1
|
Mori A, Uehara L, Toyoda Y, Masuda F, Soejima S, Saitoh S, Yanagida M. In fission yeast, 65 non-essential mitochondrial proteins related to respiration and stress become essential in low-glucose conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230404. [PMID: 37859837 PMCID: PMC10582590 DOI: 10.1098/rsos.230404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Mitochondria perform critical functions, including respiration, ATP production, small molecule metabolism, and anti-oxidation, and they are involved in a number of human diseases. While the mitochondrial genome contains a small number of protein-coding genes, the vast majority of mitochondrial proteins are encoded by nuclear genes. In fission yeast Schizosaccharomyces pombe, we screened 457 deletion (del) mutants deficient in nuclear-encoded mitochondrial proteins, searching for those that fail to form colonies in culture medium containing low glucose (0.03-0.1%; low-glucose sensitive, lgs), but that proliferate in regular 2-3% glucose medium. Sixty-five (14%) of the 457 deletion mutants displayed the lgs phenotype. Thirty-three of them are defective either in dehydrogenases, subunits of respiratory complexes, the citric acid cycle, or in one of the nine steps of the CoQ10 biosynthetic pathway. The remaining 32 lgs mutants do not seem to be directly related to respiration. Fifteen are implicated in translation, and six encode transporters. The remaining 11 function in anti-oxidation, amino acid synthesis, repair of DNA damage, microtubule cytoskeleton, intracellular mitochondrial distribution or unknown functions. These 32 diverse lgs genes collectively maintain mitochondrial functions under low (1/20-1/60× normal) glucose concentrations. Interestingly, 30 of them have homologues associated with human diseases.
Collapse
Affiliation(s)
- Ayaka Mori
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Lisa Uehara
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | - Yusuke Toyoda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Fumie Masuda
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Saeko Soejima
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Shigeaki Saitoh
- Institute of Life Science, Kurume University, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | - Mitsuhiro Yanagida
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Kunová N, Havalová H, Ondrovičová G, Stojkovičová B, Bauer JA, Bauerová-Hlinková V, Pevala V, Kutejová E. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Int J Mol Sci 2022; 23:1297. [PMID: 35163221 PMCID: PMC8835746 DOI: 10.3390/ijms23031297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eva Kutejová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (H.H.); (G.O.); (B.S.); (J.A.B.); (V.B.-H.); (V.P.)
| |
Collapse
|
4
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
5
|
Kong KYE, Fischer B, Meurer M, Kats I, Li Z, Rühle F, Barry JD, Kirrmaier D, Chevyreva V, San Luis BJ, Costanzo M, Huber W, Andrews BJ, Boone C, Knop M, Khmelinskii A. Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Mol Cell 2021; 81:2460-2476.e11. [PMID: 33974913 PMCID: PMC8189435 DOI: 10.1016/j.molcel.2021.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Selective protein degradation by the ubiquitin-proteasome system (UPS) is involved in all cellular processes. However, the substrates and specificity of most UPS components are not well understood. Here we systematically characterized the UPS in Saccharomyces cerevisiae. Using fluorescent timers, we determined how loss of individual UPS components affects yeast proteome turnover, detecting phenotypes for 76% of E2, E3, and deubiquitinating enzymes. We exploit this dataset to gain insights into N-degron pathways, which target proteins carrying N-terminal degradation signals. We implicate Ubr1, an E3 of the Arg/N-degron pathway, in targeting mitochondrial proteins processed by the mitochondrial inner membrane protease. Moreover, we identify Ylr149c/Gid11 as a substrate receptor of the glucose-induced degradation-deficient (GID) complex, an E3 of the Pro/N-degron pathway. Our results suggest that Gid11 recognizes proteins with N-terminal threonines, expanding the specificity of the GID complex. This resource of potential substrates and relationships between UPS components enables exploring functions of selective protein degradation.
