1
|
Yang SM, Gruber A, Jiroutová K, Richtová J, Vancová M, Tesařová M, Masařová P, Dorrell RG, Oborník M. Localization of heme biosynthesis in the diatom Phaeodactylum tricornutum and differential expression of multi-copy enzymes. FRONTIERS IN PLANT SCIENCE 2025; 16:1537037. [PMID: 40104036 PMCID: PMC11914136 DOI: 10.3389/fpls.2025.1537037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Heme is essential for all organisms. The composition and location of the pathway for heme biosynthesis, have been influenced by past endosymbiotic events and organelle evolution in eukaryotes. Endosymbioses led to temporary redundancy of the enzymes and the genes involved. Genes were transferred to the nucleus from different endosymbiotic partners, and their multiple copies were either lost or retained, resulting in a mosaic pathway. This mosaic is particularly complex in organisms with eukaryote-derived plastids, such as diatoms. The plastids of diatoms are clearly derived from red algae. However, it is not entirely clear whether they were acquired directly from a red algal ancestor or indirectly in higher-order endosymbioses. In the diatom Phaeodactylum tricornutum, most enzymes of the pathway are present in a single copy, but three, glutamyl-tRNA synthetase (GluRS), uroporphyrinogen decarboxylase (UROD) and coproporphyrinogen oxidase (CPOX), are encoded in multiple copies. These are not direct paralogs resulting from gene duplication within the lineage but were acquired horizontally during the plastid endosymbioses. While some iso-enzymes originate from the host cell, others originate either from the genome of the cyanobacterial ancestor of all plastids or from the nuclear genome of the eukaryotic ancestor of the diatom complex plastid, a rhodophyte or an alga containing rhodophyte-derived plastids, a situation known as pseudoparalogy. Using green fluorescent protein-tagged expression and immunogold labeling, we experimentally localized all enzymes of the pathway in P. tricornutum, and confirmed their localization in the plastid, with a few possible exceptions. Our meta-analyses of transcription data showed that the pseudoparalogs are differentially expressed in response to nitrate starvation, blue light, high light, high CO2, and the cell cycle. Taken together, our findings emphasize that the evolution of complex plastids via endosymbiosis has a direct impact not only on the genetics but also on the physiology of resulting organisms.
Collapse
Affiliation(s)
- Shun-Min Yang
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kateřina Jiroutová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Petra Masařová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Richard G Dorrell
- Department of Computational, Quantitative and Synthetic Biology (CQSB, UMR7238), Institut de Biologie Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), INSERM, Sorbonne Université, Paris, France
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
2
|
Villar E, Zweig N, Vincens P, Cruz de Carvalho H, Duchene C, Liu S, Monteil R, Dorrell RG, Fabris M, Vandepoele K, Bowler C, Falciatore A. DiatOmicBase: a versatile gene-centered platform for mining functional omics data in diatom research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70061. [PMID: 40089834 PMCID: PMC11910669 DOI: 10.1111/tpj.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community.
Collapse
Affiliation(s)
- Emilie Villar
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- EV ConsultingMarseilleFrance
| | - Nathanaël Zweig
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Pierre Vincens
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Faculté des Sciences et TechnologieUniversité Paris Est‐Créteil (UPEC)Créteil94000France
| | - Carole Duchene
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
- Present address:
Department of Algal Development and EvolutionMax Planck Institute for BiologyTuebingen72076Germany
| | - Shun Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Present address:
Guangzhou Marine Geological SurveyGuangzhouChina
| | - Raphael Monteil
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
| | - Richard G. Dorrell
- CNRS, IBPS, CQSB‐ Department of Computational, Quantitative and Synthetic Biology, UMR7238Sorbonne Université4 place JussieuParis75005France
| | - Michele Fabris
- SDU Biotechnology, Department of Green TechnologyUniversity of Southern DenmarkCampusvej 55Odense M5230Denmark
| | - Klaas Vandepoele
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 71Ghent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyTechnologiepark 71Ghent9052Belgium
- VIB Center for AI & Computational Biology, VIBGhentBelgium
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Angela Falciatore
- Institut de Biologie Physico‐Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS)Sorbonne UniversitéParis75005France
| |
Collapse
|
3
|
Walker EJL, Pampuch M, Chang N, Cochrane RR, Karas BJ. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. PLANT PHYSIOLOGY 2024; 194:2217-2228. [PMID: 38114089 PMCID: PMC10980414 DOI: 10.1093/plphys/kiad670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
There is growing impetus to expand the repertoire of chassis available to synthetic biologists. Chloroplast genomes present an interesting alternative for engineering photosynthetic eukaryotes; however, development of the chloroplast as a synthetic biology chassis has been limited by a lack of efficient techniques for whole-genome cloning and engineering. Here, we demonstrate two approaches for cloning the 117-kb Phaeodactylum tricornutum chloroplast genome that have 90% to 100% efficiency when screening as few as 10 yeast (Saccharomyces cerevisiae) colonies following yeast assembly. The first method reconstitutes the genome from PCR-amplified fragments, whereas the second method involves precloning these fragments into individual plasmids from which they can later be released. In both cases, overlapping fragments of the chloroplast genome and a cloning vector are homologously recombined into a singular contig through yeast assembly. The cloned chloroplast genome can be stably maintained and propagated within Escherichia coli, which provides an exciting opportunity for engineering a delivery mechanism for bringing DNA directly to the algal chloroplast. Also, one of the cloned genomes was designed to contain a single SapI site within the yeast URA3 (coding for orotidine-5'-phosphate decarboxylase) open-reading frame, which can be used to linearize the genome and integrate designer cassettes via golden-gate cloning or further iterations of yeast assembly. The methods presented here could be extrapolated to other species-particularly those with a similar chloroplast genome size and architecture (e.g. Thalassiosira pseudonana).
