1
|
Luo S, Li A, Luo J, Liao G, Li X, Yao S, Wang A, Xiao D, He L, Zhan J. Mutator-like transposable element 9A interacts with metacaspase 1 and modulates the incidence of Al-induced programmed cell death in peanut. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2113-2126. [PMID: 38069635 DOI: 10.1093/jxb/erad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 03/28/2024]
Abstract
The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.
Collapse
Affiliation(s)
- Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jin Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xia Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shaochang Yao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
2
|
Cloning of Maize TED Transposon into Escherichia coli Reveals the Polychromatic Sequence Landscape of Refractorily Propagated Plasmids. Int J Mol Sci 2022; 23:ijms231911993. [PMID: 36233292 PMCID: PMC9569675 DOI: 10.3390/ijms231911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MuDR, the founder member of the Mutator superfamily and its MURA transcripts, has been identified as toxic sequences to Escherichia coli (E. coli), which heavily hindered the elucidation of the biochemical features of MURA transposase and confined the broader application of the Mutator system in other organisms. To harness less constrained systems as alternatives, we attempted to clone TED and Jittery, two recently isolated autonomous Mutator-like elements (MULEs) from maize, respectively. Their full-length transcripts and genomic copies are successfully cloned when the incubation time for bacteria to recover from heat shock is extended appropriately prior to plating. However, during their proliferation in E. coli, TED transformed plasmids are unstable, as evidenced by derivatives from which frameshift, deletion mutations, or IS transposon insertions are readily detected. Our results suggest that neither leaky expression of the transposase nor the presence of terminal inverse repeats (TIRs) are responsible for the cloning barriers, which were once ascribed to the presence of the Shine–Dalgarno-like sequence. Instead, the internal sequence of TED (from 1250 to 2845 bp), especially the exons in this region, was the most likely causer. The findings provide novel insights into the property and function of the Mutator superfamily and shed light on the dissection of toxic effects on cloning from MULEs.
Collapse
|
3
|
Ali A, Khan M, Sharif R, Mujtaba M, Gao SJ. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E344. [PMID: 31547331 PMCID: PMC6784093 DOI: 10.3390/plants8090344] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world's sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mehran Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Liu M, Zhang C, Duan L, Luan Q, Li J, Yang A, Qi X, Ren Z. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:69-84. [PMID: 30256979 PMCID: PMC6305189 DOI: 10.1093/jxb/ery336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/12/2018] [Indexed: 05/08/2023]
Abstract
Spine colour is an important fruit quality trait that influences the commercial value of cucumber (Cucumis sativus). However, little is known about the metabolites and the regulatory mechanisms of their biosynthesis in black spine varieties. In this study, we determined that the pigments of black spines are flavonoids, including flavonols and proanthocyanidins (PAs). We identified CsMYB60 as the best candidate for the previously identified B (Black spine) locus. Expression levels of CsMYB60 and the key genes involved in flavonoid biosynthesis were higher in black-spine inbred lines than that in white-spine lines at different developmental stages. The insertion of a Mutator-like element (CsMULE) in the second intron of CsMYB60 decreased its expression in a white-spine line. Transient overexpression assays indicated that CsMYB60 is a key regulatory gene and Cs4CL is a key structural gene in the pigmentation of black spines. In addition, the DNA methylation level in the CsMYB60 promoter was much lower in the black-spine line compared with white-spine line. The CsMULE insert may decrease the expression level of CsMYB60, causing hindered synthesis of flavonols and PAs in cucumber fruit spines.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cunjia Zhang
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianqian Luan
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jialin Li
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Aigang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Zhonghai Ren
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Ferreira SS, Hotta CT, Poelking VGDC, Leite DCC, Buckeridge MS, Loureiro ME, Barbosa MHP, Carneiro MS, Souza GM. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. PLANT MOLECULAR BIOLOGY 2016; 91:15-35. [PMID: 26820137 PMCID: PMC4837222 DOI: 10.1007/s11103-016-0434-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.