Collapse
Affiliation(s)
| | - Bernd Fischer
- Computational Genome Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Meurer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Zhaoyan Li
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Frank Rühle
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Joseph D Barry
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daniel Kirrmaier
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Veronika Chevyreva
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bryan-Joseph San Luis
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | |
Collapse
|
6
|
Gomez-Fabra Gala M, Vögtle FN. Mitochondrial proteases in human diseases. FEBS Lett 2021; 595:1205-1222. [PMID: 33453058 DOI: 10.1002/1873-3468.14039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria contain more than 1000 different proteins, including several proteolytic enzymes. These mitochondrial proteases form a complex system that performs limited and terminal proteolysis to build the mitochondrial proteome, maintain, and control its functions or degrade mitochondrial proteins and peptides. During protein biogenesis, presequence proteases cleave and degrade mitochondrial targeting signals to obtain mature functional proteins. Processing by proteases also exerts a regulatory role in modulation of mitochondrial functions and quality control enzymes degrade misfolded, aged, or superfluous proteins. Depending on their different functions and substrates, defects in mitochondrial proteases can affect the majority of the mitochondrial proteome or only a single protein. Consequently, mutations in mitochondrial proteases have been linked to several human diseases. This review gives an overview of the components and functions of the mitochondrial proteolytic machinery and highlights the pathological consequences of dysfunctional mitochondrial protein processing and turnover.
Collapse
Affiliation(s)
- Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Friederike-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
7
|
Bjerregaard VA, Schönewolf-Greulich B, Juel Rasmussen L, Desler C, Tümer Z. Mitochondrial Function in Gilles de la Tourette Syndrome Patients With and Without Intragenic IMMP2L Deletions. Front Neurol 2020; 11:163. [PMID: 32265818 PMCID: PMC7105681 DOI: 10.3389/fneur.2020.00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Gilles de la Tourette syndrome (GTS) is a neurodevelopmental condition characterized by motor and vocal tics. The underlying etiology remains largely unknown, and GTS is considered as a complex multifactorial disorder associated with effects of several genes in combination with environmental factors. The inner mitochondrial membrane peptidase, subunit 2 (IMMP2L) has been suggested as one of the susceptibility genes for GTS, and IMMP2L-deficient mouse and human cells show increased levels of mitochondrial oxidative stress and altered cell fate programming. Hence, a potential involvement of IMMP2L-induced mitochondrial dysfunction in GTS pathology is yet to be elucidated. To address this, we investigated mitochondrial function in a group of GTS patients with intragenic IMMP2L deletions and compared with GTS without IMMP2L deletions and healthy controls. Methods: Mitochondrial function in fibroblasts from GTS patients and non-GTS parents (with and without IMMP2L deletions) compared to healthy controls were evaluated by measuring mitochondrial superoxide production, mitochondrial membrane potential, mitochondrial mass, and mitochondrial respiration. In addition, we evaluated apoptosis and senescence. Results: None of the mitochondrial parameters assessed in this study were significantly distinctive when comparing GTS patients with and without IMMP2L deletions against healthy controls or parents with or without IMMP2L deletions, and we did not observe altered cell programming. Conclusion: This study suggests that IMMP2L deletions do not lead to a substantial general mitochondrial dysfunction in GTS fibroblasts. Assessing a large cohort of controls and patients of similar age and gender would possibly reveal small differences in mitochondrial function. However, it is possible that IMMP2L variants affect mitochondrial function during specific instances of stress stimuli or in brain regions suggested to be affected in GTS.
Collapse
Affiliation(s)
- Victoria A Bjerregaard
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bitten Schönewolf-Greulich
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ghifari AS, Huang S, Murcha MW. The peptidases involved in plant mitochondrial protein import. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6005-6018. [PMID: 31738432 DOI: 10.1093/jxb/erz365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/08/2019] [Indexed: 05/17/2023]
Abstract
The endosymbiotic origin of the mitochondrion and the subsequent transfer of its genome to the host nucleus has resulted in intricate mechanisms of regulating mitochondrial biogenesis and protein content. The majority of mitochondrial proteins are nuclear encoded and synthesized in the cytosol, thus requiring specialized and dedicated machinery for the correct targeting import and sorting of its proteome. Most proteins targeted to the mitochondria utilize N-terminal targeting signals called presequences that are cleaved upon import. This cleavage is carried out by a variety of peptidases, generating free peptides that can be detrimental to organellar and cellular activity. Research over the last few decades has elucidated a range of mitochondrial peptidases that are involved in the initial removal of the targeting signal and its sequential degradation, allowing for the recovery of single amino acids. The significance of these processing pathways goes beyond presequence degradation after protein import, whereby the deletion of processing peptidases induces plant stress responses, compromises mitochondrial respiratory capability, and alters overall plant growth and development. Here, we review the multitude of plant mitochondrial peptidases that are known to be involved in protein import and processing of targeting signals to detail how their activities can affect organellar protein homeostasis and overall plant growth.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Shaobai Huang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
| |
Collapse
|
9
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
10
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
11
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
12
|
Abstract
Fungi are able to switch between different lifestyles in order to adapt to environmental changes. Their ecological strategy is connected to their secretome as fungi obtain nutrients by secreting hydrolytic enzymes to their surrounding and acquiring the digested molecules. We focus on fungal serine proteases (SPs), the phylogenetic distribution of which is barely described so far. In order to collect a complete set of fungal proteases, we searched over 600 fungal proteomes. Obtained results suggest that serine proteases are more ubiquitous than expected. From 54 SP families described in MEROPS Peptidase Database, 21 are present in fungi. Interestingly, 14 of them are also present in Metazoa and Viridiplantae - this suggests that, except one (S64), all fungal SP families evolved before plants and fungi diverged. Most representatives of sequenced eukaryotic lineages encode a set of 13-16 SP families. The number of SPs from each family varies among the analysed taxa. The most abundant are S8 proteases. In order to verify hypotheses linking lifestyle and expansions of particular SP, we performed statistical analyses and revealed previously undescribed associations. Here, we present a comprehensive evolutionary history of fungal SP families in the context of fungal ecology and fungal tree of life.
