1
|
Xu X, Su Y, Yang J, Li J, Gao Y, Li C, Wang X, Gou L, Zheng Z, Xie C, Ma J, Ma J. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:49. [PMID: 38349579 DOI: 10.1007/s00122-024-04557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
KEY MESSAGE A novel QTL on chromosome 2A for Fusarium crown rot resistance was identified and validated in wheat. Fusarium crown rot (FCR) is a fungal disease that causes significant yield losses in many cereal growing regions in the world. In this study, genetic analysis was conducted for a wheat EMS mutant C549 which showed stable resistance to FCR at seedling stage. A total of 10 QTL were detected on chromosomes 1A, 2A, 3B, 4A, 6B, and 7B using a population of 138 F7 recombinant inbred lines (RILs) derived from a cross between C549 and a Chinese germplasm 3642. A novel locus Qfcr.cau-2A, which accounted for up to 24.42% of the phenotypic variation with a LOD value of 12.78, was consistently detected across all six trials conducted. Furthermore, possible effects of heading date (HD) and plant height on FCR severity were also investigated in the mapping population. While plant height had no effects on FCR resistance, a weak and negative association between FCR resistance and HD was observed. A QTL for HD (Qhd.cau-2A.2) was coincident with Qfcr.cau-2A. Conditional QTL mapping indicated that although Qfcr.cau-2A and Qhd.cau-2A.2 had significant interactions, Qfcr.cau-2A remained significant after the effects of HD was removed. It is unlikely that genes underlying these two loci are same. Nevertheless, the stable expression of Qfcr.cau-2A in the validation population of 148 F7 RILs developed between C549 and its wild parent Chuannong 16 demonstrated the potential value of this locus in FCR resistance breeding programs.
Collapse
Affiliation(s)
- Xiangru Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiatian Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyi Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Lulu Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chaojie Xie
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Liu D, Yuan C, Singh RP, Randhawa MS, Bhavani S, Kumar U, Huerta-Espino J, Lagudah E, Lan C. Stripe rust and leaf rust resistance in CIMMYT wheat line "Mucuy" is conferred by combinations of race-specific and adult-plant resistance loci. FRONTIERS IN PLANT SCIENCE 2022; 13:880138. [PMID: 36061764 PMCID: PMC9437451 DOI: 10.3389/fpls.2022.880138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Developing wheat varieties with durable resistance is a core objective of the International Maize and Wheat Improvement Center (CIMMYT) and many other breeding programs worldwide. The CIMMYT advanced wheat line "Mucuy" displayed high levels of resistance to stripe rust (YR) and leaf rust (LR) in field evaluations in Mexico and several other countries. To determine the genetic basis of YR and LR resistance, 138 F5 recombinant inbred lines (RILs) derived from the cross of Apav#1× Mucuy were phenotyped for YR responses from 2015 to 2020 at field sites in India, Kenya, and Mexico, and LR in Mexico. Seedling phenotyping for YR and LR responses was conducted in the greenhouse in Mexico using the same predominant races as in field trials. Using 12,681 polymorphic molecular markers from the DArT, SNP, and SSR genotyping platforms, we constructed genetic linkage maps and QTL analyses that detected seven YR and four LR resistance loci. Among these, a co-located YR/LR resistance loci was identified as Yr29/Lr46, and a seedling stripe rust resistance gene YrMu was mapped on the 2AS/2NS translocation. This fragment also conferred moderate adult plant resistance (APR) under all Mexican field environments and in one season in Kenya. Field trial phenotyping with Lr37-virulent Puccinia triticina races indicated the presence of an APR QTL accounting for 18.3-25.5% of the LR severity variation, in addition to a novel YR resistance QTL, QYr.cim-3DS, derived from Mucuy. We developed breeder-friendly KASP and indel molecular markers respectively for Yr29/Lr46 and YrMu. The current study validated the presence of known genes and identified new resistance loci, a QTL combination effect, and flanking markers to facilitate accelerated breeding for genetically complex, durable rust resistance.
Collapse
Affiliation(s)
- Demei Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design Chinese Academy of Sciences (CAS), Xining, China
| | - Chan Yuan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, Instituto Nacional de Investigacion Forestales Agricolas y Pecuarias (INIFAP), Texcoco, Mexico
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Canberra, ACT, Australia
| | - Caixia Lan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Wu P, Yang L, Guo G, Hu J, Qiu D, Li Y, Shi X, Zhang H, Liu H, Zhao J, Sun G, Zhou Y, Liu Z, Li H. Molecular mapping and identification of a candidate gene for new locus Hg2 conferring hairy glume in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110879. [PMID: 33902847 DOI: 10.1016/j.plantsci.2021.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Glume hairiness or pubescence that occurs in hexaploid common wheat and its relatives at different ploidy levels is a distinct morphological marker. Current knowledge about the genetic control of wheat glume hairiness is based on study of Hg1 (formerly Hg) on chromosome 1AS. Here, we report characterization of a new locus for hairy glume Hg2 in synthetic hexaploid wheat line CIGM86.944. Hg2 was inherited a dominant allele. Bulked segregant analysis and RNA-sequencing (BSR-Seq) was performed on an F2:3 population from cross CIGM86.944 × Shannong 29 (glabrous glume), which localized Hg2 in a 2.02 cM genetic interval corresponding to ∼1.08 Mb (754,001,564-755,082,433 Mb) on chromosome 2BL in the Chinese Spring reference genome. Gene annotation and expression identified TraesCS2B02 G562300.1 encoding diacylglycerol kinase 5 protein and TraesCS2B02 G561400.1 encoding a wound-responsive family protein as possible candidate genes regulating development of glume hairiness. The identification of Hg2 provides new insights into the genetic control of glume hairiness in wheat.
Collapse
Affiliation(s)
- Peipei Wu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Yang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghao Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaohan Shi
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Zhang
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Liu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juntao Zhao
- Zhao Xian Experimental Farm, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 051530, Hebei, China
| | - Guozhong Sun
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhou
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Li D, Walker E, Francki M. Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22115580. [PMID: 34070394 PMCID: PMC8197541 DOI: 10.3390/ijms22115580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (R-genes) associated with SNB response. Alignment of QTL intervals identified significant genome rearrangements on 1BS between parents of the DH population EGA Blanco, Millewa and the reference sequence of Chinese Spring with subtle rearrangements on 5BL. Nevertheless, annotation of genomic intervals in the reference sequence were able to identify and map 13 and 12 R-genes on 1BS and 5BL, respectively. R-genes discriminated co-located QTL on 1BS into two distinct but linked loci. NRC1a and TFIID mapped in one QTL on 1BS whereas RGA and Snn1 mapped in the linked locus and all were associated with SNB resistance but in one environment only. Similarly, Tsn1 and WK35 were mapped in one QTL on 5BL with NETWORKED 1A and RGA genes mapped in the linked QTL interval. This study provided new insights on possible biochemical, cellular and molecular mechanisms responding to SNB infection in different environments and also addressed limitations of using the reference sequence to identify the full complement of functional R-genes in modern varieties.
