missense suppressors) in tRNA genes. These suppressor mutations caused a change in the anticodon of an alanine tRNA so that it would recognize the mutant codon (threonine) in dnaB and likely insert the wild type amino acid (alanine). Conclusions/Significance The intragenic suppressors should provide insights into structure-function relationships in DnaD and DnaB, and interactions between DnaD and DnaB. The extragenic suppressors in the tRNA genes have important implications regarding the amount of wild type DnaB needed in the cell. Since missense suppressors are typically inefficient, these findings indicate that production of a small amount of wild type DnaB, in combination with the mutant protein, is sufficient to restore some DnaB function.
Collapse
|
17
|
Marbouty M, Saguez C, Chauvat F. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain. BMC STRUCTURAL BIOLOGY 2009; 9:54. [PMID: 19698108 PMCID: PMC2736966 DOI: 10.1186/1472-6807-9-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. RESULTS In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. CONCLUSION Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette CEDEX, France.
| | | | | |
Collapse
|
18
|
Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 2008; 191:141-51. [PMID: 18952789 DOI: 10.1128/jb.01221-08] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus Delta ltaS mutant could grow at 30 degrees C but not at 37 degrees C. Even at the permissive temperature, Delta ltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of Delta ltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the Delta ltaS mutant at 37 degrees C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the Delta ltaS mutation was found to be synthetically lethal with the Delta tagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30 degrees C, suggesting that LTA and WTA compensate for one another in an essential function.
Collapse
|
19
|
Huang CY, Chang YW, Chen WT. Crystal structure of the N-terminal domain of Geobacillus kaustophilus HTA426 DnaD protein. Biochem Biophys Res Commun 2008; 375:220-4. [DOI: 10.1016/j.bbrc.2008.07.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
|
20
|
Zhang W, Machón C, Orta A, Phillips N, Roberts CJ, Allen S, Soultanas P. Single-molecule atomic force spectroscopy reveals that DnaD forms scaffolds and enhances duplex melting. J Mol Biol 2008; 377:706-14. [PMID: 18291414 PMCID: PMC3033579 DOI: 10.1016/j.jmb.2008.01.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/23/2022]
Abstract
The Bacillus subtilis DnaD is an essential DNA-binding protein implicated in replication and DNA remodeling. Using single-molecule atomic force spectroscopy, we have studied the interaction of DnaD and its domains with DNA. Our data reveal that binding of DnaD to immobilized single molecules of duplex DNA causes a marked reduction in the 'end-to-end' distance of the DNA in a concentration-dependent manner, consistent with previously reported DnaD-induced looping by scaffold formation. Native DnaD enhances partial melting of the DNA strands. The C-terminal domain (Cd) of DnaD binds to DNA and enhances partial duplex melting but does not cause DNA looping. The Cd-mediated melting is not as efficient as that caused by native DnaD. The N-terminal domain (Nd) does not affect significantly the DNA. A mixture of Nd and Cd fails to recreate the DNA looping effect of native DnaD but produces exactly the same effects as Cd on its own, consistent with the previously reported failure of the separated domains to form DNA-interacting scaffolds.
Collapse
Affiliation(s)
- Wenke Zhang
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Cristina Machón
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alberto Orta
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nicola Phillips
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
21
|
Schneider S, Zhang W, Soultanas P, Paoli M. Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation. J Mol Biol 2008; 376:1237-50. [PMID: 18206906 PMCID: PMC3034642 DOI: 10.1016/j.jmb.2007.12.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 02/05/2023]
Abstract
DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.
Collapse
Affiliation(s)
| | | | - P. Soultanas
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - M. Paoli
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
22
|
Li Y, Kurokawa K, Reutimann L, Mizumura H, Matsuo M, Sekimizu K. DnaB and DnaI temperature-sensitive mutants of Staphylococcus aureus: evidence for involvement of DnaB and DnaI in synchrony regulation of chromosome replication. MICROBIOLOGY-SGM 2007; 153:3370-3379. [PMID: 17906136 DOI: 10.1099/mic.0.2007/009001-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DnaB and DnaI proteins conserved in low-GC content Gram-positive bacteria are apparently involved in helicase loading at the replication initiation site and during the restarting of stalled replication forks. In this study, we found five novel dnaB mutants and three novel dnaI mutants by screening 750 temperature-sensitive Gram-positive Staphylococcus aureus mutants. All of the mutants had a single amino acid substitution in either DnaB or DnaI that controlled temperature-sensitive growth, as confirmed by transduction experiments using phage 80alpha. DNA synthesis as measured by [(3)H]thymine incorporation, origin-to-terminus ratios and flow cytometric analysis revealed that the dnaB and dnaI mutants were unable to initiate DNA replication at restrictive temperatures, which is similar to previous findings in Bacillus subtilis. Furthermore, some of the mutants were found to exhibit asynchrony in the initiation of DNA replication. Also, a fraction of the dnaI mutant cells showed arrested replication, and the dnaI mutant tested was sensitive to mitomycin C, which causes DNA lesions. These results suggest that DnaB and DnaI are required not only for replication initiation and but also for regulation of its synchrony, and they provide support for the involvement of DnaI activity in the restart of arrested replication forks in vivo.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kurokawa
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Luzia Reutimann
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hikaru Mizumura
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Matsuo
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Ishibashi M, Kurokawa K, Nishida S, Ueno K, Matsuo M, Sekimizu K. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus. FEMS Microbiol Lett 2007; 274:204-9. [PMID: 17608695 DOI: 10.1111/j.1574-6968.2007.00829.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.