Collapse
|
13
|
Gomes F, Palma FR, Barros MH, Tsuchida ET, Turano HG, Alegria TGP, Demasi M, Netto LES. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. J Biol Chem 2017; 292:17011-17024. [PMID: 28821623 DOI: 10.1074/jbc.m117.788588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/17/2017] [Indexed: 01/01/2023] Open
Abstract
Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H2O2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes.
Collapse
Affiliation(s)
- Fernando Gomes
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo,
| | - Flávio Romero Palma
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Mario H Barros
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, and
| | - Eduardo T Tsuchida
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Helena G Turano
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, and
| | - Thiago G P Alegria
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Marilene Demasi
- the Laboratório de Bioquímica e Biofísica, Instituto Butantan, 05503-001 São Paulo, Brazil
| | - Luis E S Netto
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo,
| |
Collapse
|
14
|
CTNNA3 discordant regulation of nested LRRTM3, implications for autism spectrum disorder and Tourette syndrome. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Gokoolparsadh A, Fang Z, Braidy N, Lin P, Pardy CJ, Eapen V, Clarke R, Voineagu I. Transcriptional response to mitochondrial protease IMMP2L knockdown in human primary astrocytes. Biochem Biophys Res Commun 2017; 482:1252-1258. [DOI: 10.1016/j.bbrc.2016.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
16
|
The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Cell Tissue Res 2016; 367:73-81. [DOI: 10.1007/s00441-016-2492-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
|
17
|
Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Curr Genet 2016; 63:253-274. [DOI: 10.1007/s00294-016-0633-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023]
|
18
|
Sinzel M, Tan T, Wendling P, Kalbacher H, Özbalci C, Chelius X, Westermann B, Brügger B, Rapaport D, Dimmer KS. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 2016; 17:965-81. [PMID: 27226123 DOI: 10.15252/embr.201541273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tao Tan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Wendling
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cagakan Özbalci
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Xenia Chelius
- Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Bertelsen B, Melchior L, Jensen LR, Groth C, Glenthøj B, Rizzo R, Debes NM, Skov L, Brøndum-Nielsen K, Paschou P, Silahtaroglu A, Tümer Z. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur J Hum Genet 2014; 22:1283-9. [PMID: 24549057 PMCID: PMC4200436 DOI: 10.1038/ejhg.2014.24] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/10/2013] [Accepted: 01/22/2014] [Indexed: 11/09/2022] Open
Abstract
Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor and vocal tics, and the disorder is often accompanied by comorbidities such as attention-deficit hyperactivity-disorder and obsessive compulsive disorder. Tourette syndrome has a complex etiology, but the underlying environmental and genetic factors are largely unknown. IMMP2L (inner mitochondrial membrane peptidase, subunit 2) located on chromosome 7q31 is one of the genes suggested as a susceptibility factor in disease pathogenesis. Through screening of a Danish cohort comprising 188 unrelated Tourette syndrome patients for copy number variations, we identified seven patients with intragenic IMMP2L deletions (3.7%), and this frequency was significantly higher (P=0.0447) compared with a Danish control cohort (0.9%). Four of the seven deletions identified did not include any known exons of IMMP2L, but were within intron 3. These deletions were found to affect a shorter IMMP2L mRNA species with two alternative 5'-exons (one including the ATG start codon). We showed that both transcripts (long and short) were expressed in several brain regions, with a particularly high expression in cerebellum and hippocampus. The current findings give further evidence for the role of IMMP2L as a susceptibility factor in Tourette syndrome and suggest that intronic changes in disease susceptibility genes should be investigated further for presence of alternatively spliced exons.