Collapse
Affiliation(s)
- Dora Li
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
| | - Esther Walker
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
| | - Michael Francki
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
5
|
Li Z, Yuan C, Herrera-Foessel SA, Randhawa MS, Huerta-Espino J, Liu D, Dreisigacker S, Singh RP, Lan C. Four Consistent Loci Confer Adult Plant Resistance to Leaf Rust in the Durum Wheat Lines Heller#1 and Dunkler. PHYTOPATHOLOGY 2020; 110:892-899. [PMID: 31850832 DOI: 10.1094/phyto-09-19-0348-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.
Collapse
Affiliation(s)
- Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, Wuhan City, Hubei Province 430070, People's Republic of China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, Wuhan City, Hubei Province 430070, People's Republic of China
| | | | - Mandeep S Randhawa
- International Maize and Wheat Improvement Center, Mexico City 06600, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Chapingo, State of Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, People's Republic of China
- China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, People's Republic of China
| | | | - Ravi P Singh
- International Maize and Wheat Improvement Center, Mexico City 06600, Mexico
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, Wuhan City, Hubei Province 430070, People's Republic of China
| |
Collapse
|
6
|
Čerenak A, Kolenc Z, Sehur P, Whittock SP, Koutoulis A, Beatson R, Buck E, Javornik B, Škof S, Jakše J. New Male Specific Markers for Hop and Application in Breeding Program. Sci Rep 2019; 9:14223. [PMID: 31578340 PMCID: PMC6775077 DOI: 10.1038/s41598-019-50400-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Male specific DNA sequences were selected from a Diversity Arrays Technology (DArT) mapping study to evaluate their suitability for determination of the sex phenotype among young seedlings in a hop (Humulus lupulus L.) breeding program. Ten male specific DArT markers showed complete linkage with male sex phenotype in three crossing families. Following optimization, four were successfully converted into PCR markers and a multiplex PCR approach for their use was developed. Among 197 plants (97 from the world collection; 100 from three segregating families), 94-100% positive correlation with sex phenotypic data was achieved for the single PCR amplification, whereas the multiplex approach showed 100% correlation. To develop a fast and low-cost method, crude sample multiplex PCR was evaluated in 253 progenies from 14 segregating populations without losing accuracy. The study describes, for the first time, the routine application of molecular markers linked to male sex in an intensive Slovenian hop breeding program. The methods described could be employed for screening of sex at the seedling stage in other hop programs worldwide, thereby saving resources for desirable female plants.
Collapse
Affiliation(s)
- Andreja Čerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310, Žalec, Slovenia.
| | - Zala Kolenc
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310, Žalec, Slovenia
| | - Petra Sehur
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, 3310, Žalec, Slovenia
| | - Simon P Whittock
- Hop Products Australia, 446 Elizabeth Street Hobart, Tasmania & School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Anthony Koutoulis
- University of Tasmania, School of Natural Sciences, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Ron Beatson
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Emily Buck
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Branka Javornik
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Suzana Škof
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Physical information of 2705 PCR-based molecular markers and the evaluation of their potential use in wheat. J Genet 2019. [DOI: 10.1007/s12041-019-1114-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zheng X, Wen X, Qiao L, Zhao J, Zhang X, Li X, Zhang S, Yang Z, Chang Z, Chen J, Zheng J. A novel QTL QTrl.saw-2D.2 associated with the total root length identified by linkage and association analyses in wheat (Triticum aestivum L.). PLANTA 2019; 250:129-143. [PMID: 30944981 DOI: 10.1007/s00425-019-03154-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
In wheat, a QTL QTrl.saw-2D.2 associated with the total root length was identified, presumably containing genes closely related to root development. A mapping population of 184 recombinant inbred lines derived from the cross SY95-71 × CH7034 was used to map QTL for seedling root characteristics in hydroponic culture (HC) and in soil-filled pot (SP) methods. Four traits, including maximum root length (MRL), root number (RN), total length (TRL), and root diameter (RD) were measured and used in QTL analyses. A total of 33 QTL for the four root traits were detected, 17 QTLs for TRL, six for RN, seven for MRL, and three for RD. Seven QTL were detected in both HC and SP methods, which explained 7-18% phenotypic variation. One QTL QTrl.saw-2D.2 detected in both HC and SP methods was also validated in another population comprised of 215 diverse lines. This QTL is a novel QTL that explained the highest phenotypic variation 18% in all QTL identified in the present study. Based on candidate gene and comparative genomics analyses, the QTL QTrl.saw-2D.2 may contain genes closely related to root development in wheat (Triticum aestivum L.). The two candidate genes were proposed to explore in future studies.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Xiaojun Zhang
- The Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xin Li
- The Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Shuwei Zhang
- The Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Zujun Yang
- The Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Zhijian Chang
- The Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA.
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China.
| |
Collapse
|
9
|
Abu Zaitoun SY, Jamous RM, Shtaya MJ, Mallah OB, Eid IS, Ali-Shtayeh MS. Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers. BMC PLANT BIOLOGY 2018; 18:246. [PMID: 30340523 PMCID: PMC6194588 DOI: 10.1186/s12870-018-1475-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Crop landraces embody a source of beneficial genes potentially providing endurance to environmental stress and other agronomic qualities including yield. Our study included 88 snake melon accessions (Cucumis melo var. flexuosus) collected from 9 districts in the Palestinian West-Bank. These accessions represent four landraces of Palestinian snake melon: Green, and White Baladi, and Green, and White Sahouri. RESULTS This is the first report on successful application of genotyping by sequencing in snake melon. Nine thousand seven hundred fifty single-nucleotide polymorphism (SNP) and 7400 DArTseq genetic markers were employed to evaluate genetic biodiversity and population structure of Palestinian snake melon germplasm collection. Clustering based on neighbor-joining-analysis, principle coordinate and Bayesian model implemented in Structure showed that patterns of genetic diversity of snake melon landraces depends on their geographical source and unraveled the presence of two major local landraces (Sahouri, and Baladi) with accessions from each group clustering together. A significant correlation was observed between both types of markers in Mantel correlation test. A significant association between genetic and geographic matrices (P < 0.0001) was also detected. AMOVA indicated that majority of variation (90%) was due to the difference within accessions. CONCLUSION The Palestinian landraces seem to have unique genes that may allow the enhancement of the global snake melon gene pool and developments of the plant production worldwide. Our subsequent objective is to detect genotypes with promising qualities and to conduct association mapping studies concentrating on Fusarium-wilt resistance, yield, and environmental stresses.
