1
|
Genome-level responses to the environment: plant desiccation tolerance. Emerg Top Life Sci 2019; 3:153-163. [DOI: 10.1042/etls20180139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Plants being sessile organisms are well equipped genomically to respond to environmental stressors peculiar to their habitat. Evolution of plants onto land was enabled by the ability to tolerate extreme water loss (desiccation), a feature that has been retained within genomes but not universally expressed in most land plants today. In the majority of higher plants, desiccation tolerance (DT) is expressed only in reproductive tissues (seeds and pollen), but some 135 angiosperms display vegetative DT. Here, we review genome-level responses associated with DT, pointing out common and yet sometimes discrepant features, the latter relating to evolutionary adaptations to particular niches. Understanding DT can lead to the ultimate production of crops with greater tolerance of drought than is currently realized.
Collapse
|
2
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
3
|
Zhao Y, Xu T, Shen CY, Xu GH, Chen SX, Song LZ, Li MJ, Wang LL, Zhu Y, Lv WT, Gong ZZ, Liu CM, Deng X. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana. PLoS One 2014; 9:e98098. [PMID: 24851859 PMCID: PMC4031123 DOI: 10.1371/journal.pone.0098098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/29/2014] [Indexed: 11/26/2022] Open
Abstract
Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ying Shen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shi-Xuan Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Li-Zhen Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mei-Jing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei-Tao Lv
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Zhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mitra J, Xu G, Wang B, Li M, Deng X. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system. FRONTIERS IN PLANT SCIENCE 2013; 4:446. [PMID: 24273545 PMCID: PMC3824148 DOI: 10.3389/fpls.2013.00446] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 05/18/2023]
Abstract
Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called "resurrection plants," the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance (DT) as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly, and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of DT. Extensive studies have been conducted to identify the physiological, cellular, and molecular mechanisms underlying DT in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological, and biochemical, and molecular alterations that accompany the acquisition of DT in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of DT.
Collapse
Affiliation(s)
- Jayeeta Mitra
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Guanghui Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Meijing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
5
|
Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 2012; 69:3175-86. [PMID: 22833170 PMCID: PMC11114980 DOI: 10.1007/s00018-012-1088-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Tsanko S Gechev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Bulgaria.
| | | | | | | | | |
Collapse
|
6
|
Molecular mechanisms of desiccation tolerance in resurrection plants. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2012. [PMID: 22833170 DOI: 10.1007/s00018‐012‐1088‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resurrection plants are a small but diverse group of land plants characterized by their tolerance to extreme drought or desiccation. They have the unique ability to survive months to years without water, lose most of the free water in their vegetative tissues, fall into anabiosis, and, upon rewatering, quickly regain normal activity. Thus, they are fundamentally different from other drought-surviving plants such as succulents or ephemerals, which cope with drought by maintaining higher steady state water potential or via a short life cycle, respectively. This review describes the unique physiological and molecular adaptations of resurrection plants enabling them to withstand long periods of desiccation. The recent transcriptome analysis of Craterostigma plantagineum and Haberlea rhodopensis under drought, desiccation, and subsequent rehydration revealed common genetic pathways with other desiccation-tolerant species as well as unique genes that might contribute to the outstanding desiccation tolerance of the two resurrection species. While some of the molecular responses appear to be common for both drought stress and desiccation, resurrection plants also possess genes that are highly induced or repressed during desiccation with no apparent sequence homologies to genes of other species. Thus, resurrection plants are potential sources for gene discovery. Further proteome and metabolome analyses of the resurrection plants contributed to a better understanding of molecular mechanisms that are involved in surviving severe water loss. Understanding the cellular mechanisms of desiccation tolerance in this unique group of plants may enable future molecular improvement of drought tolerance in crop plants.