Collapse
Affiliation(s)
- Birgitte Bertelsen
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Linea Melchior
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lars R Jensen
- Institute for Human Genetics, Ernst-Moritz-Arndt-University Greifswald, Griefswald, Germany
| | - Camilla Groth
- The Tourette Clinic, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Renata Rizzo
- Section of Child Neuropsychiatry, Department of Pediatrics, University of Catania, Catania, Italy
| | - Nanette Mol Debes
- The Tourette Clinic, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Liselotte Skov
- The Tourette Clinic, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Karen Brøndum-Nielsen
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Asli Silahtaroglu
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
20
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Bharadwaj MS, Zhou Y, Molina AJ, Criswell T, Lu B. Examination of bioenergetic function in the inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice. Redox Biol 2014; 2:1008-15. [PMID: 25460737 PMCID: PMC4215389 DOI: 10.1016/j.redox.2014.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022] Open
Abstract
Inner mitochondrial membrane peptidase 2-like (IMMP2L) protein is a mitochondrial inner membrane peptidase that cleaves the signal peptide sequences of cytochrome c1 (CYC1) and mitochondrial glycerol phosphate dehydrogenase (GPD2). Immp2l mutant mice show infertility and early signs of aging. It is unclear whether mitochondrial respiratory deficiency underlies this phenotype. Here we show that the intermediate forms of GPD2 and CYC1 have normal expression levels and enzymatic function in Immp2l mutants. Mitochondrial respiration is not diminished in isolated mitochondria and cells from mutant mice. Our data suggest that respiratory deficiency is not the cause of the observed Immp2l mutant phenotypes. Expression of IMMP2L substrates CYC1 and GPD2 is not affected in Immp2l mutant mice. Mitochondria of mutant mice have normal complex III and GPD2 activities. Mitochondrial respiration of mutant mice is not diminished.
Collapse
Affiliation(s)
- Manish S Bharadwaj
- Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Department of Internal Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony J Molina
- Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Department of Internal Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Ieva R, Heißwolf AK, Gebert M, Vögtle FN, Wollweber F, Mehnert CS, Oeljeklaus S, Warscheid B, Meisinger C, van der Laan M, Pfanner N. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 2013; 4:2853. [DOI: 10.1038/ncomms3853] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 11/01/2013] [Indexed: 01/04/2023] Open
|
23
|
Kwasniak M, Pogorzelec L, Migdal I, Smakowska E, Janska H. Proteolytic system of plant mitochondria. PHYSIOLOGIA PLANTARUM 2012; 145:187-95. [PMID: 22085399 DOI: 10.1111/j.1399-3054.2011.01542.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The existence of a proteolytic system which can specifically recognize and cleave proteins in mitochondria is now well established. The components of this system comprise processing peptidases, ATP-dependent peptidases and oligopeptidases. A short overview of experimentally confirmed proteases mainly from Arabidopsis thaliana is provided. The role of the mitochondrial peptidases in plant growth and development is emphasized. We also discuss the possibility of existence of as yet unidentified plant homologs of yeast mitochondrial ATP-independent proteases.