Collapse
Affiliation(s)
- Emma J L Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mark Pampuch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Nelson Chang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ryan R Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
4
|
Du F, Li Y, Xu K. Phylogeny and Evolution of Cocconeiopsis (Cocconeidaceae) as Revealed by Complete Chloroplast and Mitochondrial Genomes. Int J Mol Sci 2023; 25:266. [PMID: 38203438 PMCID: PMC10778710 DOI: 10.3390/ijms25010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genus Cocconeiopsis was separated from Navicula, but its systematic position is in debate. We sequenced the complete chloroplast and mitochondrial genome of Cocconeidaceae for the first time with Cocconeiopsis kantsiensis and investigated its phylogeny and evolutionary history. Results showed that the plastid genome was 140,415 bp long with 167 genes. The mitochondrial genome was 43,732 bp long with 66 genes. Comparative analysis showed that the plastid genome structure of C. kantsiensis was most similar to those of three Navicula species and Halamphora americana, and its size was significantly smaller than that of a monoraphid species. Its mitochondrial genome was similar to that of related species except for Phaeodactylum tricornutum. The multigene phylogeny reconstruction showed that Cocconeiopsis was sister to Didymosphenia but distant from Naviculaceae. The two-gene phylogenetic analysis containing 255 species showed Cocconeiopsis was sister to Cocconeis, and distant from Naviculaceae as well. Divergence time estimation indicates the common ancestor of cocconeid species occurred about 62.8 Ma and Cocconeiopsis diverged with monoraphid Cocconeis about 58.9 Ma. Our results support the assignment of Cocconeiopsis to Cocconeidaceae and that monoraphid cocconeids were likely evolved from the lineage of Cocconeiopsis.
Collapse
Affiliation(s)
- Feichao Du
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Russo MT, Rogato A, Jaubert M, Karas BJ, Falciatore A. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. JOURNAL OF PHYCOLOGY 2023; 59:1114-1122. [PMID: 37975560 DOI: 10.1111/jpy.13400] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.
Collapse
Affiliation(s)
- Monia T Russo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, National Research Council, IBBR-CNR, Naples, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marianne Jaubert
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Angela Falciatore
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
6
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
7
|
Poulsen N, Kröger N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. JOURNAL OF PHYCOLOGY 2023; 59:809-817. [PMID: 37424141 DOI: 10.1111/jpy.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
In 2004, Thalassiosira pseudonana was the first eukaryotic marine alga to have its genome sequenced. Since then, this species has quickly emerged as a valuable model species for investigating the molecular underpinnings of essentially all aspects of diatom life, particularly bio-morphogenesis of the cell wall. An important prerequisite for the model status of T. pseudonana is the ongoing development of increasingly precise tools to study the function of gene networks and their encoded proteins in vivo. Here, we briefly review the current toolbox for genetic manipulation, highlight specific examples of its application in studying diatom metabolism, and provide a peek into the role of diatoms in the emerging field of silica biotechnology.
Collapse
Affiliation(s)
- Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Li Z, Zhang Y, Li W, Irwin AJ, Finkel ZV. Common environmental stress responses in a model marine diatom. THE NEW PHYTOLOGIST 2023; 240:272-284. [PMID: 37488721 DOI: 10.1111/nph.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Marine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis. We identify a specific subset of 1076 genes that are differentially expressed in response to stressors that induce an imbalance between energy or resource supply and metabolic capacity, which we termed the diatom environmental stress response (d-ESR). The d-ESR is primarily composed of genes that maintain proteome homeostasis and primary metabolism. Photosynthesis is strongly regulated in response to environmental stressors but chloroplast-encoded genes were predominantly upregulated while the nuclear-encoded genes were mostly downregulated in response to low light and high temperature. In aggregate, these results provide insight into the molecular mechanisms used by diatoms to respond to a range of environmental perturbations and the unique role of the chloroplast in managing environmental stress in diatoms. This study facilitates our understanding of the molecular mechanisms underpinning the ecological success of diatoms in the ocean.
Collapse
Affiliation(s)
- Zhengke Li
- School of Biological and Pharmaceutical Sciences, Shannxi University of Science and Technology, Xi'an, Shannxi, 710021, China
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Yong Zhang
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, 245041, China
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
9
|
Liu F, Wang Y, Huang H, Chen N. Evolutionary dynamics of plastomes in coscinodiscophycean diatoms revealed by comparative genomics. Front Microbiol 2023; 14:1203780. [PMID: 37396366 PMCID: PMC10307964 DOI: 10.3389/fmicb.2023.1203780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
To understand the evolution of coscinodiscophycean diatoms, plastome sequences of six coscinodiscophycean diatom species were constructed and analyzed in this study, doubling the number of constructed plastome sequences in Coscinodiscophyceae (radial centrics). The platome sizes varied substantially in Coscinodiscophyceae, ranging from 119.1 kb of Actinocyclus subtilis to 135.8 kb of Stephanopyxis turris. Plastomes in Paraliales and Stephanopyxales tended to be larger than those in Rhizosoleniales and Coscinodiacales, which were due to the expansion of the inverted repeats (IRs) and to the marked increase of the large single copy (LSC). Phylogenomic analysis indicated that Paralia and Stephanopyxis clustered tightly to form the Paraliales-Stephanopyxales complex, which was sister to the Rhizosoleniales-Coscinodiscales complex. The divergence time between Paraliales and Stephanopyxales was estimated at 85 MYA in the middle Upper Cretaceous, indicating that Paraliales and Stephanopyxales appeared later than Coscinodiacales and Rhizosoleniales according to their phylogenetic relationships. Frequent losses of housekeeping protein-coding genes (PCGs) were observed in these coscinodiscophycean plastomes, indicating that diatom plastomes showed an ongoing reduction in gene content during evolution. Two acpP genes (acpP1 and acpP2) detected in diatom plastomes were found to be originated from an early gene duplication event occurred in the common progenitor after diatom emergence, rather than multiple independent gene duplications occurring in different lineages of diatoms. The IRs in Stephanopyxis turris and Rhizosolenia fallax-imbricata exhibited a similar trend of large expansion to the small single copy (SSC) and slightly small contraction from the LSC, which eventually led to the conspicuous increase in IR size. Gene order was highly conserved in Coscinodiacales, while multiple rearrangements were observed in Rhizosoleniales and between Paraliales and Stephanopyxales. Our results greatly expanded the phylogenetic breadth in Coscinodiscophyceae and gained novel insights into the evolution of plastomes in diatoms.