Collapse
Affiliation(s)
| | | | - Viviane Guzzo de Carli Poelking
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhao D, Jiang N. Nested insertions and accumulation of indels are negatively correlated with abundance of mutator-like transposable elements in maize and rice. PLoS One 2014; 9:e87069. [PMID: 24475224 PMCID: PMC3903597 DOI: 10.1371/journal.pone.0087069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022] Open
Abstract
Mutator-like transposable elements (MULEs) are widespread in plants and were first discovered in maize where there are a total of 12,900 MULEs. In comparison, rice, with a much smaller genome, harbors over 30,000 MULEs. Since maize and rice are close relatives, the differential amplification of MULEs raised an inquiry into the underlying mechanism. We hypothesize this is partly attributed to the differential copy number of autonomous MULEs with the potential to generate the transposase that is required for transposition. To this end, we mined the two genomes and detected 530 and 476 MULEs containing transposase sequences (candidate coding-MULEs) in maize and rice, respectively. Over 1/3 of the candidate coding-MULEs harbor nested insertions and the ratios are similar in the two genomes. Among the maize elements with nested insertions, 24% have insertions in coding regions and over half of them harbor two or more insertions. In contrast, only 12% of the rice elements have insertions in coding regions and 19% have multiple insertions, suggesting that nested insertions in maize are more disruptive. This is because most nested insertions in maize are from LTR retrotransposons, which are large in size and are prevalent in the maize genome. Our results suggest that the amplification of retrotransposons may limit the amplification of DNA transposons but not vice versa. In addition, more indels are detected among maize elements than rice elements whereas defects caused by point mutations are comparable between the two species. Taken together, more disruptive nested insertions combined with higher frequency of indels resulted in few (6%) coding-MULEs that may encode functional transposases in maize. In contrast, 35% of the coding-MULEs in rice retain putative intact transposase. This is in addition to the higher expression frequency of rice coding-MULEs, which may explain the higher occurrence of MULEs in rice than that in maize.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kajihara D, de Godoy F, Hamaji TA, Blanco SR, Van Sluys MA, Rossi M. Functional characterization of sugarcane mustang domesticated transposases and comparative diversity in sugarcane, rice, maize and sorghum. Genet Mol Biol 2012; 35:632-9. [PMID: 23055803 PMCID: PMC3459414 DOI: 10.1590/s1415-47572012005000038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/16/2012] [Indexed: 01/16/2023] Open
Abstract
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%–80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as “molecular domestication”, by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Collapse
Affiliation(s)
- Daniela Kajihara
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002931. [PMID: 22969437 PMCID: PMC3435246 DOI: 10.1371/journal.pgen.1002931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023] Open
Abstract
The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes. The genomes of complex organisms are mostly made up not of ordinary genes but of transposable elements. Transposable elements have been called “selfish DNA” because they normally persist by copying themselves, not by helping the organism to survive or reproduce. Yet transposable elements can help organisms to evolve; for instance, transposable element genes sometimes acquire new functions that do benefit the organism. Because they are difficult to distinguish from transposable elements, little is known about these “domesticated genes.” Although studies have attempted to identify them computationally, the predictions have not been verified experimentally. Here, we examine some of the first domesticated genes to be predicted computationally, the MUSTANG family of plant genes. We show that the predictions were correct: MUSTANGs are, like ordinary genes, functional. MUSTANG mutations result in serious defects in how plants grow, flower, and reproduce. Since they are present only in flowering plants, MUSTANG probably originated when flowers first evolved, perhaps taking on a key role. This study is important both because it shows that MUSTANG is critical to plant fitness and because, in the future, a similar approach can be used to find additional domesticated genes and to better understand how transposable elements contribute to evolution.
