1
|
Gonzalez G, Nelson AC, Holman AR, Whitehead AJ, LaMontagne E, Lian R, Vatsyayan R, Dayeh SA, Engler AJ. Conductive electrospun polymer improves stem cell-derived cardiomyocyte function and maturation. Biomaterials 2023; 302:122363. [PMID: 37898021 PMCID: PMC10841997 DOI: 10.1016/j.biomaterials.2023.122363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Despite numerous efforts to generate mature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), cells often remain immature, electrically isolated, and may not reflect adult biology. Conductive polymers are attractive candidates to facilitate electrical communication between hPSC-CMs, especially at sub-confluent cell densities or diseased cells lacking cell-cell junctions. Here we electrospun conductive polymers to create a conductive fiber mesh and assess if electrical signal propagation is improved in hPSC-CMs seeded on the mesh network. Matrix characterization indicated fiber structure remained stable over weeks in buffer, scaffold stiffness remained near in vivo cardiac stiffness, and electrical conductivity scaled with conductive polymer concentration. Cells remained adherent and viable on the scaffolds for at least 5 days. Transcriptomic profiling of hPSC-CMs cultured on conductive substrates for 3 days showed upregulation of cardiac and muscle-related genes versus non-conductive fibers. Structural proteins were more organized and calcium handling was improved on conductive substrates, even at sub-confluent cell densities; prolonged culture on conductive scaffolds improved membrane depolarization compared to non-conductive substrates. Taken together, these data suggest that blended, conductive scaffolds are stable, supportive of electrical coupling in hPSC-CMs, and promote maturation, which may improve our ability to model cardiac diseases and develop targeted therapies.
Collapse
Affiliation(s)
- Gisselle Gonzalez
- Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Aileena C Nelson
- Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Alyssa R Holman
- Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA
| | | | - Erin LaMontagne
- Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Rachel Lian
- Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Ritwik Vatsyayan
- Department of Electrical and Computer Engineering, University California San Diego, La Jolla, CA, 92093, USA
| | - Shadi A Dayeh
- Department of Electrical and Computer Engineering, University California San Diego, La Jolla, CA, 92093, USA
| | - Adam J Engler
- Shu Chien-Gene Lay Department of Bioengineering, La Jolla, CA, 92093, USA; Biomedical Sciences Graduate Program, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Luo X, Yang X, Yang Y, Li H, Cui H, Cao X. The interrelationship between inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms. Arch Physiol Biochem 2022; 128:1559-1565. [PMID: 32608270 DOI: 10.1080/13813455.2020.1782435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Circadian rhythms affect a variety of physiological processes. Disruption of circadian rhythms causes many diseases, most of which are associated with inflammation. Disruption of circadian rhythms has a detrimental impact on the function of immune system. It is common to find that circulatory LPS are increased. LPS induces immune cells to produce inflammatory cytokines. Inflammatory cytokines play a role in skeletal muscle decay. Rev-erbβ has been identified as a critical regulator of circadian rhythms and a factor in inflammation. Another effect of disruption is a concomitant disturbance of glucose-insulin metabolism, which skeletal muscle likely contributes to considering it is a key metabolic tissue. Disruption of circadian rhythms is also related to obesity. Obesity can cause an increase expression of inflammatory cytokines. Maybe obesity with skeletal muscle decay is one of major characteristics. Future studies are needed to obtain a comprehensive understanding of inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms.