Collapse
Affiliation(s)
- Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yichao Wang
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, Shandong, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
10
|
Bi YH, Feng B, Xie WY, Ouyang LL, Ye RX, Zhou ZG. Nuclear-encoded CbbX located in chloroplast is essential for the activity of red-type Rubisco in Saccharina japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:236-245. [PMID: 36731285 DOI: 10.1016/j.plaphy.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Saccharina japonica (Laminariales, Phaeophyta) is a brown alga and the major component of algae beds on the northwest coast of the Pacific Ocean. Rubisco, the key enzyme of CO2 fixation in photosynthesis, is inhibited by nonproductive binding of its substrate RuBP and other sugar phosphates. The inhibited Rubisco in eukaryotic phytoplankton of the red plastid lineage was reactivated by CbbXs, the red-type Rubisco activases, through the process of ATP-hydrolysis-powered remodeling. As well documented, CbbXs had two types of subunits encoded by the plastid or nuclear genome respectively. In this study, both proteins of S. japonica (SjCbbX-n and SjCbbX-p) were localized in the chloroplast illustrated by immuno-electron microscopy technique. GST pull-down detection verified SjCbbX-n could interact with SjCbbX-p. Two-dimensional electrophoresis-based Western blot analysis illustrated that the endogenous SjCbbXs could form heterohexamer in the ratio of 1:1. Activase activity assays showed that although both the recombinant proteins of SjCbbXs were functional, SjCbbX-n illustrated the significantly higher activase activity than SjCbbX-p. Notably, when the two proteins were mixed, the highest specific efficiencies of Rubisco were obtained. These results implied SjCbbX-n may be essential for Rubisco activation. Molecular evolutionary analysis of cbbx genes revealed that cbbx-n originated from the duplication of cbbx-p and then evolved independently under the positive selection pressure. This is the first report about the functional relationship between the two types of CbbXs in macroalge with the red-type Rubisco and provides useful information for revealing the mechanism of high photosynthetic efficiency of this important kelp.
Collapse
Affiliation(s)
- Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Bing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Wei-Yi Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Long-Ling Ouyang
- Chinese Academy of Fishery Science East China Sea Fisheries Research Institute, No. 300 Jungong Road, Shanghai, 200090, China
| | - Rong-Xue Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
11
|
Chen XH, Yang MK, Li YY, Xie ZX, Zhang SF, Töpel M, Amin SA, Lin L, Ge F, Wang DZ. Improving the genome and proteome annotations of the marine model diatom Thalassiosira pseudonana using a proteogenomics strategy. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:102-115. [PMID: 37073328 PMCID: PMC10077189 DOI: 10.1007/s42995-022-00161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/17/2022] [Indexed: 05/03/2023]
Abstract
Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20% of global carbon fixation and 40% of marine primary productivity; thus, they are essential for global carbon biogeochemical cycling and climate. The availability of ten diatom genome sequences has facilitated evolutionary, biological and ecological research over the past decade; however, a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking. Here, we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy. In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins, accounting for ~ 81% of the predicted protein-coding genes. Proteogenomic analysis identified 1235 novel genes, 975 revised genes, 104 splice variants and 234 single amino acid variants. Furthermore, our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions. These findings substantially improve the genome annotation of T. pseudonana and provide insights into new biological functions of diatoms. This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00161-y.
Collapse
Affiliation(s)
- Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000 China
| | - Ming-Kun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
- IVL-Swedish Environmental Research Institute, Box 53021, 40014 Gothenburg, Sweden
| | - Shady A. Amin
- New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
12
|
Oh ZG, Askey B, Gunn LH. Red Rubiscos and opportunities for engineering green plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:520-542. [PMID: 36055563 PMCID: PMC9833100 DOI: 10.1093/jxb/erac349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.
Collapse
Affiliation(s)
- Zhen Guo Oh
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Bryce Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
13
|
Liu S, Storti M, Finazzi G, Bowler C, Dorrell RG. A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species Phaeodactylum. FRONTIERS IN PLANT SCIENCE 2022; 13:950467. [PMID: 36212359 PMCID: PMC9546453 DOI: 10.3389/fpls.2022.950467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Diatoms are an important group of algae, contributing nearly 40% of total marine photosynthetic activity. However, the specific molecular agents and transporters underpinning the metabolic efficiency of the diatom plastid remain to be revealed. We performed in silico analyses of 70 predicted plastid transporters identified by genome-wide searches of Phaeodactylum tricornutum. We considered similarity with Arabidopsis thaliana plastid transporters, transcriptional co-regulation with genes encoding core plastid metabolic pathways and with genes encoded in the mitochondrial genomes, inferred evolutionary histories using single-gene phylogeny, and environmental expression trends using Tara Oceans meta-transcriptomics and meta-genomes data. Our data reveal diatoms conserve some of the ion, nucleotide and sugar plastid transporters associated with plants, such as non-specific triose phosphate transporters implicated in the transport of phosphorylated sugars, NTP/NDP and cation exchange transporters. However, our data also highlight the presence of diatom-specific transporter functions, such as carbon and amino acid transporters implicated in intricate plastid-mitochondria crosstalk events. These confirm previous observations that substrate non-specific triose phosphate transporters (TPT) may exist as principal transporters of phosphorylated sugars into and out of the diatom plastid, alongside suggesting probable agents of NTP exchange. Carbon and amino acid transport may be related to intricate metabolic plastid-mitochondria crosstalk. We additionally provide evidence from environmental meta-transcriptomic/meta- genomic data that plastid transporters may underpin diatom sensitivity to ocean warming, and identify a diatom plastid transporter (J43171) whose expression may be positively correlated with temperature.
Collapse
Affiliation(s)
- Shun Liu
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Mattia Storti
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| |
Collapse
|
14
|
Cheong KY, Jouhet J, Maréchal E, Falkowski PG. The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom. PHOTOSYNTHESIS RESEARCH 2022; 153:71-82. [PMID: 35389175 DOI: 10.1007/s11120-022-00914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The redox state of the plastoquinone (PQ) pool is a known sensor for retrograde signaling. In this paper, we asked, "does the redox state of the PQ pool modulate the saturation state of thylakoid lipids?" Data from fatty acid composition and mRNA transcript abundance analyses suggest a strong connection between these two aspects in a model marine diatom. Fatty acid profiles of Phaeodactylum tricornutum exhibited specific changes when the redox state of the PQ pool was modulated by light and two chemical inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)]. Data from liquid chromatography with tandem mass spectrometry (LC-MS/MS) indicated a ca. 7-20% decrease in the saturation state of all four conserved thylakoid lipids in response to an oxidized PQ pool. The redox signals generated from an oxidized PQ pool in plastids also increased the mRNA transcript abundance of nuclear-encoded C16 fatty acid desaturases (FADs), with peak upregulation on a timescale of 6 to 12 h. The connection between the redox state of the PQ pool and thylakoid lipid saturation suggests a heretofore unrecognized retrograde signaling pathway that couples photosynthetic electron transport and the physical state of thylakoid membrane lipids.