Collapse
Affiliation(s)
| | - Rana M. Jamous
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | - Munqez J. Shtaya
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
- Department of Plant Production and Protection, Faculty of Agriculture, An-Najah University, Tulkarm, Palestine
| | - Omar B. Mallah
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | - Imad S. Eid
- Biodiversity and Environmental Research Center, BERC, Til, Nablus, Palestine
| | | |
Collapse
|
10
|
Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BR, Alvarado G, Randhawa MS, Lan CX, Aguilar-Rincón VH, Lobato-Ortiz R, García-Zavala JJ. Characterization of Leaf Rust and Stripe Rust Resistance in Spring Wheat 'Chilero'. PLANT DISEASE 2018; 102:421-427. [PMID: 30673516 DOI: 10.1094/pdis-11-16-1545-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since 1984, the 'Chilero' spring wheat line developed by CIMMYT has proven to be highly resistant to leaf rust and stripe rust. Amid efforts to understand the basis of resistance of this line, a recombinant inbred line (RIL) population derived from a cross between Avocet and Chilero was studied. The parents and RILs were characterized in field trials for leaf rust and stripe rust in three locations in Mexico between 2012 and 2015 and genotyped with DArT-array, DArT-GBS, and SSR markers. A total of 6,168 polymorphic markers were used to construct genetic linkage maps. Inclusive composite interval mapping detected four colocated resistance loci to both rust diseases and two stripe rust resistant loci in the Avocet × Chilero population. Among these, the quantitative trait locus (QTL) on chromosome 1BL was identified as a pleotropic adult plant resistance gene Lr46/Yr29, whereas QLr.cim-5DS/QYr.cim-5DS was a newly discovered colocated resistance locus to both rust diseases in Chilero. Additionally, one new stripe rust resistance locus on chromosome 7BL was mapped in the current population. Avocet also contributed two minor colocated resistance QTLs situated on chromosomes 1DL and 4BS. The flanking SNP markers can be converted to breeder friendly Kompetitive Allele Specific PCR (KASP) markers for wheat breeding programs.
Collapse
Affiliation(s)
- L J Ponce-Molina
- National Institute of Agricultural and Livestock Researches (INIAP-Ecuador), Santa Catalina Experimental Station, Quito, Ecuador; and Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230 Chapingo, State of México, México
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - B R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - G Alvarado
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - M S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - V H Aguilar-Rincón
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - R Lobato-Ortiz
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - J J García-Zavala
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| |
Collapse
|
11
|
Francki MG, Walker E, Li DA, Forrest K. High-density SNP mapping reveals closely linked QTL for resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Genome 2017; 61:145-149. [PMID: 29237140 DOI: 10.1139/gen-2017-0203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genetic control of adult plant resistance to Stagonospora nodorum blotch (SNB) is complex, consisting of genes with minor effects interacting in an additive manner. Earlier studies detected quantitative trait loci (QTL) for flag leaf resistance in successive years on chromosomes 1B, 2A, 2D, and 5B using SSR- and DArT-based genetic maps of progeny from the crosses EGA Blanco/Millewa, 6HRWSN125/WAWHT2074, and P92201D5/P91193D1. Similarly, QTL for glume resistance detected in successive years and multiple environments were identified on chromosomes 2D and 4B from genetic maps of P92201D5/P91193D1 and 6HRWSN125/WAWHT2074, respectively. The SSR- and DArT-based genetic maps had an average distance of 6.5, 7.8, and 9.7 cM between marker loci for populations EGA/Millewa, P92201D5/P91193D1, and 6HRWSN125/WAWHT2074, respectively. This study used single nucleotide polymorphism (SNP) markers from the iSelect Infinium 90K genotyping array to fine-map genomic regions harbouring QTL for flag leaf and glume SNB resistance, reducing the average distance between markers to 2.9, 3.3, and 3.4 cM for populations P92201D5/P91193D1, EGA/Millewa, and 6HRWSN125/WAWHT2074, respectively. Increasing the marker density of the genetic maps with SNPs did not identify any new QTL for SNB resistance but discriminated previously identified co-located QTL into separate but closely linked QTL.
Collapse
Affiliation(s)
- Michael G Francki
- a Department of Agriculture and Food Western Australia, South Perth WA 6151, Australia.,b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA, 6150, Australia
| | - Esther Walker
- a Department of Agriculture and Food Western Australia, South Perth WA 6151, Australia.,b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA, 6150, Australia
| | - Dora A Li
- b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA, 6150, Australia
| | - Kerrie Forrest
- c Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, Agribio, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Lan C, Hale IL, Herrera-Foessel SA, Basnet BR, Randhawa MS, Huerta-Espino J, Dubcovsky J, Singh RP. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments. FRONTIERS IN PLANT SCIENCE 2017; 8:1450. [PMID: 28878791 PMCID: PMC5573434 DOI: 10.3389/fpls.2017.01450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS, contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC, and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48, were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.
