1
|
Zhao Y, Adedze YMN, Dong J, Zhang R, Zheng S, Lan H, Li Y, Liu S, Xu Y, Zhang J. Optimization of commercial SNP arrays and the generation of a high-efficiency GenoBaits Peanut 10K panel. Sci Rep 2025; 15:9995. [PMID: 40121232 PMCID: PMC11929915 DOI: 10.1038/s41598-025-93445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
To create a more comprehensive genetic analysis panel for peanuts, three high-density SNP panels were exploited. The refined SNP panel, PHR0301_Ah10K, comprises 10,000 SNP sites and demonstrated outstanding performance in sequence data analysis. It recorded the highest proportions of 99.53%, 96.48%, and 59.72% for the SNPs with minor allele frequency thresholds of MAF > 5%, MAF > 10%, and MAF > 20%, respectively. Moderate polymorphic information content (PIC) values were observed, with an average of 0.26, suggesting that the optimized SNP panel is informative. However, the PIC value for the four panels were skewed due to the small population size and limited genetic diversity (GD), as evidenced by the Kinship, PCA, and LD decay analyses. However, PHR0301_Ah10K demonstrated superior performance compared to the others in terms of variance explained in the PCA analysis while the outcomes of the genetic analyses confirmed its genotyping ability in peanut. The putative SNP sites associated with increased oleic acid levels have been integrated into this panel and validated, thus significantly enhancing its breeding potential. Moreover, the cost of genotyping by target sequencing (GBTS) using this panel is less than $9 per sample, making it more affordable. Due to its exceptional informativeness, cost-effectiveness, and breeding potential, we recommend this SNP panel for GBTS in peanut.
Collapse
Affiliation(s)
- Yaran Zhao
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | | | - Jiahui Dong
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | - Renxu Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | - Songan Zheng
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | - Haofa Lan
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | - Yurong Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Song Liu
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China
| | - Yanfen Xu
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China.
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, 050035, China.
| |
Collapse
|
2
|
Joshi P, Soni P, Sharma V, Manohar SS, Kumar S, Sharma S, Pasupuleti J, Vadez V, Varshney RK, Pandey MK, Puppala N. Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut. Genes (Basel) 2024; 15:140. [PMID: 38397130 PMCID: PMC10888419 DOI: 10.3390/genes15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality.
Collapse
Affiliation(s)
- Pushpesh Joshi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Sampath Kumar
- Agricultural Research Station, Andhra Pradesh Agricultural University, Anantapur 515591, India;
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Janila Pasupuleti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Vincent Vadez
- Institut de Recherche pour le Development (IRD), Université de Montpellier, Unité Mixte de Recherche Diversité et Adaptation des Espèces (UMR DIADE), 34394 Montpellier, France;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Clovis, NM 88101, USA
| |
Collapse
|
3
|
Pan Y, Zhuang Y, Liu T, Chen H, Wang L, Varshney RK, Zhuang W, Wang X. Deciphering peanut complex genomes paves a way to understand its origin and domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2173-2181. [PMID: 37523347 PMCID: PMC10579718 DOI: 10.1111/pbi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023]
Abstract
Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.
Collapse
Affiliation(s)
- Yuxin Pan
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yuhui Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tao Liu
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Wang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, and Centre for Crop & Food InnovationFood Futures InstituteMurdoch UniversityMurdochWest AustraliaAustralia
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell BiologyOil Crops Research InstituteState Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiyin Wang
- Center for Genomics and Computational BiologyCollege of Life Science, and College of ScienceNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
4
|
Samoluk SS, Vaio M, Ortíz AM, Chalup LMI, Robledo G, Bertioli DJ, Seijo G. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. PLANTA 2022; 256:50. [PMID: 35895167 DOI: 10.1007/s00425-022-03961-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Alejandra M Ortíz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Laura M I Chalup
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Germán Robledo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
5
|
Bhat RS, Shirasawa K, Chavadi SD. Genome-wide structural and functional features of single nucleotide polymorphisms revealed from the whole genome resequencing of 179 accessions of Arachis. PHYSIOLOGIA PLANTARUM 2022; 174:e13623. [PMID: 35018642 DOI: 10.1111/ppl.13623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Peanut being an important food, oilseed and fodder crop worldwide, its genetic improvement currently relies on genomics-assisted breeding (GAB). Since the level of marker polymorphism is limited in peanut, the availability of a large number of DNA markers is the prerequisite for GAB. Therefore, we detected 4,309,724 single nucleotide polymorphisms (SNPs) from the whole genome re-sequencing (WGRS) data of 178 peanut accessions along with the reference genome sequence of Tifrunner. SNPs were analyzed for their structural and functional features to conclude on their utility and employability in genetic and genomic studies. ISATGR278-18, a synthetic amphidiploid, showed the highest number of SNPs (2,505,266), while PI_628538 recorded the lowest number (19,058) of SNPs. A03 showed the highest number of SNPs, while B08 recorded the lowest number of SNPs. The number of accessions required to record 50% of the total SNPs varied from 11 to 13 across the chromosomes. The rate of transitions was more than that of transversions. Among the various chromosomal contexts, intergenic and intronic regions carried more SNPs than the exonic regions. SNP impact analysis indicated 2488 SNPs with high impact due to gain of stop codons, variations in splice acceptors and splice donors, and loss of start codons. Of the 4,309,723 SNPs, 46,087 had the highest polymorphic information content (PIC) of 0.375. As an illustration of application, the drought-tolerant accession C76-16 was compared with A72 (an accession with high-stress rating) to identify 637,833 SNPs, of which 418 had high impact substitutions. Overall, these structural and functional features of the SNPs will be of immense importance for their utility in genetic and genomic studies in peanut.