Collapse
Affiliation(s)
- Kuan Yu Cheong
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, 5168, Grenoble Cedex 9, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, 5168, Grenoble Cedex 9, France
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Giguere DJ, Bahcheli AT, Slattery SS, Patel RR, Browne TS, Flatley M, Karas BJ, Edgell DR, Gloor GB. Telomere-to-telomere genome assembly of Phaeodactylum tricornutum. PeerJ 2022; 10:e13607. [PMID: 35811822 PMCID: PMC9266582 DOI: 10.7717/peerj.13607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 01/17/2023] Open
Abstract
Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes.
Collapse
Affiliation(s)
- Daniel J. Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alexander T. Bahcheli
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samuel S. Slattery
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rushali R. Patel
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler S. Browne
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gregory B. Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Zhang M, Chen N. Comparative analysis of Thalassionema chloroplast genomes revealed hidden biodiversity. BMC Genomics 2022; 23:327. [PMID: 35477350 PMCID: PMC9044688 DOI: 10.1186/s12864-022-08532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
The cosmopolitan Thalassionema species are often dominant components of the plankton diatom flora and sediment diatom assemblages in all but the Polar regions, making important ecological contribution to primary productivity. Historical studies concentrated on their indicative function for the marine environment based primarily on morphological features and essentially ignored their genomic information, hindering in-depth investigation on Thalassionema biodiversity. In this project, we constructed the complete chloroplast genomes (cpDNAs) of seven Thalassionema strains representing three different species, which were also the first cpDNAs constructed for any species in the order Thalassionematales that includes 35 reported species and varieties. The sizes of these Thalassionema cpDNAs, which showed typical quadripartite structures, varied from 124,127 bp to 140,121 bp. Comparative analysis revealed that Thalassionema cpDNAs possess conserved gene content inter-species and intra-species, along with several gene losses and transfers. Besides, their cpDNAs also have expanded inverted repeat regions (IRs) and preserve large intergenic spacers compared to other diatom cpDNAs. In addition, substantial genome rearrangements were discovered not only among different Thalassionema species but also among strains of a same species T. frauenfeldii, suggesting much higher diversity than previous reports. In addition to confirming the phylogenetic position of Thalassionema species, this study also estimated their emergence time at approximately 38 Mya. The availability of the Thalassionema species cpDNAs not only helps understand the Thalassionema species, but also facilitates phylogenetic analysis of diatoms.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, 10039, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
17
|
Oborník M. Organellar Evolution: A Path from Benefit to Dependence. Microorganisms 2022; 10:microorganisms10010122. [PMID: 35056571 PMCID: PMC8781833 DOI: 10.3390/microorganisms10010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
18
|
Hippmann AA, Schuback N, Moon K, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT. Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. PLANT DIRECT 2022; 6:e376. [PMID: 35079683 PMCID: PMC8777261 DOI: 10.1002/pld3.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/19/2023]
Abstract
Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nina Schuback
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kyung‐Mee Moon
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - John P. McCrow
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
| | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Leonard F. Foster
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Beverley R. Green
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Maria T. Maldonado
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
19
|
Havurinne V, Handrich M, Antinluoma M, Khorobrykh S, Gould SB, Tyystjärvi E. Genetic autonomy and low singlet oxygen yield support kleptoplast functionality in photosynthetic sea slugs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5553-5568. [PMID: 33989402 PMCID: PMC8318255 DOI: 10.1093/jxb/erab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
The kleptoplastic sea slug Elysia chlorotica consumes Vaucheria litorea, stealing its plastids, which then photosynthesize inside the animal cells for months. We investigated the properties of V. litorea plastids to understand how they withstand the rigors of photosynthesis in isolation. Transcription of specific genes in laboratory-isolated V. litorea plastids was monitored for 7 days. The involvement of plastid-encoded FtsH, a key plastid maintenance protease, in recovery from photoinhibition in V. litorea was estimated in cycloheximide-treated cells. In vitro comparison of V. litorea and spinach thylakoids was applied to investigate reactive oxygen species formation in V. litorea. In comparison to other tested genes, the transcripts of ftsH and translation elongation factor EF-Tu (tufA) decreased slowly in isolated V. litorea plastids. Higher levels of FtsH were also evident in cycloheximide-treated cells during recovery from photoinhibition. Charge recombination in PSII of V. litorea was found to be fine-tuned to produce only small quantities of singlet oxygen, and the plastids also contained reactive oxygen species-protective compounds. Our results support the view that the genetic characteristics of the plastids are crucial in creating a photosynthetic sea slug. The plastid's autonomous repair machinery is likely enhanced by low singlet oxygen production and elevated expression of FtsH.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maria Handrich
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mikko Antinluoma
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sven B Gould
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Esa Tyystjärvi
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
- Correspondence:
| |
Collapse
|
20
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
21
|
Li R, Jia X, Zhang J, Jia S, Liu T, Qu J, Wang X. The Complete Plastid Genomes of Seven Sargassaceae Species and Their Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:747036. [PMID: 34804089 PMCID: PMC8602799 DOI: 10.3389/fpls.2021.747036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Sargassum is one of the most important genera of the family Sargassaceae in brown algae and is used to produce carrageenan, mannitol, iodine, and other economic substances. Here, seven complete plastid genomes of Sargassum ilicifolium var. conduplicatum, S. graminifolium, S. phyllocystum, S. muticum, S. feldmannii, S. mcclurei, and S. henslowianum were assembled using next-generation sequencing. The sizes of the seven circular genomes ranged from 124,258 to 124,563 bp, with two inverted regions and the same set of plastid genes, including 139 protein-coding genes (PCGs), 28 transfer (t)RNAs, and 6 ribosomal (r)RNAs. Compared with the other five available plastid genomes of Fucales, 136 PCGs were conserved, with two common ones shared with Coccophora langsdorfii, and one with S. fusiforme and S. horneri. The co-linear analysis identified two inversions of trnC(gca) and trnN(gtt) in ten Sargassum species, against S. horneri and C. langsdorfii. The phylogenetic analysis based on the plastid genomes of 55 brown algae (Phaeophyceae) showed four clades, whose ancient ancestor lived around 201.42 million years ago (Mya), and the internal evolutionary branches in Fucales started to be formed 92.52 Mya, while Sargassum species were divided into two subclades 14.33 Mya. Our novel plastid genomes provided evidence for the speciation of brown algae and plastid genomic evolution events.