Collapse
Affiliation(s)
- Mihoko Ishibashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, Kawamoto S. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol 2007; 189:4815-26. [PMID: 17483230 PMCID: PMC1913461 DOI: 10.1128/jb.00412-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was triosephosphate isomerase (TPI). The enzymatic activities were confirmed by using whole cells of S. aureus. TPI point mutants of S. aureus decreased the ability to interact with C. neoformans. Thus, TPI on S. aureus adheres to the capsule of C. neoformans by recognizing the structure of mannotriose units in the backbone of GXM; we suggest that this contact is required for killing of C. neoformans.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kurokawa K, Kaito C, Sekimizu K. Two-component signaling in the virulence of Staphylococcus aureus: a silkworm larvae-pathogenic agent infection model of virulence. Methods Enzymol 2007; 422:233-44. [PMID: 17628142 DOI: 10.1016/s0076-6879(06)22011-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Staphylococcus aureus is a pathogenic bacterium that causes abscesses, pneumonia, endocarditis, and food poisoning. S. aureus is also one of the resident flora of the endotherm and colonizes the host by skillfully evading its defense mechanism. Identification of attenuated mutants of S. aureus in an animal infection model is useful for investigating its adaptability and pathogenesis. This chapter describes a staphylococcal two-component SA0614-SA0615 system, which was identified using a silkworm larvae infection model.
Collapse
Affiliation(s)
- Kenji Kurokawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Carneiro MJVM, Zhang W, Ioannou C, Scott DJ, Allen S, Roberts CJ, Soultanas P. The DNA-remodelling activity of DnaD is the sum of oligomerization and DNA-binding activities on separate domains. Mol Microbiol 2006; 60:917-24. [PMID: 16677303 PMCID: PMC3035175 DOI: 10.1111/j.1365-2958.2006.05152.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Bacillus subtilis DnaD protein is an essential protein that has been implicated in the primosomal step of DNA replication, and recently in global DNA remodelling. Here we show that DnaD consists of two domains with distinct activities; an N-terminal domain (Nd) with oligomerization activity, and a C-terminal domain (Cd) with DNA-binding activity and a second DNA-induced oligomerization activity. Although Cd can bind to DNA and form large nucleoprotein complexes, it does not exhibit global DNA-remodelling activity. The presence of separate Nd does not restore this activity. Our data suggest that the global DNA-remodelling activity of DnaD is the sum of three separate oligomerization and DNA-binding activities residing on two distinct but linked domains.
Collapse
Affiliation(s)
- Maria J. V. M. Carneiro
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Wenke Zhang
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Charikleia Ioannou
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leics LE12 5RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- For correspondence. ; Tel. (+44) 115 951 3525; Fax (+44) 115 846 8002
| |
Collapse
|
27
|
Chang W, Small DA, Toghrol F, Bentley WE. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 2006; 188:1648-59. [PMID: 16452450 PMCID: PMC1367260 DOI: 10.1128/jb.188.4.1648-1659.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism.
Collapse
Affiliation(s)
- Wook Chang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park 20742, USA
| | | | | | | |
Collapse
|
28
|
Murai N, Kurokawa K, Ichihashi N, Matsuo M, Sekimizu K. Isolation of a temperature-sensitive dnaA mutant of Staphylococcus aureus. FEMS Microbiol Lett 2006; 254:19-26. [PMID: 16451174 DOI: 10.1111/j.1574-6968.2005.00012.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Of 750 temperature-sensitive mutants of Gram-positive Staphylococcus aureus, one was complemented by the dnaA gene. This mutant had a single base transition in the dnaA gene causing the amino-acid substitution mutation, Ala40Thr. Phage transduction experiments showed that this temperature-sensitive phenotype was linked with a drug-resistant marker inserted near the dnaA gene, suggesting the dnaA mutation is responsible for the phenotype. Flow cytometric analysis revealed that the dnaA mutant was unable to initiate DNA replication at a restrictive temperature and exhibited asynchrony in the replication initiation at a permissive temperature. This is the first report of a temperature-sensitive dnaA mutant in S. aureus, and the results show that DnaA is required for the initiation of chromosomal replication and for the regulation of synchrony in the bacterial cells.