Collapse
|
24
|
Teixeira PF, Glaser E. Processing peptidases in mitochondria and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:360-70. [PMID: 22495024 DOI: 10.1016/j.bbamcr.2012.03.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
Most of the mitochondrial and chloroplastic proteins are nuclear encoded and synthesized in the cytosol as precursor proteins with N-terminal extensions called targeting peptides. Targeting peptides function as organellar import signals, they are recognized by the import receptors and route precursors through the protein translocons across the organellar membranes. After the fulfilled function, targeting peptides are proteolytically cleaved off inside the organelles by different processing peptidases. The processing of mitochondrial precursors is catalyzed in the matrix by the Mitochondrial Processing Peptidase, MPP, the Mitochondrial Intermediate Peptidase, MIP (recently called Octapeptidyl aminopeptidase 1, Oct1) and the Intermediate cleaving peptidase of 55kDa, Icp55. Furthermore, different inner membrane peptidases (Inner Membrane Proteases, IMPs, Atp23, rhomboids and AAA proteases) catalyze additional processing functions, resulting in intra-mitochondrial sorting of proteins, the targeting to the intermembrane space or in the assembly of proteins into inner membrane complexes. Chloroplast targeting peptides are cleaved off in the stroma by the Stromal Processing Peptidase, SPP. If the protein is further translocated to the thylakoid lumen, an additional thylakoid-transfer sequence is removed by the Thylakoidal Processing Peptidase, TPP. Proper function of the D1 protein of Photosystem II reaction center requires its C-terminal processing by Carboxy-terminal processing protease, CtpA. Both in mitochondria and in chloroplasts, the cleaved targeting peptides are finally degraded by the Presequence Protease, PreP. The organellar proteases involved in precursor processing and targeting peptide degradation constitute themselves a quality control system ensuring the correct maturation and localization of proteins as well as assembly of protein complexes, contributing to sustenance of organelle functions. Dysfunctions of several mitochondrial processing proteases have been shown to be associated with human diseases. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Pedro Filipe Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
25
|
Mossmann D, Meisinger C, Vögtle FN. Processing of mitochondrial presequences. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1098-106. [PMID: 22172993 DOI: 10.1016/j.bbagrm.2011.11.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 11/15/2022]
Abstract
Mitochondrial proteins are synthesized as precursor proteins on either cytosolic or mitochondrial ribosomes. The synthesized precursors from both translation origins possess targeting signals that guide the protein to its final destination in one of the four subcompartments of the organelle. The majority of nuclear-encoded mitochondrial precursors and also mitochondrial-encoded preproteins have an N-terminal presequence that serves as a targeting sequence. Specific presequence peptidases that are found in the matrix, inner membrane and intermembrane space of mitochondria proteolytically remove the signal sequence upon import or sorting. Besides the classical presequence peptidases MPP, IMP and Oct1, several novel proteases have recently been described to possess precursor processing activity, and analysis of their functional relevance revealed a tight connection between precursor processing, mitochondrial dynamics and protein quality control. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Dirk Mossmann
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
26
|
Delage L, Leblanc C, Nyvall Collén P, Gschloessl B, Oudot MP, Sterck L, Poulain J, Aury JM, Cock JM. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus. PLoS One 2011; 6:e19540. [PMID: 21611166 PMCID: PMC3097184 DOI: 10.1371/journal.pone.0019540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/31/2011] [Indexed: 01/24/2023] Open
Abstract
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.
Collapse
Affiliation(s)
- Ludovic Delage
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Catherine Leblanc
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Pi Nyvall Collén
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Bernhard Gschloessl
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Pierre Oudot
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lieven Sterck
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Julie Poulain
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - J. Mark Cock
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
27
|
Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 2010; 11:655-67. [PMID: 20729931 DOI: 10.1038/nrm2959] [Citation(s) in RCA: 526] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Protein transport machineries for precursor translocation across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:52-9. [DOI: 10.1016/j.bbamcr.2008.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/20/2022]
|
29
|
Lu B, Poirier C, Gaspar T, Gratzke C, Harrison W, Busija D, Matzuk MM, Andersson KE, Overbeek PA, Bishop CE. A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 2007; 78:601-10. [PMID: 18094351 DOI: 10.1095/biolreprod.107.065987] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients.
Collapse
Affiliation(s)
- Baisong Lu
- Institute for Regenerative Medicine, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Zara V, Dolce V, Capobianco L, Ferramosca A, Papatheodorou P, Rassow J, Palmieri F. Biogenesis of eel liver citrate carrier (CIC): negative charges can substitute for positive charges in the presequence. J Mol Biol 2006; 365:958-67. [PMID: 17113102 DOI: 10.1016/j.jmb.2006.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/22/2022]
Abstract
A family of structurally related carrier proteins mediates the flux of metabolites across the mitochondrial inner membrane. Differently from most other mitochondrial proteins, members of the carrier family are synthesized without an amino-terminal targeting sequence. However, in some mammalian and plant species, representatives were identified that carry a positively charged presequence. To obtain data on a carrier protein from lower vertebrates, we determined the primary structure of eel mitochondrial citrate carrier (CIC) and investigated its import pathway into the target organelle. The protein carries a cleavable presequence of 20 amino acids, including two positively charged residues. The cleavage site is recognized by a magnesium-dependent peptidase in the intermembrane space. The presequence is dispensable both for targeting and translocation, but prior to import into mitochondria, significantly increases the solubility of the precursor protein. This effect is completely retained if the positive charges are exchanged with negative charges. Following this observation, we found that several carrier proteins appear to carry non-cleavable presequences that may similarly act as charged intramolecular chaperones.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|