Collapse
Affiliation(s)
| | | | | | | | - Thomas E. Bureau
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Manetti ME, Rossi M, Cruz GMQ, Saccaro NL, Nakabashi M, Altebarmakian V, Rodier-Goud M, Domingues D, D’Hont A, Van Sluys MA. Mutator System Derivatives Isolated from Sugarcane Genome Sequence. TROPICAL PLANT BIOLOGY 2012; 5:233-243. [PMID: 22905278 PMCID: PMC3418495 DOI: 10.1007/s12042-012-9104-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Mutator-like transposase is the most represented transposon transcript in the sugarcane transcriptome. Phylogenetic reconstructions derived from sequenced transcripts provided evidence that at least four distinct classes exist (I-IV) and that diversification among these classes occurred early in Angiosperms, prior to the divergence of Monocots/Eudicots. The four previously described classes served as probes to select and further sequence six BAC clones from a genomic library of cultivar R570. A total of 579,352 sugarcane base pairs were produced from these "Mutator system" BAC containing regions for further characterization. The analyzed genomic regions confirmed that the predicted structure and organization of the Mutator system in sugarcane is composed of two true transposon lineages, each containing a specific terminal inverted repeat and two transposase lineages considered to be domesticated. Each Mutator transposase class displayed a particular molecular structure supporting lineage specific evolution. MUSTANG, previously described domesticated genes, are located in syntenic regions across Sacharineae and, as expected for a host functional gene, posses the same gene structure as in other Poaceae. Two sequenced BACs correspond to hom(eo)logous locus with specific retrotransposon insertions that discriminate sugarcane haplotypes. The comparative studies presented, add information to the Mutator systems previously identified in the maize and rice genomes by describing lineage specific molecular structure and genomic distribution pattern in the sugarcane genome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-012-9104-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M. E. Manetti
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - M. Rossi
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - G. M. Q. Cruz
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - N. L. Saccaro
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - M. Nakabashi
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - V. Altebarmakian
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| | - M. Rodier-Goud
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Avenue Agropolis, 34398 Montpellier Cedex 5, France
| | - D. Domingues
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Avenue Agropolis, 34398 Montpellier Cedex 5, France
| | - A. D’Hont
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Avenue Agropolis, 34398 Montpellier Cedex 5, France
| | - M. A. Van Sluys
- Departamento de Botânica-IB-USP, GaTE Lab, Brasil, Rua do Matão, 277, 05508-900 São Paulo, SP Brazil
| |
Collapse
|
10
|
Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Mol Genet Genomics 2012; 287:261-71. [PMID: 22274888 DOI: 10.1007/s00438-012-0676-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Transposable elements (TEs) represent an important fraction of plant genomes and play a significant role in gene and genome evolution. Among all TE superfamilies discovered in plants, Mutator from maize (Zea mays) is the most active and mutagenic element. Mutator-like elements (MULEs) were identified in a wide range of plants. However, only few active MULEs have been reported, and the transposition mechanism of the elements is still poorly understood. In this study, an active MULE named Os3378 was discovered in rice (Oryza sativa) by a combination of computational and experimental approaches. The four newly identified Os3378 elements share more than 98% sequence identity between each other, and all of them encode transposases without any deletion derivatives, indicating their capability of autonomous transposition. Os3378 is present in the rice species with AA genome type but is absent in other non-AA genome species. A new insertion of Os3378 was identified in a rice somaclonal mutant Z418, and the element remained active in the descendants of the mutant for more than ten generations. Both germinal and somatic excision events of Os3378 were observed, and no footprint was detected after excision. Furthermore, the occurrence of somatic excision of Os3378 appeared to be associated with plant developmental stages and tissue types. Taken together, Os3378 is a unique active element in rice, which provides a valuable resource for further studying of transposition mechanism and evolution of MULEs.
Collapse
|
11
|
de Setta N, Metcalfe CJ, Cruz GMQ, Ochoa EA, Van Sluys MA. Noise or Symphony: Comparative Evolutionary Analysis of Sugarcane Transposable Elements with Other Grasses. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Curupira-1 and Curupira-2, two novel Mutator-like DNA transposons from the genomes of human parasites Schistosoma mansoni and Schistosoma japonicum. Parasitology 2011; 138:1124-33. [PMID: 21756422 DOI: 10.1017/s0031182011000886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.