Collapse
Affiliation(s)
- Xuguang Luo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Xinhua Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Yanping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Hairong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Ximei Cao
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
3
|
Cao X, Yan Y, Luo X, Yang X, Cui H, Yang Y, Li H. Analyses of the circadian clock genes expression in whole embryos and maternal major tissues of mice. J Mol Histol 2022; 53:473-482. [PMID: 35149920 DOI: 10.1007/s10735-022-10065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
To create an organism, it is vital to assemble enough cells of the various differentiated types with the correct spatial arrangement within the embryo. Circadian clocks development is closely correlated with all cellular differentiation. However, the expression of its emergence during mammalian development are not fully understood. To determine whether embryonic development is influenced by circadian rhythm, it is necessary to observe the ontogeny of the circadian clock gene. We first measured the expression of key circadian genes in whole embryos and maternal major tissues of 25 female mice using RT-PCR and immunohistochemical analysis. Our results indicated that mouse embryos begin to express key circadian genes and have the capacity to express active circadian regulatory cycles during development. But circadian molecular rhythms can't be built in embryo. At E15, the expression of Bmal1, Clock and Per1 mRNA in whole embryo were increased, especially Per1. In the meanwhile, immunohistochemical analysis shows a small number of PER1 positive cells were observed in the bottom of right atrium. From E16 to E17, CLOCK and PER1 positive cells were observed in the airway smooth muscle, the wall of left atrium and skeletal muscle of body wall. It is interesting that CLOCK and PER1 positive cells could not be detected in the liver. By using RT-PCR, we continue to observe the expression of myogenic regulatory factor in embryos and also analyse the relationship of embryo development and maternal rhythms. From E12, the expression of myogenin increased quickly. The expression of Tcap at E15 significantly increased. myogenin may play a direct role in contributing Tcap expression. The expression of MAZ is always the highest than myogenin and Tcap in embryos. MAZ may concern with the development of skeletal muscle. The clock gene is a positive regulator of myogenesis and the development of organ. In contrast to embryonic tissues, circadian variation was present for Bmal1, Clock and Per1 at maternal tissues. Our results indicate that circadian clock genes seem to function differently in different tissues of embryo and maternal mice. Synchrony does not occur during embryo development despite exposure to maternal rhythms. But development of embryo may be affected by maternal tissues of mice.
Collapse
Affiliation(s)
- Ximei Cao
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
| | - Yindi Yan
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China
| | - Xuguang Luo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xinhua Yang
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China
| | - Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China
| | - Yanping Yang
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China
| | - Hairong Li
- Department of Histology and Embryology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
4
|
Findings of limb-girdle muscular dystrophy R7 telethonin-related patients from a Chinese neuromuscular center. Neurogenetics 2022; 23:37-44. [PMID: 34982307 DOI: 10.1007/s10048-021-00681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of clinically and genetically heterogeneous neuromuscular disorders. LGMD-R7, which is caused by telethonin gene (TCAP) mutations, is one of the rarest forms of LGMD, and only a small number of LGMD-R7 cases have been described and mostly include patients from Brazil. A total of two LGMD-R7 patients were enrolled at a Chinese neuromuscular center. Demographic and clinical data were collected. Laboratory investigations and electromyography were performed. Routine and immunohistochemistry staining of muscle specimens was performed, and a next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders was used for analysis. The patients exhibited predominant muscle weakness. Electromyography revealed myopathic changes. The muscle biopsy showed myopathic features, such as increased fiber size variation, muscle fiber atrophy and regeneration, slight hyperplasia of the connective tissue, and disarray of the myofibrillar network. Two patients were confirmed to have mutations in the open reading frame of TCAP by next-generation sequencing. One patient had compound heterozygous mutations, and the other patient harbored a novel homozygous mutation. Western blotting analysis of the skeletal muscle lysate confirmed the absence of telethonin in the patients. We described two LGMD-R7 patients presenting a classical LGMD phenotype and a novel homozygous TCAP mutation. Our research expands the spectrum of LGMD-R7 due to TCAP mutations based on patients from a Chinese neuromuscular center.
Collapse
|
5
|
Hodge BA, Zhang X, Gutierrez-Monreal MA, Cao Y, Hammers DW, Yao Z, Wolff CA, Du P, Kemler D, Judge AR, Esser KA. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. eLife 2019; 8:e43017. [PMID: 30789342 PMCID: PMC6398978 DOI: 10.7554/elife.43017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.
Collapse
Affiliation(s)
- Brian A Hodge
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Xiping Zhang
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | | | - Yi Cao
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoUnited States
| | - David W Hammers
- Department of Pharmacology and TherapeuticsUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Zizhen Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Christopher A Wolff
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Ping Du
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Denise Kemler
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Andrew R Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Karyn A Esser
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| |
Collapse
|
6
|
Cotta A, Paim JF, da-Cunha-Junior AL, Neto RX, Nunes SV, Navarro MM, Valicek J, Carvalho E, Yamamoto LU, Almeida CF, Braz SV, Takata RI, Vainzof M. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern. BMC Clin Pathol 2014; 14:41. [PMID: 25298746 PMCID: PMC4188961 DOI: 10.1186/1472-6890-14-41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Background Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Case presentation Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. Conclusion This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis.