Collapse
Affiliation(s)
- Caixia Lan
- International Maize and Wheat Improvement CenterMexico City, Mexico
| | - Iago L. Hale
- Department of Biological Sciences, University of New Hampshire, DurhamNH, United States
| | | | - Bhoja R. Basnet
- International Maize and Wheat Improvement CenterMexico City, Mexico
| | | | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico, Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasChapingo, Mexico
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, DavisCA, United States
| | - Ravi P. Singh
- International Maize and Wheat Improvement CenterMexico City, Mexico
| |
Collapse
|
13
|
Ren Y, Singh RP, Basnet BR, Lan CX, Huerta-Espino J, Lagudah ES, Ponce-Molina LJ. Identification and Mapping of Adult Plant Resistance Loci to Leaf Rust and Stripe Rust in Common Wheat Cultivar Kundan. PLANT DISEASE 2017; 101:456-463. [PMID: 30677352 DOI: 10.1094/pdis-06-16-0890-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leaf rust (LR) and stripe rust (YR) are important diseases of wheat worldwide. We used 148 recombinant inbred lines (RIL) from the cross of Avocet × Kundan for determining and mapping the genetic basis of adult plant resistance (APR) loci. The population was phenotyped LR and YR for three seasons in field trials conducted in Mexico and genotyped with the diversity arrays technology sequencing (DArT-Seq) and simple sequence repeat markers. The final genetic map was constructed using 2,937 polymorphic markers with an average distance of 1.29 centimorgans between markers. Inclusive composite interval mapping identified two co-located APR quantitative trait loci (QTL) for LR and YR, two LR QTL, and three YR QTL. The co-located resistance QTL on chromosome 1BL corresponded to the pleiotropic APR gene Lr46/Yr29. QLr.cim-2BL, QYr.cim-2AL, and QYr.cim-5AS could be identified as new resistance loci in this population. Lr46/Yr29 contributed 49.5 to 65.1 and 49.2 to 66.1% of LR and YR variations, respectively. The additive interaction between detected QTL showed that LR severities for RIL combining four QTL ranged between 5.3 and 25.8%, whereas the lowest YR severities were for RIL carrying QTL on chromosomes 1BL + 2AL + 6AL. The high-density DArT-Seq markers across chromosomes can be used in fine mapping of the targeted loci and development SNP markers.
Collapse
Affiliation(s)
- Y Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, China
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - B R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230 Chapingo, Edo. de México, Mexico
| | - E S Lagudah
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - L J Ponce-Molina
- National Institute of Agricultural and Livestock Researches (INIAP-Ecuador), Santa Catalina Experimental Station, Quito, Ecuador
| |
Collapse
|
14
|
Lan C, Basnet BR, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Ren Y, Randhawa MS. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:609-619. [PMID: 28004134 DOI: 10.1007/s00122-016-2839-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/01/2016] [Indexed: 05/02/2023]
Abstract
New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
Collapse
Affiliation(s)
- Caixia Lan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico.
| | - Bhoja R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Texcoco, Edo. de México, Mexico
| | - Sybil A Herrera-Foessel
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, 8 Songjiang Road, Mianyang, 621023, Sichuan, People's Republic of China
| | - Mandeep S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| |
Collapse
|
15
|
Arif MAR, Nagel M, Lohwasser U, Börner A. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J Biosci 2017; 42:81-89. [DOI: 10.1007/s12038-016-9661-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Ariyarathna HACK, Oldach KH, Francki MG. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. BMC PLANT BIOLOGY 2016; 16:21. [PMID: 26786911 PMCID: PMC4719669 DOI: 10.1186/s12870-016-0714-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. RESULTS The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. CONCLUSION The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, 6009, Western Australia.
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
| | - Klaus H Oldach
- South Australia Research Development Institute, Plant Genomics Centre, Waite Research Precinct, Urrbrae, 5064, South Australia.
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
- Department of Agriculture and Food Western Australia, South Perth, 6151, Western Australia.
| |
Collapse
|
17
|
A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 2015; 16:1101. [PMID: 26704908 PMCID: PMC4690373 DOI: 10.1186/s12864-015-2312-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Pumpkin (Cucurbita maxima Duch.) is an economically important crop belonging to the Cucurbitaceae family. However, very few genomic and genetic resources are available for this species. As part of our ongoing efforts to sequence the pumpkin genome, high-density genetic map is essential for anchoring and orienting the assembled scaffolds. In addition, a saturated genetic map can facilitate quantitative trait locus (QTL) mapping. Results A set of 186 F2 plants derived from the cross of pumpkin inbred lines Rimu and SQ026 were genotyped using the genotyping-by-sequencing approach. Using the SNPs we identified, a high-density genetic map containing 458 bin-markers was constructed, spanning a total genetic distance of 2,566.8 cM across the 20 linkage groups of C. maxima with a mean marker density of 5.60 cM. Using this map we were able to anchor 58 assembled scaffolds that covered about 194.5 Mb (71.7 %) of the 271.4 Mb assembled pumpkin genome, of which 44 (183.0 Mb; 67.4 %) were oriented. Furthermore, the high-density genetic map was used to identify genomic regions highly associated with an important agronomic trait, dwarf vine. Three QTLs on linkage groups (LGs) 1, 3 and 4, respectively, were recovered. One QTL, qCmB2, which was located in an interval of 0.42 Mb on LG 3, explained 21.4 % phenotypic variations. Within qCmB2, one gene, Cma_004516, encoding the gibberellin (GA) 20-oxidase in the GA biosynthesis pathway, had a 1249-bp deletion in its promoter in bush type lines, and its expression level was significantly increased during the vine growth and higher in vine type lines than bush type lines, supporting Cma_004516 as a possible candidate gene controlling vine growth in pumpkin. Conclusions A high-density pumpkin genetic map was constructed, which was used to successfully anchor and orient the assembled genome scaffolds, and to identify QTLs highly associated with pumpkin vine length. The map provided a valuable resource for gene cloning and marker assisted breeding in pumpkin and other related species. The identified vine length QTLs would help to dissect the underlying molecular basis regulating pumpkin vine growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2312-8) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
A High-Density SNP and SSR Consensus Map Reveals Segregation Distortion Regions in Wheat. BIOMED RESEARCH INTERNATIONAL 2015; 2015:830618. [PMID: 26601111 PMCID: PMC4639646 DOI: 10.1155/2015/830618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/16/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
Segregation distortion is a widespread phenomenon in plant and animal genomes and significantly affects linkage map construction and identification of quantitative trait loci (QTLs). To study segregation distortion in wheat, a high-density consensus map was constructed using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers by merging two genetic maps developed from two recombinant-inbred line (RIL) populations, Ning7840 × Clark and Heyne × Lakin. Chromosome regions with obvious segregation distortion were identified in the map. A total of 3541 SNPs and 145 SSRs were mapped, and the map covered 3258.7 cM in genetic distance with an average interval of 0.88 cM. The number of markers that showed distorted segregation was 490 (18.5%) in the Ning7840 × Clark population and 225 (10.4%) in the Heyne × Lakin population. Most of the distorted markers (630) were mapped in the consensus map, which accounted for 17.1% of mapped markers. The majority of the distorted markers clustered in the segregation distortion regions (SDRs) on chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 5A, 5B, 5D, 6B, 7A, and 7D. All of the markers in a given SDR skewed toward one of the parents, suggesting that gametophytic competition during zygote formation was most likely one of the causes for segregation distortion in the populations.