Collapse
Affiliation(s)
- Ruoran Li
- College of Life Sciences, Yantai University, Yantai, China
| | - Xuli Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shangang Jia,
| | - Tao Liu
- College of Life Sciences, Yantai University, Yantai, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Tao Liu,
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai, China
- Jiangyong Qu,
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, China
- Xumin Wang,
| |
Collapse
|
22
|
Cochrane RR, Brumwell SL, Shrestha A, Giguere DJ, Hamadache S, Gloor GB, Edgell DR, Karas BJ. Cloning of Thalassiosira pseudonana's Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli. BIOLOGY 2020; 9:E358. [PMID: 33114477 PMCID: PMC7693118 DOI: 10.3390/biology9110358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023]
Abstract
Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana's mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada; (R.R.C.); (S.L.B.); (A.S.); (D.J.G.); (S.H.); (G.B.G.); (D.R.E.)
| |
Collapse
|
23
|
Roy AS, Woehle C, LaRoche J. The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira. Front Microbiol 2020; 11:523689. [PMID: 33123095 PMCID: PMC7566914 DOI: 10.3389/fmicb.2020.523689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Ferredoxins are iron–sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains’ diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.
Collapse
Affiliation(s)
- Alexandra-Sophie Roy
- Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Christian Woehle
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
|
25
|
Nucleotide substitution rates of diatom plastid encoded protein genes are positively correlated with genome architecture. Sci Rep 2020; 10:14358. [PMID: 32873883 PMCID: PMC7462845 DOI: 10.1038/s41598-020-71473-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.
Collapse
|
26
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
27
|
Ait-Mohamed O, Novák Vanclová AMG, Joli N, Liang Y, Zhao X, Genovesio A, Tirichine L, Bowler C, Dorrell RG. PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:590949. [PMID: 33178253 PMCID: PMC7596299 DOI: 10.3389/fpls.2020.590949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic cell biology, underpinning the cell cycle, physiological transitions, and facilitating holistic responses to environmental stress, but its overall dynamics in eukaryotic algae remain poorly understood. Better understanding of transcriptional partitioning may provide key insights into the primary metabolism pathways of eukaryotic algae, which frequently depend on intricate metabolic associations between the chloroplasts and mitochondria that are not found in plants. Here, we exploit 187 publically available RNAseq datasets generated under varying nitrogen, iron and phosphate growth conditions to understand the co-regulatory principles underpinning transcription in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene Correlation Network Analysis), we identify 28 merged modules of co-expressed genes in the P. tricornutum genome, which show high connectivity and correlate well with previous microarray-based surveys of gene co-regulation in this species. We use combined functional, subcellular localization and evolutionary annotations to reveal the fundamental principles underpinning the transcriptional co-regulation of genes implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the functions of diverse transcription factors underpinning this co-regulation. The resource is publically available as PhaeoNet, an advanced tool to understand diatom gene co-regulation.
Collapse
Affiliation(s)
- Ouardia Ait-Mohamed
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anna M. G. Novák Vanclová
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nathalie Joli
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Xue Zhao
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
| | - Auguste Genovesio
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
- *Correspondence: Leila Tirichine,
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Chris Bowler,
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
28
|
Green BR. What Happened to the Phycobilisome? Biomolecules 2019; 9:biom9110748. [PMID: 31752285 PMCID: PMC6921069 DOI: 10.3390/biom9110748] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, Vancouver, BC V6N 3T7, Canada
| |
Collapse
|
29
|
Cui Y, Thomas-Hall SR, Schenk PM. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: Progress in lipid induction techniques towards industry adoption. Food Chem 2019; 297:124937. [DOI: 10.1016/j.foodchem.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
30
|
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. Dictyochophyceae Plastid Genomes Reveal Unusual Variability in Their Organization. JOURNAL OF PHYCOLOGY 2019; 55:1166-1180. [PMID: 31325913 DOI: 10.1111/jpy.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Dictyochophyceae (silicoflagellates) are unicellular freshwater and marine algae (Heterokontophyta, stramenopiles). Despite their abundance in global oceans and potential ecological significance, discovered in recent years, neither nuclear nor organellar genomes of representatives of this group were sequenced until now. Here, we present the first complete plastid genome sequences of Dictyochophyceae, obtained from four species: Dictyocha speculum, Rhizochromulina marina, Florenciella parvula and Pseudopedinella elastica. Despite their comparable size and genetic content, these four plastid genomes exhibit variability in their organization: plastid genomes of F. parvula and P. elastica possess conventional quadripartite structure with a pair of inverted repeats, R. marina instead possesses two direct repeats with the same orientation and D. speculum possesses no repeats at all. We also observed a number of unusual traits in the plastid genome of D. speculum, including expansion of the intergenic regions, presence of an intron in the otherwise non-intron-bearing psaA gene, and an additional copy of the large subunit of RuBisCO gene (rbcL), the last of which has never been observed in any plastid genome. We conclude that despite noticeable gene content similarities between the plastid genomes of Dictyochophyceae and their relatives (pelagophytes, diatoms), the number of distinctive features observed in this lineage strongly suggests that additional taxa require further investigation.
Collapse
Affiliation(s)
- Kwi Young Han
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kacper Maciszewski
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Louis Graf
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ji Hyun Yang
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
31
|
Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci U S A 2019; 116:17316-17322. [PMID: 31409711 DOI: 10.1073/pnas.1906726116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A descendant of the red algal lineage, diatoms are unicellular eukaryotic algae characterized by thylakoid membranes that lack the spatial differentiation of stroma and grana stacks found in green algae and higher plants. While the photophysiology of diatoms has been studied extensively, very little is known about the spatial organization of the multimeric photosynthetic protein complexes within their thylakoid membranes. Here, using cryo-electron tomography, proteomics, and biophysical analyses, we elucidate the macromolecular composition, architecture, and spatial distribution of photosystem II complexes in diatom thylakoid membranes. Structural analyses reveal 2 distinct photosystem II populations: loose clusters of complexes associated with antenna proteins and compact 2D crystalline arrays of dimeric cores. Biophysical measurements reveal only 1 photosystem II functional absorption cross section, suggesting that only the former population is photosynthetically active. The tomographic data indicate that the arrays of photosystem II cores are physically separated from those associated with antenna proteins. We hypothesize that the islands of photosystem cores are repair stations, where photodamaged proteins can be replaced. Our results strongly imply convergent evolution between the red and the green photosynthetic lineages toward spatial segregation of dynamic, functional microdomains of photosystem II supercomplexes.