Collapse
Affiliation(s)
- Ana Cotta
- Department of Pathology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Julia Filardi Paim
- Department of Pathology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | - Rafael Xavier Neto
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Simone Vilela Nunes
- Department of Neurology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Monica Magalhaes Navarro
- Departments of Pediatrics and Genetics, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Jaquelin Valicek
- Department of Neurophysiology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Elmano Carvalho
- Department of Neurophysiology, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Lydia U Yamamoto
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| | - Camila F Almeida
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| | | | - Reinaldo Issao Takata
- Department of Molecular Biology, SARAH Network of Rehabilitation Hospitals, Brasília, Brazil
| | - Mariz Vainzof
- Human Genome Research Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Qiao M, Huang J, Wu H, Wu J, Peng X, Mei S. Molecular characterization, transcriptional regulation and association analysis with carcass traits of porcine TCAP gene. Gene 2014; 538:273-9. [PMID: 24462753 DOI: 10.1016/j.gene.2014.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 01/15/2023]
Abstract
TCAP (also known as titin-cap or telethonin) is one of the titin interacting Z-disk proteins involved in the regulation and development of normal sarcomeric structure. In this study, we cloned the cDNA and promoter sequences of porcine TCAP gene, which contained a 504 bp full-length coding region. Quantitative real-time PCR (qRT-PCR) analyses showed that porcine TCAP was highly expressed in the skeletal muscle, heart, and kidney. During postnatal muscle development, TCAP expression was down-regulated from 30 days to 120 days in Large White and Meishan pigs. One single nucleotide polymorphism c.334 G>A in exon 2 of the TCAP gene was identified and detected by allele-specific primer-polymerase chain reaction (ASP-PCR). Association analysis revealed that the polymorphism had significant associations (P<0.05 and P<0.01) with some carcass traits. Analysis of the porcine TCAP promoter in different cell lines demonstrated that it is a muscle-specific promoter. In addition, we found that the porcine TCAP promoter can be activated by MyoD, MyoG and MEF2 in myotubes, which indicated that TCAP may play a role in the regulation of porcine skeletal muscle development. These findings provide useful information for the further investigation of the function of TCAP in porcine skeletal muscle.
Collapse
Affiliation(s)
- Mu Qiao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jingshu Huang
- Animal Husbandry and Veterinary Bureau of Hubei Province, Wuhan 430064, China
| | - Huayu Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
8
|
Zhang M, Truscott J, Davie J. Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells. Mol Cancer 2013; 12:150. [PMID: 24279793 PMCID: PMC3879063 DOI: 10.1186/1476-4598-12-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the defects present in these cells that block myogenesis. Methods Protein and RNA analysis identified the loss of MEF2D in RMS cells. MEF2D was expressed in RD and RH30 cells by transient transfection and selection of stable cell lines, respectively, to demonstrate the rescue of muscle differentiation observed. A combination of techniques such as proliferation assays, scratch assays and soft agar assays were used with RH30 cells expressing MEF2D to demonstrate the loss of oncogenic growth in vitro and xenograft assays were used to confirm the loss of tumor growth in vivo. Results Here, we show that one member of the MEF2 family of proteins required for normal myogenesis, MEF2D, is largely absent in RMS cell lines representing both major subtypes of RMS as well as primary cells derived from an embryonal RMS model. We show that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find that MyoD and myogenin are bound with their dimerization partner, the E proteins, to the promoters of muscle specific genes in RMS cells. However, we cannot detect MEF2D binding at any promoter tested. We find that exogenous MEF2D expression can activate muscle specific luciferase constructs, up regulate p21 expression and increase muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility and anchorage independent growth in vitro. We have confirmed the inhibition of tumorigenicity by MEF2D in a tumor xenograft model, with a complete regression of tumor growth. Conclusions Our data indicate that the oncogenic properties of RMS cells can be partially attributed to the loss of MEF2D expression and that restoration of MEF2D may represent a useful therapeutic strategy to decrease tumorigenicity.