Collapse
|
19
|
Kumar A, Seetan R, Mergoum M, Tiwari VK, Iqbal MJ, Wang Y, Al-Azzam O, Šimková H, Luo MC, Dvorak J, Gu YQ, Denton A, Kilian A, Lazo GR, Kianian SF. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics 2015; 16:800. [PMID: 26475137 PMCID: PMC4609151 DOI: 10.1186/s12864-015-2030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. METHODS In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. RESULTS A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. CONCLUSION This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Raed Seetan
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Mohamed Mergoum
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Vijay K Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Muhammad J Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Omar Al-Azzam
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Hana Šimková
- Faculty of Science, Palacký University, 783 71, Olomouc, Czech Republic
- Institute of Experimental Botany, Šlechtitelů 31, 783-71, Olomouc, Czech Republic
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Anne Denton
- Department of Computer Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Limited, 1 Wilf Crane Crescent, Yarralumla, ACT2600, Australia
| | - Gerard R Lazo
- USDA-ARS, Western Regional Research Center, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
20
|
Calvo-Salazar V, Singh RP, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz R, Sandoval-Islas S, Vargas-Hernández M, German S, Silva P, Basnet BR, Lan CX, Herrera-Foessel SA. Genetic Analysis of Resistance to Leaf Rust and Yellow Rust in Spring Wheat Cultivar Kenya Kongoni. PLANT DISEASE 2015; 99:1153-1160. [PMID: 30695943 DOI: 10.1094/pdis-07-14-0718-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Kenyan wheat (Triticum aestivum L.) 'Kenya Kongoni' exhibits high levels of adult plant resistance (APR) to leaf rust (LR) and yellow rust (YR). We determined the genomic regions associated with LR and YR resistance in a population of 148 recombinant inbred lines generated from a cross between 'Avocet-YrA' and Kenya Kongoni. Field experiments to characterize APR to LR and YR were conducted in four and two Mexican or Uruguayan environments, respectively. A linkage map was constructed with 438 diversity arrays technology and 16 simple-sequence repeat markers by JoinMap 4.1 software. Genetic analyses showed that resistance to both rusts was determined by four to five APR genes, including Lr46/Yr29 and Sr2/Lr27/Yr30. Quantitative trait loci (QTL) analysis indicated that pleiotropic APR loci QYLr.cim-1BL corresponding to Lr46/Yr29 and QYLr.cim-7BL that is a putative novel QTL accounted for 5 to 57% and 12 to 35% of the phenotypic variation for resistance to LR and YR, respectively. These loci, in combination with another three LR QTL and two YR QTL, respectively, conferred high levels of resistance to both LR and YR in wheat under Mexican and Uruguayan environments. Among other detected QTL, QLr.cim-1DS, QLr.cim-2BL, and QYLr.icm-7BL may be new loci for APR to both rusts in common wheat.
Collapse
Affiliation(s)
- V Calvo-Salazar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico D.F., Mexico and Colegio de Post-graduados-Genética, Campus Montecillo, Carretera Mexico-Texcoco Km 36.5, Montecillo, Texcoco 56230, Estado de Mexico
| | | | - J Huerta-Espino
- Campo Experimental Valle de Mexico INIFAP, Apdo. Postal 10, 56230, Chapingo, Edo. de Mexico, Mexico
| | | | | | | | | | - S German
- National Institute of Agricultural Research (INIA), Route 50 km 11.500, CP 70000, Colonia, Uruguay
| | - P Silva
- National Institute of Agricultural Research (INIA), Route 50 km 11.500, CP 70000, Colonia, Uruguay
| | | | | | | |
Collapse
|
21
|
Ahmad FT, Mather DE, Law HY, Li M, Yousif SAJ, Chalmers KJ, Asenstorfer RE, Mares DJ. Genetic control of lutein esterification in wheat (Triticum aestivum L.) grain. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:549-561. [PMID: 25613742 DOI: 10.1007/s00122-015-2454-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.
Collapse
Affiliation(s)
- Caixia Lan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico,
| | | | | | | | | | | | | |
Collapse
|
23
|
Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 25613742 DOI: 10.1007/s00122‐015‐2454‐8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
KEY MESSAGE Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.
Collapse
|
24
|
Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2011-28. [PMID: 25112204 PMCID: PMC4145209 DOI: 10.1007/s00122-014-2357-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/13/2014] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department for Agrobiotechnology Tulln, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, Tulln, 3430 Austria
| | - Lydia Matiasch
- Department for Agrobiotechnology Tulln, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, Tulln, 3430 Austria
| | - Fabio Mascher
- Agroscope Changins-Wädenswil Research Station ACW, 1260 Nyon, Switzerland
| | - Gyula Vida
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, 2462 Hungary
| | - Marianna Ittu
- National Agricultural Research Development Institute Fundulea, 915200 Fundulea, Romania
| | - Olivier Robert
- Bioplante, 3 Rue Florimond Desprez, BP41, 59242 Cappelle-en- Pévèle, France
| | - Sarah Holdgate
- RAGT Seeds, Grange Road, Ickleton, Essex, CB10 1TA UK
- Present Address: NIAB, Huntingdon Road, Cambridge, CB3 0LE UK
| | - Kerstin Flath
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, 14532 Kleinmachnow, Germany
| | | | - Hermann Buerstmayr
- Department for Agrobiotechnology Tulln, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, Tulln, 3430 Austria
| |
Collapse
|
25
|
Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 2014; 15:57. [PMID: 24885313 PMCID: PMC4038385 DOI: 10.1186/1471-2156-15-57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
Background Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat varieties that maintain yield (YD) under moderate or even intense nitrogen (N) deficiency can adapt to low input management systems. A detailed genetic map is necessary for both wheat molecular breeding and genomics research. In this study, an F6:7 recombinant inbred line population comprising 188 lines was used to construct a novel genetic map and subsequently to detect quantitative trait loci (QTL) for YD and response to N stress. Results A genetic map consisting of 591 loci distributed across 21 wheat chromosomes was constructed. The map spanned 3930.7 cM, with one marker per 6.7 cM on average. Genomic simple sequence repeat (g-SSR), expressed sequence tag-derived microsatellite (e-SSR), diversity arrays technology (DArT), sequence-tagged sites (STS), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeat (ISSR) molecular markers were included in the map. The linear relationships between loci found in the present map and in previously compiled physical maps were presented, which were generally in accordance. Information on the genetic and physical positions and allele sizes (when possible) of 17 DArT, 50 e-SSR, 44 SRAP, five ISSR, and two morphological markers is reported here for the first time. Seven segregation distortion regions (SDR) were identified on chromosomes 1B, 3BL, 4AL, 6AS, 6AL, 6BL, and 7B. A total of 22 and 12 QTLs for YD and yield difference between the value (YDDV) under HN and the value under LN were identified, respectively. Of these, QYd-4B-2 and QYddv-4B, two major stable QTL, shared support interval with alleles from KN9204 increasing YD in LN and decreasing YDDV. We probe into the use of these QTLs in wheat breeding programs. Moreover, factors affecting the SDR and total map length are discussed in depth. Conclusions This novel map may facilitate the use of novel markers in wheat molecular breeding programs and genomics research. Moreover, QTLs for YD and YDDV provide useful markers for wheat molecular breeding programs designed to increase yield potential under N stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| |
Collapse
|
26
|
Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS One 2014; 9:e94000. [PMID: 24718292 PMCID: PMC3981729 DOI: 10.1371/journal.pone.0094000] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/11/2014] [Indexed: 12/03/2022] Open
Abstract
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
Collapse
|
27
|
Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:659-75. [PMID: 24326459 DOI: 10.1007/s00122-013-2249-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/20/2013] [Indexed: 05/22/2023]
Abstract
A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified. A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5%) were stable across environments, and 23 of these (35.4%) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28-16.06, 5.64-18.69, and 6.76-21.16% of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield.