Collapse
Affiliation(s)
- Nagamoto Murai
- Laboratory of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
29
|
Zhang W, Carneiro MJVM, Turner IJ, Allen S, Roberts CJ, Soultanas P. The Bacillus subtilis DnaD and DnaB proteins exhibit different DNA remodelling activities. J Mol Biol 2005; 351:66-75. [PMID: 16002087 PMCID: PMC3034352 DOI: 10.1016/j.jmb.2005.05.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 11/21/2022]
Abstract
Primosomal protein cascades load the replicative helicase onto DNA. In Bacillus subtilis a putative primosomal cascade involving the DnaD-DnaB-DnaI proteins has been suggested to participate in both the DnaA and PriA-dependent loading of the replicative helicase DnaC onto the DNA. Recently we discovered that DnaD has a global remodelling DNA activity suggesting a more widespread role in bacterial nucleoid architecture. Here, we show that DnaB forms a "square-like" tetramer with a hole in the centre and suggest a model for its interaction with DNA. It has a global DNA remodelling activity that is different from that of DnaD. Whereas DnaD opens up supercoiled DNA, DnaB acts as a lateral compaction protein. The two competing activities can act together on a supercoiled plasmid forming two topologically distinct poles; one compacted with DnaB and the other open with DnaD. We propose that the primary roles of DnaB and DnaD are in bacterial nucleoid architecture control and modulation, and their effects on the initiation of DNA replication are a secondary role resulting from architectural perturbations of chromosomal DNA.
Collapse
Affiliation(s)
- Wenke Zhang
- Centre for Biomolecular Sciences, School of Chemistry University of Nottingham University Park, Nottingham NG7, 2RD, UK
| | - Maria J. V. M. Carneiro
- Centre for Biomolecular Sciences, School of Chemistry University of Nottingham University Park, Nottingham NG7, 2RD, UK
| | - Ian J. Turner
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry University of Nottingham University Park, Nottingham NG7, 2RD, UK
| |
Collapse
|
30
|
Turner IJ, Scott DJ, Allen S, Roberts CJ, Soultanas P. The Bacillus subtilis DnaD protein: a putative link between DNA remodeling and initiation of DNA replication. FEBS Lett 2005; 577:460-4. [PMID: 15556628 PMCID: PMC3033577 DOI: 10.1016/j.febslet.2004.10.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/01/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
The Bacillus subtilis DnaD protein is an essential protein and a component of the oriC and PriA primosomal cascades, which are responsible for loading the main replicative ring helicase DnaC onto DNA. We present evidence that DnaD also has a global DNA architectural activity, assembling into large nucleoprotein complexes on a plasmid and counteracting plasmid compaction in a manner analogous to that recently seen for the histone-like Escherichia coli HU proteins. This DNA-remodeling role may be an essential function for initiation of DNA replication in the Gram +ve B. subtilis, thus highlighting DnaD as the link between bacterial nucleoid reorganization and initiation of DNA replication.
Collapse
Affiliation(s)
- Ian J. Turner
- Laboratory of Biophysics and Surface Analysis (LBSA), School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leics LE12 5RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis (LBSA), School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis (LBSA), School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Centre for Biomolecular Sciences (CBS), School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Corresponding author. Fax: +44-115-8468002. (P. Soultanas)
| |
Collapse
|
31
|
Hossain MS, Kurokawa K, Akimitsu N, Sekimizu K. DNA topoisomerase II is required for the G0-to-S phase transition inDrosophilaSchneider cells, but not in yeast. Genes Cells 2004; 9:905-17. [PMID: 15461662 DOI: 10.1111/j.1365-2443.2004.00783.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that DNA topoisomerase II (topo II) is required for the G(0)-to-S phase transition in mammalian cells [Hossain et al. (2002) ICRF-193, a catalytic inhibitor of DNA topoisomerase II, inhibits re-entry into the cell division cycle from quiescent state in mammalian cells. Genes Cells 7, 285-294]. In this study, we examined whether the requirement for topo II is evolutionarily conserved in Drosophila and yeast. ICRF-193, a catalytic inhibitor of topo II, inhibited DNA synthesis in Drosophila Schneider cells released from the G(0) (stationary) phase, whereas the drug did not inhibit DNA synthesis in Schneider cells released from the M phase. Depletion of topo II mRNA by RNA-interference (RNAi) in G(0)-phase Schneider cells resulted in significant inhibition of DNA synthesis after release from G(0)-arrest. In the yeast topo II temperature-sensitive (ts) mutant, the initial cycle of DNA synthesis occurred at a restrictive temperature after release from starvation-induced G(0) phase and doubling of the DNA content in the cells was confirmed by both flow cytometry and fluorescence spectrophotometry. DNA synthesis in yeast cells after release from the G(0) phase was also observed in the presence of ICRF-193. Doubling of the DNA content was observed during spore germination of topo II ts mutant yeast at a restrictive temperature as determined by fluorescence spectrophotometry. These results indicate that topo II is required for the G(0)-to-S phase transition in Drosophila Schneider cells, but not in yeast.
Collapse
Affiliation(s)
- Muktadir S Hossain
- Laboratory of Developmental Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|