Collapse
Affiliation(s)
| | | | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, 229 Neckers Building, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|
9
|
Paim JF, Cotta A, Vargas AP, Navarro MM, Valicek J, Carvalho E, da-Cunha AL, Plentz E, Braz SV, Takata RI, Almeida CF, Vainzof M. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G. J Mol Neurosci 2013; 50:339-44. [PMID: 23479141 DOI: 10.1007/s12031-013-9987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/22/2013] [Indexed: 11/26/2022]
Abstract
Limb girdle muscular dystrophy type 2 G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46 years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8 years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41 years old, and now, at 54 years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy.
Collapse
Affiliation(s)
- Julia F Paim
- Surgical Pathology Department, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maeda K, Murakami C, Irie W, Oishi M, Sasaki C, Nakamaru N, Nakamura S, Kurihara K. Mutational analysis of TTN, TCAP and TPM1 in cardiomyopathy. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2013. [DOI: 10.1016/j.fsigss.2013.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA. Mol Cell Biol 2011; 31:2854-66. [PMID: 21576360 DOI: 10.1128/mcb.05397-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gamma interferon (IFN-γ) is an inflammatory cytokine that has complex effects on myogenesis. Here, we show that the IFN-γ-induced inhibition of myogenesis is mediated by the major histocompatibility complex (MHC) class II transactivator, CIITA, which binds to myogenin and inhibits its activity. In IFN-γ-treated myoblasts, the inhibition of muscle-specific genes includes the expression of myogenin itself, while in myotubes, myogenin expression is unaffected. Thus, CIITA appears to act by both repressing the expression and inhibiting the activity of myogenin at different stages of myogenesis. Stimulation by IFN-γ in skeletal muscle cells induces CIITA expression as well as MHC class II gene expression. The IFN-γ-mediated repression is reversible, with myogenesis proceeding normally upon removal of IFN-γ. Through overexpression studies, we confirm that the expression of CIITA, independent of IFN-γ, is sufficient to inhibit myogenesis. Through knockdown studies, we also demonstrate that CIITA is necessary for the IFN-γ-mediated inhibition of myogenesis. Finally, we show that CIITA, which lacks DNA binding activity, is recruited to muscle-specific promoters coincident with reductions in RNA polymerase II recruitment. Thus, this work reveals how IFN-γ modulates myogenesis and demonstrates a key role for CIITA in this process.
Collapse
|
12
|
Londhe P, Davie JK. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle 2011; 1:14. [PMID: 21798092 PMCID: PMC3156637 DOI: 10.1186/2044-5040-1-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
Background Gene expression in skeletal muscle is controlled by a family of basic helix-loop-helix transcription factors known as the myogenic regulatory factors (MRFs). The MRFs work in conjunction with E proteins to regulate gene expression during myogenesis. However, the precise mechanism by which the MRFs activate gene expression is unclear. In this work, we sought to define the binding profiles of MRFs and E proteins on muscle-specific genes throughout a time course of differentiation. Results We performed chromatin immunoprecipitation (ChIP) assays for myogenin, MyoD, Myf5 and E proteins over a time course of C2C12 differentiation, resulting in several surprising findings. The pattern of recruitment is specific to each promoter tested. The recruitment of E proteins often coincides with the arrival of the MRFs, but the binding profile does not entirely overlap with the MRF binding profiles. We found that E12/E47 is bound to certain promoters during proliferation, but every gene tested is preferentially bound by HEB during differentiation. We also show that MyoD, myogenin and Myf5 have transient roles on each of these promoters during muscle differentiation. We also found that RNA polymerase II occupancy correlates with the transcription profile of these promoters. ChIP sequencing assays confirmed that MyoD, myogenin and Myf5 co-occupy promoters. Conclusions Our data reveal the sequential association of MyoD, myogenin, Myf5 and HEB on muscle-specific promoters. These data suggest that each of the MRFs, including Myf5, contribute to gene expression at each of the geness analyzed here.. The dynamic binding profiles observed suggest that MRFs and E proteins are recruited independently to promoters.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | | |
Collapse
|