Collapse
Affiliation(s)
- Fa Cui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Tai'an Subcenter of National Wheat Improvement Center, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Timonova EM, Dobrovol’skaya OB, Sergeeva EM, Bildanova LL, Sourdille P, Feuillet C, Salina EA. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413120132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Niedziela A, Bednarek PT, Labudda M, Mańkowski DR, Anioł A. Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack). J Appl Genet 2013; 55:1-14. [PMID: 24222435 PMCID: PMC3909619 DOI: 10.1007/s13353-013-0170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/25/2022]
Abstract
Triticale (x Triticosecale Wittmack) is a relatively new cereal crop. In Poland, triticale is grown on 12 % of arable land ( http://www.stat.gov.pl ). There is an increasing interest in its cultivation due to lowered production costs and increased adaptation to adverse environmental conditions. However, it has an insufficient tolerance to the presence of aluminum ions (Al(3+)) in the soil. The number of genes controlling aluminum tolerance in triticale and their chromosomal location is not known. Two F2 mapping biparental populations (MP1 and MP15) segregating for aluminum (Al) tolerance were tested with AFLP, SSR, DArT, and specific PCR markers. Genetic mapping enabled the construction of linkage groups representing chromosomes 7R, 5R and 2B. Obtained linkage groups were common for both mapping populations and mostly included the same markers. Composite interval mapping (CIM) allowed identification of a single QTL that mapped to the 7R chromosome and explained 25 % (MP1) and 36 % (MP15) of phenotypic variation. The B1, B26 and Xscm150 markers were 0.04 cM and 0.02 cM from the maximum of the LOD function in the MP1 and MP15, respectively and were highly associated with aluminum tolerance as indicated by Kruskal-Wallis nonparametric test. Moreover, the molecular markers B1, B26, Xrems1162 and Xscm92, previously associated with the Alt4 locus that encoded an aluminum-activated malate transporter (ScALMT1) that was involved in Al tolerance in rye (Secale cereale) also mapped within QTL. Biochemical analysis of plants represented MP1 and MP15 mapping populations confirmed that the QTL located on 7R chromosome in both mapping populations is responsible for Al tolerance.
Collapse
Affiliation(s)
- A Niedziela
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | | | | | | | | |
Collapse
|
30
|
Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH. Quantitative trait loci of stripe rust resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2427-49. [PMID: 23955314 PMCID: PMC3782644 DOI: 10.1007/s00122-013-2159-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/12/2013] [Indexed: 05/18/2023]
Abstract
Over thirty publications during the last 10 years have identified more than 140 QTLs for stripe rust resistance in wheat. It is likely that many of these QTLs are identical genes that have been spread through plant breeding into diverse backgrounds through phenotypic selection under stripe rust epidemics. Allelism testing can be used to differentiate genes in similar locations but in different genetic backgrounds; however, this is problematic for QTL studies where multiple loci segregate from any one parent. This review utilizes consensus maps to illustrate important genomic regions that have had effects against stripe rust in wheat, and although this methodology cannot distinguish alleles from closely linked genes, it does highlight the extent of genetic diversity for this trait and identifies the most valuable loci and the parents possessing them for utilization in breeding programs. With the advent of cheaper, high throughput genotyping technologies, it is envisioned that there will be many more publications in the near future describing ever more QTLs. This review sets the scene for the coming influx of data and will quickly enable researchers to identify new loci in their given populations.
Collapse
Affiliation(s)
- G M Rosewarne
- Crop Research Institute, Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Sichuan Academy of Agricultural Science, #4 Shizishan Rd, Jinjiang, 610066, Chengdu, Sichuan Province, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
31
|
Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 2013; 14:562. [PMID: 23957646 PMCID: PMC3765315 DOI: 10.1186/1471-2164-14-562] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023] Open
Abstract
Background Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Results Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2–6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. Conclusions The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.