Collapse
|
7
|
|
8
|
Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework. PLANT DESICCATION TOLERANCE 2011. [DOI: 10.1007/978-3-642-19106-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM. Towards a systems-based understanding of plant desiccation tolerance. TRENDS IN PLANT SCIENCE 2009; 14:110-7. [PMID: 19179102 DOI: 10.1016/j.tplants.2008.11.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/17/2008] [Accepted: 11/25/2008] [Indexed: 05/19/2023]
Abstract
Vegetative desiccation tolerance occurs in a unique group of species termed 'resurrection plants'. Here, we review the molecular genetic, physiological, biochemical, ultrastructural and biophysical studies that have been performed on a variety of resurrection plants to discover the mechanisms responsible for their tolerance. Desiccation tolerance in resurrection plants involves a combination of molecular genetic mechanisms, metabolic and antioxidant systems as well as macromolecular and structural stabilizing processes. We propose that a systems-biology approach coupled with multivariate data analysis is best suited to unraveling the mechanisms responsible for plant desiccation tolerance, as well as their integration with one another. This is of particular relevance to molecular biological engineering strategies for improving plant drought tolerance in important crop species, such as maize (Zea mays) and grapevine (Vitis vinifera).
Collapse
Affiliation(s)
- John P Moore
- Institute for Wine Biotechnology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | | | |
Collapse
|
10
|
Soós V, Sebestyén E, Juhász A, Pintér J, Light ME, Van Staden J, Balázs E. Stress-related genes define essential steps in the response of maize seedlings to smoke-water. Funct Integr Genomics 2009; 9:231-42. [PMID: 19139936 DOI: 10.1007/s10142-008-0105-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/03/2008] [Accepted: 12/21/2008] [Indexed: 10/21/2022]
Abstract
Smoke from burning vegetation is widely recognised as a germination cue for seed germination and recent reports suggest that smoke treatments can improve seedling vigour also. We investigated the effect of smoke-water on seedling vigour and changes of the global transcriptome in the early post-germination phase in maize. Application of smoke-water improved the germination characteristics and seedling vigour. The transcriptional response of embryos and emerging radicles 24 and 48 h after the onset of smoke treatment was investigated. The microarray study revealed a number of smoke-responsive genes amongst which stress- and abscisic acid (ABA)-related genes were over-represented. The global promoter analysis of the smoke-responsive genes revealed a tight correlation with the results obtained from Gene Ontology annotations. This concerted over-expression shows that smoke treatment induces stress and ABA-related responses in the early post-germination phase which leads to better adaptation to environmental stress factors occurring during germination, eventually resulting in greater seedling vigour.
Collapse
Affiliation(s)
- Vilmos Soós
- Department of Applied Genomics, Agricultural Research Institute of the Hungarian Academy of Sciences (ARI-HAS), Martonvásár, Hungary
| | | | | | | | | | | | | |
Collapse
|
11
|
Furini A. CDT retroelement: The stratagem to survive extreme vegetative dehydration. PLANT SIGNALING & BEHAVIOR 2008; 3:1129-31. [PMID: 19704456 PMCID: PMC2634477 DOI: 10.4161/psb.3.12.7076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 05/07/2023]
Abstract
The resurrection plant Craterostigma plantagineum can tolerate up to 96% loss of its water content and recover from such extreme dehydration within several hours. This property is not shared by callus which has a strict requirement for exogenous abscissic acid (ABA) to survive severe water loss. ABA treatment and dehydration result in the induction of similar drought-responsive genes. Activation tagging led to the isolation of CDT-1 gene which renders callus desiccation tolerant bypassing the ABA requirement. This gene belongs to a retroelement family, members of which are induced by ABA and dehydration in callus, supporting its role in desiccation tolerance. Indeed, CDT genes have been detected in other desiccation tolerant Craterostigma species. CDT-1 RNA of both strands was identified by in situ hybridization and a CDT-1-derived short interfering RNA was detected in desiccation tolerant tissues and was able to induce dehydration genes in transfected protoplasts to the same extent as an ABA treatment. Thus, under environmental stress the induced transposition, over generations, directs the amplification of CDT-copy number in the genome and increases the desiccation tolerance phenomenon.