Collapse
|
13
|
Lopes FR, Silva JC, Benchimol M, Costa GGL, Pereira GAG, Carareto CMA. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements. BMC Genomics 2009; 10:330. [PMID: 19622157 PMCID: PMC2725143 DOI: 10.1186/1471-2164-10-330] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 07/21/2009] [Indexed: 12/19/2022] Open
Abstract
Background For three decades the Mutator system was thought to be exclusive of plants, until the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier in this decade. Results Here, we describe and characterize four families of Mutator-like elements in a new eukaryotic group, the Parabasalids. These Trichomonas vaginalis Mutator- like elements, or TvMULEs, are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite their relatively distinctive amino acid composition, the inclusion of the repeats TvMULE1, TvMULE2, TvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the genome sequence of Candida albicans. While TvMULE1 is a member of the MuDR clade, predominantly from plants, the other three TvMULEs, together with the C. albicans elements, represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of TvMULE1 sequence inserted into other putative repeat suggests the occurrence a novel TE family not yet described. Conclusion These findings expand the taxonomic distribution and the range of functional motif of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other transposons in this organism is of particular interest because it is atypical for an asexual species to have such an extreme level of TE activity; this genetic landscape makes an interesting case study for causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis genome and the remarkable degree of sequence identity within its repeat families highlights this species as an ideal system to characterize new transposable elements.
Collapse
Affiliation(s)
- Fabrício R Lopes
- UNESP, São Paulo State University, Department of Biology, São José do Rio Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mutator (Mu) is by far the most mutagenic plant transposon. The high frequency of transposition and the tendency to insert into low copy sequences for such transposon have made it the primary means by which genes are mutagenized in maize (Zea mays L.). Mus like elements (MULEs) are widespread among angiosperms and multiple-diverged functional variants can be present in a single genome. MULEs often capture genetic sequences. These Pack-MuLEs can mobilize thousands of gene fragments, which may have had a significant impact on host genome evolution. There is also evidence that MULEs can move between reproductively isolated species. Here we present an overview of the discovery, features and utility of Mu transposon. Classification of Mu elements and future directions of related research are also discussed. Understanding Mu will help us elucidate the dynamic genome.
Collapse
Affiliation(s)
- Xian-Min Diao
- National Millet Improvement Center of China, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang.
| | | |
Collapse
|
15
|
Hua-Van A, Capy P. Analysis of the DDE motif in the Mutator superfamily. J Mol Evol 2009; 67:670-81. [PMID: 19018586 DOI: 10.1007/s00239-008-9178-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 01/29/2023]
Abstract
The eukaryotic Mutator family of transposable elements is widespread in plants. Active or potentially active copies are also found in fungi and protozoans, and sequences related to this family have been detected in metazoans as well. Members of this family are called Mutator-like elements (MULEs). They encode transposases, which contain a region conserved with transposases of the IS256 prokaryotic family, known to harbor a DDE catalytic domain. Different DDE or D34E motifs have been proposed in some groups of eukaryotic MULEs based on primary sequence conservation. On a large number of protein sequences related to, and representative of, all MULE families, we analyzed global conservation, the close environment of different acidic residues and the secondary structure. This allowed us to identify a potential DDE motif that is likely to be homologous to the one in IS256-like transposases. The characteristics of this motif are depicted in each known family of MULEs. Different hypotheses about the evolution of this triad are discussed.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes et Spéciation UPR9034, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
16
|
Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM. Sugarcane functional genomics: gene discovery for agronomic trait development. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:458732. [PMID: 18273390 PMCID: PMC2216073 DOI: 10.1155/2008/458732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 11/21/2007] [Indexed: 05/04/2023]
Abstract
Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs.