Collapse
|
32
|
Crawford AC, Francki MG. Chromosomal location of wheat genes of the carotenoid biosynthetic pathway and evidence for a catalase gene on chromosome 7A functionally associated with flour b* colour variation. Mol Genet Genomics 2013; 288:483-93. [PMID: 23832668 DOI: 10.1007/s00438-013-0767-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
Abstract
Knowledge of molecular and genetic mechanisms controlling wheat grain quality characteristics is significant for improving flour for end-product functionality. Flour b* colour is an important quality trait for breeding wheat varieties to produce grain for specific market requirements. The degree of flour yellowness is due to the accumulation of carotenoids in grain, particularly lutein. Flour b* is under polygenic control and quantitative trait loci (QTL) have frequently been reported on chromosome 7AL. Analysis of carotenoid genes showed that phytoene synthase (PSY) co-located to the QTL on 7AL but other genes at this locus are also thought to contribute flour b* colour variation. This study used the wheat genome survey sequence and identified the chromosomal location of all wheat carotenoid genes, but none other than PSY were located on 7AL and, therefore, other genes may control flour b* colour variation including oxidative genes that degrade carotenoids. An investigation of EST bin mapped to 7AL identified a gene encoding a catalase enzyme (Cat3-A1) that was phylogenetically related to other plant class III enzymes, co-located to the QTL for flour b* colour variation on 7AL in three mapping populations and expressed during seed development. Therefore, Cat3-A1 was functionally associated with flour b* colour variation. Catalase acts upon hydrogen peroxide as a substrate and it was postulated that Cat3-A1 alleles control varying degrees of bleaching action on lutein in developing wheat grain. Markers for Cat3-A1 developed in this study can be used in conjunction with other candidate gene markers including phytoene synthase and lycopene-ε-cylase to develop a molecular signature for selecting lines with specific flour b* colour values in wheat breeding.
Collapse
Affiliation(s)
- Allison C Crawford
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6151, Australia
| | | |
Collapse
|
33
|
Hao Y, Cambron SE, Chen Z, Wang Y, Bland DE, Buntin GD, Johnson JW. Characterization of new loci for Hessian fly resistance in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1067-76. [PMID: 23296492 DOI: 10.1007/s00122-012-2037-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/16/2012] [Indexed: 05/19/2023]
Abstract
The discovery of several new loci for resistance to Hessian fly was reported here. QHf.uga-6AL, the late HR61 was recognized from wheat cultivar 26R61 on the distal end of 6AL with resistance to both biotypes E and vH13. It is the first gene or QTL found on this particular chromosome. QHf.uga-3DL and QHf.uga-1AL, physically assigned to the deletion bins 3DL2-0.27-0.81 and 1AL1-0.17-0.61, respectively, were detected for resistance to biotype vH13. Both QTL should represent new loci for Hessian fly resistance and the latter was detectable only in the late seedling stage when tolerance was evident. In addition, QHf.uga-6DS-C and QHf.uga-1AS had minor effect and were identified from the susceptible parent AGS 2000 for resistance to biotype E and vH13, respectively. QHf.uga-6DS-C is different from the known gene H13 on 6DS and QHf.uga-1AS is different from H9 gene cluster on 1AS. These loci also might be new components of Hessian fly resistance, although their LOD values were not highly significant. The QTL detections were all conducted on a RIL mapping population of 26R61/AGS 2000 with good genome coverage of molecular markers. The strategy used in the current study will serve as a good starting point for the discovery and mapping of resistance genes including tolerance to the pest and the closely linked markers will certainly be useful in selecting or pyramiding of these loci in breeding programs.
Collapse
Affiliation(s)
- Yuanfeng Hao
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA 30223, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM. A high-density consensus map of A and B wheat genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1619-38. [PMID: 22872151 PMCID: PMC3493672 DOI: 10.1007/s00122-012-1939-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6 cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.
Collapse
Affiliation(s)
- Daniela Marone
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Giovanni Laidò
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Agata Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Pasqualina Colasuonno
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | | - Angelica Giancaspro
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Stefania Giove
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giosué Panio
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Maria A. Russo
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | | | - Luigi Cattivelli
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
- CRA-Genomics Research Centre, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC Italy
| | - Roberto Papa
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | |
Collapse
|
35
|
Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM. Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 2012; 7:e48815. [PMID: 23144983 PMCID: PMC3492231 DOI: 10.1371/journal.pone.0048815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022] Open
Abstract
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.
Collapse
Affiliation(s)
- Vijay K. Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Oscar Riera-Lizarazu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | - Hilary L. Gunn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - KaSandra Lopez
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - M. Javed Iqbal
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Shahryar F. Kianian
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jeffrey M. Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhang L, Luo JT, Hao M, Zhang LQ, Yuan ZW, Yan ZH, Liu YX, Zhang B, Liu BL, Liu CJ, Zhang HG, Zheng YL, Liu DC. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet 2012; 13:69. [PMID: 22888829 PMCID: PMC3470960 DOI: 10.1186/1471-2156-13-69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/08/2012] [Indexed: 12/13/2022] Open
Abstract
Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.
Collapse
Affiliation(s)
- Li Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marone D, Panio G, Ficco DBM, Russo MA, De Vita P, Papa R, Rubiales D, Cattivelli L, Mastrangelo AM. Characterization of wheat DArT markers: genetic and functional features. Mol Genet Genomics 2012; 287:741-53. [DOI: 10.1007/s00438-012-0714-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
|
38
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012; 13:339. [PMID: 22827734 PMCID: PMC3443642 DOI: 10.1186/1471-2164-13-339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kumar A, Bassi FM, Paux E, Al-Azzam O, de Jimenez MM, Denton AM, Gu YQ, Huttner E, Kilian A, Kumar S, Goyal A, Iqbal MJ, Tiwari VK, Dogramaci M, Balyan HS, Dhaliwal HS, Gupta PK, Randhawa GS, Feuillet C, Pawlowski WP, Kianian SF. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum. BMC Genomics 2012. [PMID: 22827734 DOI: 10.1186/1471‐2164‐13‐339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Incerti O, Simeone R, Colasuonno P, Nigro D, Valè G, Cattivelli L, Stanca M, Blanco A. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum). Genome 2012; 55:417-27. [PMID: 22624876 DOI: 10.1139/g2012-028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aims of the present study were to provide deletion maps for wheat ( Triticum aestivum L.) chromosomes 5A and 5B and a detailed genetic map of chromosome 5A enriched with popular microsatellite markers, which could be compared with other existing maps and useful for mapping major genes and quantitative traits loci (QTL). Physical mapping of 165 gSSR and EST-SSR markers was conducted by amplifying each primer pair on Chinese Spring, aneuploid lines, and deletion lines for the homoeologous group 5 chromosomes. A recombinant inbred line (RIL) mapping population that is recombinant for only chromosome 5A was obtained by crossing the wheat cultivar Chinese Spring and the disomic substitution line Chinese Spring-5A dicoccoides and was used to develop a genetic linkage map of chromosome 5A. A total of 67 markers were found polymorphic between the parental lines and were mapped in the RIL population. Sixty-three loci and the Q gene were clustered in three linkage groups ordered at a minimum LOD score of 5, while four loci remained unlinked. The whole genetic 5A chromosome map covered 420.2 cM, distributed among three linkage groups of 189.3, 35.4, and 195.5 cM. The EST sequences located on chromosomes 5A and 5B were used for comparative analysis against Brachypodium distachyon (L.) P. Beauv. and rice ( Oryza sativa L.) genomes to resolve orthologous relationships among the genomes of wheat and the two model species.