Collapse
Affiliation(s)
- Antonella Furini
- Dipartimento Scientifico e Tecnologico; University of Verona; Strada Le Grazie; Verona Italy
| |
Collapse
|
12
|
Abstract
Desiccation tolerance is the capacity to survive complete drying. It is an ancient trait that can be found in prokaryotes, fungi, primitive animals (often at the larval stages), whole plants, pollens and seeds. In the dry state, metabolism is suspended and the duration that anhydrobiotes can survive ranges from years to centuries. Whereas genes induced by drought stress have been successfully enumerated in tissues that are sensitive to cellular desiccation, we have little knowledge as to the adaptive role of these genes in establishing desiccation tolerance at the cellular level. This paper reviews postgenomic approaches in a variety of desiccation tolerant organisms in which the genetic responses have been investigated when they acquire the capacity of tolerating extremes of dehydration or when they are dry. Accumulation of non-reducing sugars, LEA proteins and a coordinated repression of metabolism appear to be the essential and universal attributes that can confer desiccation tolerance. The protective mechanisms of these attributes are described. Furthermore, it is most likely that other mechanisms have evolved since the function of about 30% of the genes involved in desiccation tolerance remains to be elucidated. The question of the overlap between desiccation tolerance and drought tolerance is briefly addressed.
Collapse
Affiliation(s)
- Julia Buitink
- INRA, UMR 1191, Physiologie moléculaire des semences, IFR 149 QUASAV, 49045 Angers, France.
| | | |
Collapse
|
13
|
Fisher KM. Bayesian reconstruction of ancestral expression of the LEA gene families reveals propagule-derived desiccation tolerance in resurrection plants. AMERICAN JOURNAL OF BOTANY 2008; 95:506-515. [PMID: 21632376 DOI: 10.3732/ajb.95.4.506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.
Collapse
Affiliation(s)
- Kirsten M Fisher
- National Evolutionary Synthesis Center, 2024 West Main Street Suite A200, Durham, North Carolina 27705 USA
| |
Collapse
|
14
|
Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. THE NEW PHYTOLOGIST 2008; 179:877-887. [PMID: 18482228 DOI: 10.1111/j.1469-8137.2008.02480.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
* Craterostigma plantagineum can lose up to 96% of its water content but fully recover within hours after rehydration. The callus tissue of the plant becomes desiccation tolerant upon pre-incubation with abscisic acid (ABA). In callus and vegetative organs, ABA addition and water depletion induce a set of dehydration-responsive genes. * Previously, activation tagging led to the isolation of Craterostigma desiccation tolerant (CDT-1), a dehydration-related ABA-inducible gene which renders callus desiccation tolerant without ABA pre-treatment. This gene belongs to a family of retroelements, members of which are inducible by dehydration. * Craterostigma plantagineum transformation with mutated versions of CDT-1 indicated that protein is not required for the induction of callus desiccation tolerance. Northern analysis and protoplast transfection indicated that CDT-1 directs the synthesis of a double-stranded 21-bp short interfering RNA (siRNA), which opens the metabolic pathway for desiccation tolerance. * Via transposition, these retroelements have progressively increased the capacity of the species to synthesize siRNA and thus recover after dehydration. This may be a case of evolution towards the acquisition of a new trait, stimulated by the environment acting directly on intra-genomic DNA replication.
Collapse
Affiliation(s)
- Tobias Hilbricht
- Max-Planck-Institut fur Züchtungsforschung, Carl-von-Linne Weg 10, D-50829 Köln, Germany
| | - Serena Varotto
- Dipartimento di Agronomia Ambientale e Produzione Vegetale, University of Padova, Agripolis-Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Vittorio Sgaramella
- Fondazione Parco Tecnologico Padano, CERSA, via Einstein - Località Cascina Codazza, 26900 Lodi, Italy
| | - Dorothea Bartels
- Molekulare Physiologie und Biotecnologie der Pflanzen, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Francesco Salamini
- Fondazione Parco Tecnologico Padano, CERSA, via Einstein - Località Cascina Codazza, 26900 Lodi, Italy
| | - Antonella Furini
- Dipartimento Scientifico e Tecnologico, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
15
|
Smith-Espinoza C, Bartels D, Phillips J. Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens. PLANT CELL REPORTS 2007; 26:1681-8. [PMID: 17497152 DOI: 10.1007/s00299-007-0370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 05/15/2023]
Abstract
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.