Collapse
Affiliation(s)
- M. Menossi
- Departmento de Genetica e Evolução IB-Unicamp, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas,
C.P. 6010, CEP 13083-970 Campinas, SP, Brazil
| | - M. C. Silva-Filho
- Departamento de Genética,
Escola Superior de Agricultura Luiz de Queiroz,
Universidade de São Paulo,
Av. Pádua Dias, 11, C.P. 83, 13400-970 Piracicaba, SP, Brazil
| | - M. Vincentz
- Departmento de Genetica e Evolução IB-Unicamp, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas,
C.P. 6010, CEP 13083-970 Campinas, SP, Brazil
| | - M.-A. Van-Sluys
- Departamento de Botânica, Instituto de Biociências,
Universidade de São Paulo,
Rua do Matão 277, 05508-090 São Paulo, SP, Brazil
| | - G. M. Souza
- Departamento de Bioquímica,
Instituto de Química,
Universidade de São Paulo,
Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
- *G. M. Souza:
| |
Collapse
|
17
|
Asakura N, Yoshida S, Mori N, Ohtsuka I, Nakamura C. Sequence diversity and copy number variation of Mutator-like transposases in wheat. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Shinya Yoshida
- Hyogo Institute of Agriculture, Forestry & Fisheries, Japan
| | | | | | | |
Collapse
|
18
|
Radiation of the Tnt1 retrotransposon superfamily in three Solanaceae genera. BMC Evol Biol 2007; 7:34. [PMID: 17343755 PMCID: PMC1838419 DOI: 10.1186/1471-2148-7-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 03/07/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum. RESULTS Tnt1-related sequences were amplified from total genomic DNA using a PCR-based approach. Purified fragments were cloned and sequenced, and clustering analysis revealed three groups that differ in their U3 region. Using a network approach with a total of 453 non-redundant sequences isolated from Solanum (197), Nicotiana (140) and Lycopersicon (116) species, it is demonstrated that the Tnt1 superfamily can be treated as a population to resolve previous phylogenetic multifurcations. The resulting RNAseH network revealed that sequences group according to the Solanaceae genus, supporting a strong association with the host genome, whereas tracing the U3 region sequence association characterises the modular evolutionary pattern within the Tnt1 superfamily. Within each genus, and irrespective of species, nearly 20% of Tnt1 sequences analysed are identical, indicative of being part of an active copy. The network approach enabled the identification of putative "master" sequences and provided evidence that within a genus these master sequences are associated with distinct U3 regions. CONCLUSION The results presented here support the hypothesis that the Tnt1 superfamily was present early in the evolution of Solanaceae. The evidence also suggests that the RNAseH region of Tnt1 became fixed at the host genus level whereas, within each genus, propagation was ensured by the diversification of the U3 region. Different selection pressures seemed to have acted on the U3 and RNAseH modules of ancestral Tnt1 elements, probably due to the distinct functions of these regions in the retrotransposon life cycle, resulting in both co evolution and adaptation of the element population with its host.
Collapse
|
19
|
Saccaro NL, Van Sluys MA, de Mello Varani A, Rossi M. MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene 2006; 392:117-25. [PMID: 17289300 DOI: 10.1016/j.gene.2006.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/21/2006] [Accepted: 11/23/2006] [Indexed: 11/22/2022]
Abstract
The Mutator system of maize has been described as the most active and mutagenic plant transposon. The autonomous element MuDR contains two genes: mudrA encoding the transposase and mudrB whose product function remains undetermined. MudrA-like coding domain showed to be the most abundantly expressed transposon-related sequence in sugarcane transcriptome. A previous report identified the existence of at least four clades of mudrA-like sequences in sugarcane, rice and arabidopsis, which already existed prior to the Monocot-Eudicot split. To gain understanding about the abundance, distribution, copy number and diversity of mudrA-like sequences, a comparative study between sugarcane and rice was performed. As a result, it was possible to identify that copy number greatly differs and, at least in grasses, there was a class-specific amplification with a burst of Class II elements. Structural analyses performed on rice genomic sequences revealed that while Class I and Class II clades comprise elements with transposon features, Class III and Class IV no longer possess TIRs and correspond to domesticated transposases.
Collapse
Affiliation(s)
- Nilo Luiz Saccaro
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, 05508-090 SP, Brazil.
| | | | | | | |
Collapse
|
20
|
Bacci Jr. M, Soares RB, Tajara E, Ambar G, Fischer CN, Guilherme IR, Costa EP, Miranda VF. Identification and frequency of transposable elements in Eucalyptus. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Eloíza Tajara
- Universidade Estadual Paulista 'Júlio de Mesquita Filho', Brazil
| | - Guilherme Ambar
- Universidade Estadual Paulista 'Júlio de Mesquita Filho', Brazil
| | | | | | - Eduardo P. Costa
- Universidade Estadual Paulista 'Júlio de Mesquita Filho', Brazil
| | | |
Collapse
|