Collapse
|
32
|
Schober AF, R�o B�rtulos C, Bischoff A, Lepetit B, Gruber A, Kroth PG. Organelle Studies and Proteome Analyses of Mitochondria and Plastids Fractions from the Diatom Thalassiosira pseudonana. PLANT & CELL PHYSIOLOGY 2019; 60:1811-1828. [PMID: 31179502 PMCID: PMC6683858 DOI: 10.1093/pcp/pcz097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/14/2019] [Indexed: 05/19/2023]
Abstract
Diatoms are unicellular algae and evolved by secondary endosymbiosis, a process in which a red alga-like eukaryote was engulfed by a heterotrophic eukaryotic cell. This gave rise to plastids of remarkable complex architecture and ultrastructure that require elaborate protein importing, trafficking, signaling and intracellular cross-talk pathways. Studying both plastids and mitochondria and their distinctive physiological pathways in organello may greatly contribute to our understanding of photosynthesis, mitochondrial respiration and diatom evolution. The isolation of such complex organelles, however, is still demanding, and existing protocols are either limited to a few species (for plastids) or have not been reported for diatoms so far (for mitochondria). In this work, we present the first isolation protocol for mitochondria from the model diatom Thalassiosira pseudonana. Apart from that, we extended the protocol so that it is also applicable for the purification of a high-quality plastids fraction, and provide detailed structural and physiological characterizations of the resulting organelles. Isolated mitochondria were structurally intact, showed clear evidence of mitochondrial respiration, but the fractions still contained residual cell fragments. In contrast, plastid isolates were virtually free of cellular contaminants, featured structurally preserved thylakoids performing electron transport, but lost most of their stromal components as concluded from Western blots and mass spectrometry. Liquid chromatography electrospray-ionization mass spectrometry studies on mitochondria and thylakoids, moreover, allowed detailed proteome analyses which resulted in extensive proteome maps for both plastids and mitochondria thus helping us to broaden our understanding of organelle metabolism and functionality in diatoms.
Collapse
Affiliation(s)
- Alexander F Schober
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
- Corresponding author: E-mail, ; Fax, +49(0)7531-88-4047
| | - Carolina R�o B�rtulos
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annsophie Bischoff
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bernard Lepetit
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ansgar Gruber
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovsk� 1160/31, Česk� Budějovice, Czech Republic
| | - Peter G Kroth
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Hamsher SE, Keepers KG, Pogoda CS, Stepanek JG, Kane NC, Kociolek JP. Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS One 2019; 14:e0217824. [PMID: 31269054 PMCID: PMC6608930 DOI: 10.1371/journal.pone.0217824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast genomes, particularly within a genus, has not been well documented. Herein, we present three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and H. coffeaeformis), the first pennate diatom genus to be represented by more than one species. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 24% size difference within the genus. Differences in genome size were due to changes in the length of the inverted repeat region, length of intergenic regions, and the variable presence of ORFs that appear to encode as-yet-undescribed proteins. All three species shared a set of 161 core features but differed in the presence of two genes, serC and tyrC of foreign and unknown origin, respectively. A comparison of these data to three previously published chloroplast genomes in the non-pennate genus Cyclotella (Thalassiosirales) revealed that Halamphora has undergone extensive chloroplast genome rearrangement compared to other genera, as well as containing variation within the genus. Finally, a comparison of Halamphora chloroplast genomes to those of land plants indicates diatom chloroplast genomes within this genus may be evolving at least ~4–7 times faster than those of land plants. Studies such as these provide deeper insights into diatom chloroplast evolution and important genetic resources for future analyses.
Collapse
Affiliation(s)
- Sarah E. Hamsher
- Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, United States of America
- * E-mail:
| | - Kyle G. Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Cloe S. Pogoda
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Joshua G. Stepanek
- Department of Biology, Colorado Mountain College, Edwards, Colorado, United States of America
| | - Nolan C. Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - J. Patrick Kociolek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
34
|
Prasad B, Lein W, Thiyam G, Lindenberger CP, Buchholz R, Vadakedath N. Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. PHOTOSYNTHESIS RESEARCH 2019; 140:173-188. [PMID: 30276605 DOI: 10.1007/s11120-018-0587-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477-7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629-8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5'end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.
Collapse
Affiliation(s)
- Binod Prasad
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Wolfgang Lein
- Institute for Biotechnology, Technical University Berlin, 13353, Berlin, Germany
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - General Thiyam
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - Christoph Peter Lindenberger
- Institute of Bioprocess Engineering, Friedrich-Alexander-University of Erlangen Nuremberg Busan Campus, 1276 Jisa-Dong, Gangseo-Gu, Busan, 618-230, South Korea
| | - Rainer Buchholz
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Nithya Vadakedath
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
35
|
Organellar DNA Polymerases in Complex Plastid-Bearing Algae. Biomolecules 2019; 9:biom9040140. [PMID: 30959949 PMCID: PMC6523293 DOI: 10.3390/biom9040140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/16/2023] Open
Abstract
DNA replication in plastids and mitochondria is generally regulated by nucleus-encoded proteins. In plants and red algae, a nucleus-encoded enzyme called POP (plant and protist organellar DNA polymerase) is involved in DNA replication in both organelles by virtue of its dual localization. POPs are family A DNA polymerases, which include bacterial DNA polymerase I (PolI). POP homologs have been found in a wide range of eukaryotes, including plants, algae, and non-photosynthetic protists. However, the phylogeny and subcellular localizations of POPs remain unclear in many algae, especially in secondary and tertiary plastid-bearing groups. In this study, we report that chlorarachniophytes possess two evolutionarily distinct POPs, and fluorescent protein-tagging experiments demonstrate that they are targeted to the secondary plastids and mitochondria, respectively. The timing of DNA replication is different between the two organelles in the chlorarachniophyte Bigelowiella natans, and this seems to be correlated to the transcription of respective POP genes. Dinoflagellates also carry two distinct POP genes, possibly for their plastids and mitochondria, whereas haptophytes and ochrophytes have only one. Therefore, unlike plants, some algal groups are likely to have evolved multiple DNA polymerases for various organelles. This study provides a new insight into the evolution of organellar DNA replication in complex plastid-bearing organisms.