Collapse
Affiliation(s)
- A Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Via Amendola 165/A, 70126 - Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1283-94. [PMID: 22274764 DOI: 10.1007/s00122-012-1786-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/05/2012] [Indexed: 05/02/2023]
Abstract
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar 'Pastor' originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible 'Avocet'. All 148 F(5) recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.
Collapse
Affiliation(s)
- G M Rosewarne
- International Maize and Wheat Improvement Centre, CIMMYT China, Jinjiang, Chengdu, Sichuan 610066, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodríguez-Suárez C, Giménez MJ, Gutiérrez N, Avila CM, Machado A, Huttner E, Ramírez MC, Martín AC, Castillo A, Kilian A, Martín A, Atienza SG. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:713-22. [PMID: 22048641 DOI: 10.1007/s00122-011-1741-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/18/2011] [Indexed: 05/24/2023]
Abstract
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.
Collapse
Affiliation(s)
- C Rodríguez-Suárez
- Instituto de Agricultura Sostenible, IAS-CSIC, Apdo. 4084, 14080, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V, Rousset M. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:597-611. [PMID: 22065067 DOI: 10.1007/s00122-011-1732-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 10/14/2011] [Indexed: 05/18/2023]
Abstract
The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.
Collapse
Affiliation(s)
- J Le Gouis
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63 100, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012. [PMID: 22274764 DOI: 10.1007/s00122‐012‐1786‐x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar 'Pastor' originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible 'Avocet'. All 148 F(5) recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.
Collapse
|
45
|
Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res 2011; 19:51-65. [PMID: 22193366 PMCID: PMC3276259 DOI: 10.1093/dnares/dsr041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines ‘Lynx-037DH’ and ‘Monty-028DH’. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.
Collapse
Affiliation(s)
- Harsh Raman
- EH Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Francki MG, Shankar M, Walker E, Loughman R, Golzar H, Ohm H. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch. PHYTOPATHOLOGY 2011; 101:1278-84. [PMID: 21770777 DOI: 10.1094/phyto-02-11-0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.
Collapse
Affiliation(s)
- M G Francki
- Department of Agriculture and Food Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Wang YY, Sun XY, Zhao Y, Kong FM, Guo Y, Zhang GZ, Pu YY, Wu K, Li SS. Enrichment of a common wheat genetic map and QTL mapping for fatty acid content in grain. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:65-75. [PMID: 21600399 DOI: 10.1016/j.plantsci.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/07/2023]
Abstract
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.
Collapse
Affiliation(s)
- Ying-ying Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A. Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 2011; 53:957-66. [PMID: 21076511 DOI: 10.1139/g10-058] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aluminium (Al3+) toxicity restricts productivity and profitability of wheat (Triticum aestivum L.) crops grown on acid soils worldwide. Continued gains will be obtained by identifying superior alleles and novel Al3+ resistance loci that can be incorporated into breeding programs. We used association mapping to identify genomic regions associated with Al3+ resistance using 1055 accessions of common wheat from different geographic regions of the world and 178 polymorphic diversity arrays technology (DArT) markers. Bayesian analyses based on genetic distance matrices classified these accessions into 12 subgroups. Genome-wide association analyses detected markers that were significantly associated with Al3+ resistance on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 6A, 6B, 7A, and 7B. Some of these genomic regions correspond to previously identified loci for Al3+ resistance, whereas others appear to be novel. Among the markers targeting TaALMT1 (the major Al3+-resistance gene located on chromosome 4D), those that detected alleles in the promoter explained most of the phenotypic variance for Al3+ resistance, which is consistent with this region controlling the level of TaALMT1 expression. These results demonstrate that genome-wide association mapping cannot only confirm known Al3+-resistance loci, such as those on chromosomes 4D and 4B, but they also highlight the utility of this technique in identifying novel resistance loci.
Collapse
Affiliation(s)
- Harsh Raman
- EH Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:95-108. [PMID: 21442411 DOI: 10.1007/s00122-011-1569-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Flour colour measured as a Commission Internationale de l'Eclairage (CIE) b* value is an important wheat quality attribute for a range of end-products, with genes and enzymes of the xanthophyll biosynthesis pathway providing potential sources of trait variation. In particular, the phytoene synthase 1 (Psy1) gene has been associated with quantitative trait loci (QTL) for flour b* colour variation. Several Psy1 alleles on chromosome 7A (Psy-A1) have been described, along with proposed mechanisms for influencing flour b* colour. This study sought to identify evolutionary relationships among known Psy-A1 alleles, to establish which Psy-A1 alleles are present in selected Australian wheat genotypes and establish their role in controlling variation for flour b* colour via QTL analysis. Phylogenetic analyses showed seven of eight known Psy-A1 alleles clustered with sequences from T. urartu, indicating the majority of alleles in Australian germplasm share a common evolutionary lineage. In this regard, Psy-A1a, Psy-A1c, Psy-A1e and Psy-A1p were common in Australian genotypes with flour b* colour ranging from white to yellow. In contrast Psy-A1s was found to be related to A. speltoides, indicating a possible A-B genome translocation during wheat polyploidisation. A new allele Psy-A1t (similar to Psy-A1s) was discovered in genotypes with yellow flour, with QTL analyses indicating Psy-A1t strongly influences flour b* colour in Australian germplasm. QTL LOD value maxima did not coincide with Psy-A1 gene locus in two of three populations and, therefore, Psy-A1a and Psy-A1p may not be involved in flour colour. Instead two other QTL were identified, one proximal and one distal to Psy-A1 in Australian wheat lines. Comparison of Psy-A1t and Psy-A1p predicted protein sequences suggests differences in putative sites for post-translational modification may influence enzyme activity and subsequent xanthophyll accumulation in the wheat endosperm. Psy-A1a and Psy-A1p were not involved in flour b* colour variation, indicating other genes control variation on chromosome 7A in some wheat genotypes.
Collapse
Affiliation(s)
- A C Crawford
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6151, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J. Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3621-36. [PMID: 21414962 DOI: 10.1093/jxb/err061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.
Collapse
Affiliation(s)
- Matthieu Bogard
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, F-63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|