Collapse
Affiliation(s)
- Claudia Smith-Espinoza
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | |
Collapse
|
16
|
Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. FEBS Lett 2007; 581:3592-7. [PMID: 17451688 DOI: 10.1016/j.febslet.2007.04.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 01/13/2023]
Abstract
It was recently discovered that plants respond to environmental stress not only with a specific gene expression programme at the mRNA and protein level but also small RNAs as response modulators play an important role. The small RNAs lead to cleavage or translational inhibition of mRNAs via complementary target sites. Different examples are described where small RNAs have been shown to be involved in stress responses. A link between hormonal action and small RNA activities has frequently been observed thus coupling exogenous factors with endogenous transmitters. Using the CDT-1 gene from the desiccation tolerant plant Craterostigma plantagineum as an example, it is discussed that generation of novel small RNAs could be an evolutionary pathway in plants to adapt to extreme environments.
Collapse
Affiliation(s)
- Jonathan R Phillips
- Institute of Molecular Plant Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | |
Collapse
|
17
|
Ghasempour HR, Kianian J. The study of desiccation-tolerance in drying leaves of the desiccation-tolerant grass Sporobolus elongatus and the desiccation-sensitive grass Sporobolus pyramidalis. Pak J Biol Sci 2007; 10:797-801. [PMID: 19069867 DOI: 10.3923/pjbs.2007.797.801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrated leaves of the resurrection grass Sporobolus elongatus are not desiccation tolerant (DT), but moderate to severe drought stress can induce their DT with the leaves remain attach to drying intact plants. In vivo protein synthesis was studied with SDS-page of extracts of leaves of intact drying plants of S. elongatus (a desiccation-Tolerant grass (DT)) and S. pyramidalis (a desiccation-sensitive species (DS)). Free proline increased in drying leaves. Soluble sugar contents also increased with drying but were less than fully hydrated leaves at 8% RWC. Total protein also showed an increase with an exception at 8% RWC which showed a decrease. SDS-page of extracts of drying leaves of both DT and DS plants were studied as relative water contents (RWC) decreased. In first phase, DT species at 58% RWC (80-51% RWC range), two proteins increased in contents. In the second phase, at 8% (35-4% RWC range) two new bands increased and two bands decreased. In leaves of DS species some bands decreased as drying progressed. Also, as drying advanced free proline increased in DT species. Total protein increased as drying increased but at 8% RWC decreased. All data of results are consistent with current views about studied factors and their roles during drying and induction of desiccation tolerance in DT plants.
Collapse
|
18
|
Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS. Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. THE NEW PHYTOLOGIST 2007; 176:275-287. [PMID: 17696978 DOI: 10.1111/j.1469-8137.2007.02187.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dehydration tolerance was an adaptive trait necessary for the colonization of land by plants, and remains widespread among bryophytes: the nearest extant relatives of the first land plants. A genome-wide analysis was undertaken of water-stress responses in the model moss Physcomitrella patens to identify stress-responsive genes. An oligonucleotide microarray was used for transcriptomic analysis of Physcomitrella treated with abscisic acid (ABA), or subjected to osmotic, salt and drought stress. Bioinformatic analysis of the Physcomitrella genome identified the responsive genes, and a number of putative stress-related cis-regulatory elements. In protonemal tissue, 130 genes were induced by dehydration, 56 genes by ABA, but only 10 and eight genes, respectively, by osmotic and salt stress. Fifty-one genes were induced by more than one treatment. Seventy-six genes, principally encoding chloroplast proteins, were drought down-regulated. Many ABA- and drought-responsive genes are homologues of angiosperm genes expressed during drought stress and seed development. These ABA- and drought-responsive genes include those encoding a number of late embryogenesis abundant (LEA) proteins, a 'DREB' transcription factor and a Snf-related kinase homologous with the Arabidopsis ABA signal transduction component 'OPEN STOMATA 1'. Evolutionary capture of conserved stress-regulatory transcription factors by the seed developmental pathway probably accounts for the seed-specificity of desiccation tolerance among angiosperms.
Collapse
Affiliation(s)
- Andrew C Cuming
- Centre for Plant Science, University of Leeds, Leeds LS2 9JT, UK
| | - Sung Hyun Cho
- Department of Biology, 1 Brookings Drive, Washington University, St. Louis, MO 63130-4899, USA
| | - Yasuko Kamisugi
- Centre for Plant Science, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Graham
- Centre for Plant Science, University of Leeds, Leeds LS2 9JT, UK
| | - Ralph S Quatrano
- Department of Biology, 1 Brookings Drive, Washington University, St. Louis, MO 63130-4899, USA
| |
Collapse
|