Collapse
|
36
|
Crowell RM, Nienow JA, Cahoon AB. The complete chloroplast and mitochondrial genomes of the diatom Nitzschia palea (Bacillariophyceae) demonstrate high sequence similarity to the endosymbiont organelles of the dinotom Durinskia baltica. JOURNAL OF PHYCOLOGY 2019; 55:352-364. [PMID: 30536677 DOI: 10.1111/jpy.12824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Nitzschia palea is a common freshwater diatom used as a bioindicator because of its tolerance of polluted waterways. There is also evidence it may be the tertiary endosymbiont within the "dinotom" dinoflagellate Durinskia baltica. A putative strain of N. palea was collected from a pond on the University of Virginia's College at Wise campus and cultured. For initial identification, three markers were sequenced-nuclear 18S rDNA, the chloroplast 23S rDNA, and rbcL. Morphological characteristics were determined using light and scanning electron microscopy; based on these observations the cells were identified as N. palea and named strain "Wise." DNA from N. palea was deep sequenced and the chloroplast and mitochondrial genomes assembled. Single gene phylogenies grouped N. palea-Wise within a clearly defined N. palea clade and showed it was most closely related to the strain "SpainA3." The chloroplast genome of N. palea is 119,447 bp with a quadripartite structure, 135 protein-coding, 28 tRNA, and 3 rRNA genes. The mitochondrial genome is 37,754 bp with a single repeat region as found in other diatom chondriomes, 37 protein-coding, 23 tRNA, and 2 rRNA genes. The chloroplast genomes of N. palea and D. baltica have identical gene content, synteny, and a 92.7% pair-wise sequence similarity with most differences occurring in intergenic regions. The N. palea mitochondrial genome and D. baltica's endosymbiont mitochondrial genome also have identical gene content and order with a sequence similarity of 90.7%. Genome-based phylogenies demonstrated that D. baltica is more similar to N. palea than any other diatom sequence currently available. These data provide the genome sequences of two organelles for a widespread diatom and show they are very similar to those of Durinskia baltica's endosymbiont.
Collapse
Affiliation(s)
- Roseanna M Crowell
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - James A Nienow
- Department of Biology, Valdosta State University, Valdosta, Georgia, 31698, USA
| | - Aubrey Bruce Cahoon
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| |
Collapse
|
37
|
Chen H, Li T, Wang Q. Ten years of algal biofuel and bioproducts: gains and pains. PLANTA 2019; 249:195-219. [PMID: 30603791 DOI: 10.1007/s00425-018-3066-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 05/09/2023]
Abstract
It has been proposed that future efforts should focus on basic studies, biotechnology studies and synthetic biology studies related to algal biofuels and various high-value bioproducts for the economically viable production of algal biof uels. In recognition of diminishing fossil fuel reserves and the worsening environment, microalgal biofuel has been proposed as a renewable energy source with great potential. Algal biofuel thus became one of the hottest topics in renewable energy research in the new century, especially over the past decade. Between 2007 and 2017, research related to microalgal biofuels experienced a dramatic, three-stage development, rising, growing exponentially, and then declining rapidly due to overheating of the subject. However, biofuel-driven algal biotechnology and bioproducts research has been thriving since 2010. To clarify the gains (and pains) of the past decade and detail prospects for the future, this review summarizes the extensive scientific progress and substantial technical advances in algal biofuel over the past decade, covering basic biology, applied research, as well as the production of value-added natural products. Even after 10 years of hard work and billions of dollars in investments, its unacceptably high cost remains the ultimate bottleneck for the industrialization of algal biofuel. To maximize the total research benefits, both economically and socially, it has been proposed that future efforts should focus on basic studies to characterize oilgae, on biotechnology studies into various high-value bioproducts. Moreover, the development of synthetic biology provides new possibilities for the economically viable production of biofuels via the directional manufacture of microalgal bioproducts in algal cell factories.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China.
- University of the Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
38
|
Karnkowska A, Bennett MS, Triemer RE. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. Sci Rep 2018; 8:16071. [PMID: 30375469 PMCID: PMC6207741 DOI: 10.1038/s41598-018-34457-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022] Open
Abstract
Photosynthetic euglenids (Euglenophyta) are a monophyletic group of unicellular eukaryotes characterized by the presence of plastids, which arose as the result of the secondary endosymbiosis. Many Euglenophyta plastid (pt) genomes have been characterized recently, but they represented mainly one family - Euglenaceae. Here, we report a comparative analysis of plastid genomes from eight representatives of the family Phacaceae. Newly sequenced plastid genomes share a number of features including synteny and gene content, except for genes mat2 and mat5 encoding maturases. The observed diversity of intron number and presence/absence of maturases corroborated previously suggested correlation between the number of maturases in the pt genome and intron proliferation. Surprisingly, pt genomes of taxa belonging to Discoplastis and Lepocinclis encode two inverted repeat (IR) regions containing the rDNA operon, which are absent from the Euglenaceae. By mapping the presence/absence of IR region on the obtained phylogenomic tree, we reconstructed the most probable events in the evolution of IRs in the Euglenophyta. Our study highlights the dynamic nature of the Euglenophyta plastid genome, in particular with regards to the IR regions that underwent losses repeatedly.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Matthew S Bennett
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room# 166 Plant Biology Labs, East Lansing, Michigan, 48824, USA
| | - Richard E Triemer
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room# 166 Plant Biology Labs, East Lansing, Michigan, 48824, USA
| |
Collapse
|
39
|
Yang M, Lin X, Liu X, Zhang J, Ge F. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. MOLECULAR PLANT 2018; 11:1292-1307. [PMID: 30176371 DOI: 10.1016/j.molp.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Diatoms comprise a diverse and ecologically important group of eukaryotic phytoplankton that significantly contributes to marine primary production and global carbon cycling. Phaeodactylum tricornutum is commonly used as a model organism for studying diatom biology. Although its genome was sequenced in 2008, a high-quality genome annotation is still not available for this diatom. Here we report the development of an integrated proteogenomic pipeline and its application for improved annotation of P. tricornutum genome using mass spectrometry (MS)-based proteomics data. Our proteogenomic analysis unambiguously identified approximately 8300 genes and revealed 606 novel proteins, 506 revised genes, 94 splice variants, 58 single amino acid variants, and a holistic view of post-translational modifications in P. tricornutum. We experimentally confirmed a subset of novel events and obtained MS evidence for more than 200 micropeptides in P. tricornutum. These findings expand the genomic landscape of P. tricornutum and provide a rich resource for the study of diatom biology. The proteogenomic pipeline we developed in this study is applicable to any sequenced eukaryote and thus represents a significant contribution to the toolset for eukaryotic proteogenomic analysis. The pipeline and its source code are freely available at https://sourceforge.net/projects/gapeproteogenomic.
Collapse
Affiliation(s)
- Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
40
|
Kamikawa R, Azuma T, Ishii KI, Matsuno Y, Miyashita H. Diversity of Organellar Genomes in Non-photosynthetic Diatoms. Protist 2018; 169:351-361. [PMID: 29803116 DOI: 10.1016/j.protis.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
We determined the complete sequences of the plastid and mitochondrial genomes of three non-photosynthetic Nitzschia spp., as well as those of a photosynthetic close relative, Nitzschia palea. All the plastid genomes and the three mitochondrial genomes determined were found to be circularly mapping, and the other mitochondrial genomes were predicted to be of a linear form with telomere-like structures at both ends. We found that all the non-photosynthetic plastid genomes are streamlined and lack a common gene set: two RNA genes, and 60 protein-coding genes, most of which are related to photosynthetic functions. Nevertheless, the non-photosynthetic plastid genomes commonly retain ATP synthase complex genes, although atpE is missing in Nitzschia sp. NIES-3581 and three other non-photosynthetic species lack atpF instead of atpE. This observation suggests an evolutionary constraint against the loss of ATP synthase complex genes. All the non-photosynthetic diatom plastid genomes lacked two genes, thiS and thiG, involved in thiamin biosynthesis. Consistent with this gene loss, non-photosynthetic Nitzschia spp. were incapable of thriving in vitamin B1-lacking media. This study clearly demonstrated not only the evolutionary trends of plastid genome reduction but also the linkage between plastid genome reduction and a biological change of nutrient requirements in Nitzschia.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan.
| | - Tomonori Azuma
- Faculty of Integrated Human Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Ken-Ichiro Ishii
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Yusei Matsuno
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Sakyo ku, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 2018. [DOI: 10.1016/j.plipres.2018.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Liu F, Jin Z, Wang Y, Bi Y, Melton JT. Plastid Genome of Dictyopteris divaricata (Dictyotales, Phaeophyceae): Understanding the Evolution of Plastid Genomes in Brown Algae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:627-637. [PMID: 29164355 DOI: 10.1007/s10126-017-9781-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
Dictyotophycidae is a subclass of brown algae containing 395 species that are distributed worldwide. A complete plastid (chloroplast) genome (ptDNA or cpDNA) had not previously been sequenced from this group. In this study, the complete plastid genome of Dictyopteris divaricata (Okamura) Okamura (Dictyotales, Phaeophyceae) was characterized and compared to other brown algal ptDNAs. This plastid genome was 126,099 bp in size with two inverted repeats (IRs) of 6026 bp. The D. divaricata IRs contained rpl21, making its IRs larger than representatives from the orders Fucales and Laminariales, but was smaller than that from Ectocarpales. The G + C content of D. divaricata (31.19%) was the highest of the known ptDNAs of brown algae (28.94-31.05%). Two protein-coding genes, rbcR and rpl32, were present in ptDNAs of Laminariales, Ectocarpales (Ectocarpus siliculosus), and Fucales (LEF) but were absent in D. divaricata. Reduced intergenic space (13.11%) and eight pairs of overlapping genes in D. divaricata ptDNA made it the most compact plastid genome in brown algae so far. The architecture of D. divaricata ptDNA showed higher similarity to that of Laminariales compared with Fucales and Ectocarpales. The difference in general features, gene content, and architecture among the ptDNAs of D. divaricata and LEF clade revealed the diversity and evolutionary trends of plastid genomes in brown algae.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, People's Republic of China.
| | - Zhe Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yu Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, People's Republic of China
- School of Life Sciences, Shandong University, Jinan, Shandong, 250100, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, People's Republic of China
| | - James T Melton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487-0345, USA
| |
Collapse
|
43
|
Shoenfelt EM, Sun J, Winckler G, Kaplan MR, Borunda AL, Farrell KR, Moreno PI, Gaiero DM, Recasens C, Sambrotto RN, Bostick BC. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom. SCIENCE ADVANCES 2017; 3:e1700314. [PMID: 28691098 PMCID: PMC5482553 DOI: 10.1126/sciadv.1700314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/08/2017] [Indexed: 05/31/2023]
Abstract
Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe') dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods.
Collapse
Affiliation(s)
- Elizabeth M Shoenfelt
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| | - Jing Sun
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| | - Gisela Winckler
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| | - Michael R Kaplan
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
| | - Alejandra L Borunda
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| | - Kayla R Farrell
- Department of Environmental Science, Barnard College at Columbia University, New York, NY 10027, USA
| | - Patricio I Moreno
- Department of Ecological Sciences, University of Chile, Av. Libertador Bernardo O'Higgins 1058, Santiago, Chile
| | - Diego M Gaiero
- Center for Earth Science Research, National University of Córdoba, Av. Haya de la Torre s/n, Córdoba, Argentina
| | - Cristina Recasens
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
| | - Raymond N Sambrotto
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964, USA
| |
Collapse
|
44
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
45
|
Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO 2 Levels. mSystems 2017; 2:mSystems00142-16. [PMID: 28217746 PMCID: PMC5309336 DOI: 10.1128/msystems.00142-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/24/2017] [Indexed: 12/03/2022] Open
Abstract
Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism. Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.
Collapse
|
46
|
Dorrell RG, Klinger CM, Newby RJ, Butterfield ER, Richardson E, Dacks JB, Howe CJ, Nisbet ER, Bowler C. Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Mol Biol Evol 2016; 34:361-379. [DOI: 10.1093/molbev/msw235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Flori S, Jouneau PH, Finazzi G, Maréchal E, Falconet D. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist 2016; 167:254-67. [DOI: 10.1016/j.protis.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
48
|
Tajima N, Saitoh K, Sato S, Maruyama F, Ichinomiya M, Yoshikawa S, Kurokawa K, Ohta H, Tabata S, Kuwata A, Sato N. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms). Curr Genet 2016; 62:887-896. [DOI: 10.1007/s00294-016-0598-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 10/21/2022]
|
49
|
Cao M, Yuan XL, Bi G. Complete sequence and analysis of plastid genomes of Pseudo-nitzschia multiseries (Bacillariophyta). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2897-8. [DOI: 10.3109/19401736.2015.1060428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Min Cao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Long Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guiqi Bi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
García-Otero N, Alonso-Lorenzo J, del Carmen Barciela-Alonso M, Bermejo-Barrera P, Moreda-Piñeiro A. Developments on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for identifying dissolved and particulate proteins in seawater after two-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Microchem J 2015. [DOI: 10.1016/j.microc.2015.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|