Collapse
Affiliation(s)
- Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Shwetha D Chavadi
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| |
Collapse
|
6
|
Zou K, Kim KS, Kim K, Kang D, Park YH, Sun H, Ha BK, Ha J, Jun TH. Genetic Diversity and Genome-Wide Association Study of Seed Aspect Ratio Using a High-Density SNP Array in Peanut ( Arachis hypogaea L.). Genes (Basel) 2020; 12:E2. [PMID: 33375051 PMCID: PMC7822046 DOI: 10.3390/genes12010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Peanut (Arachis hypogaea L.) is one of the important oil crops of the world. In this study, we aimed to evaluate the genetic diversity of 384 peanut germplasms including 100 Korean germplasms and 284 core collections from the United States Department of Agriculture (USDA) using an Axiom_Arachis array with 58K single-nucleotide polymorphisms (SNPs). We evaluated the evolutionary relationships among 384 peanut germplasms using a genome-wide association study (GWAS) of seed aspect ratio data processed by ImageJ software. In total, 14,030 filtered polymorphic SNPs were identified from the peanut 58K SNP array. We identified five SNPs with significant associations to seed aspect ratio on chromosomes Aradu.A09, Aradu.A10, Araip.B08, and Araip.B09. AX-177640219 on chromosome Araip.B08 was the most significantly associated marker in GAPIT and Regularization method. Phosphoenolpyruvate carboxylase (PEPC) was found among the eleven genes within a linkage disequilibrium (LD) of the significant SNPs on Araip.B08 and could have a strong causal effect in determining seed aspect ratio. The results of the present study provide information and methods that are useful for further genetic and genomic studies as well as molecular breeding programs in peanuts.
Collapse
Affiliation(s)
- Kunyan Zou
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea; (K.Z.); (D.K.); (Y.-H.P.)
| | | | - Kipoong Kim
- Department of Statistics, Pusan National University, Busan 46241, Korea; (K.K.); (H.S.)
| | - Dongwoo Kang
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea; (K.Z.); (D.K.); (Y.-H.P.)
| | - Yu-Hyeon Park
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea; (K.Z.); (D.K.); (Y.-H.P.)
| | - Hokeun Sun
- Department of Statistics, Pusan National University, Busan 46241, Korea; (K.K.); (H.S.)
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea;
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Tae-Hwan Jun
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea; (K.Z.); (D.K.); (Y.-H.P.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
7
|
Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, A Jackson S, Ozias-Akins P. Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3 (BETHESDA, MD.) 2020; 10:2297-2315. [PMID: 32398236 PMCID: PMC7341151 DOI: 10.1534/g3.120.401147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Although seed and pod traits are important for peanut breeding, little is known about the inheritance of these traits. A recombinant inbred line (RIL) population of 156 lines from a cross of Tifrunner x NC 3033 was genotyped with the Axiom_Arachis1 SNP array and SSRs to generate a genetic map composed of 1524 markers in 29 linkage groups (LG). The genetic positions of markers were compared with their physical positions on the peanut genome to confirm the validity of the linkage map and explore the distribution of recombination and potential chromosomal rearrangements. This linkage map was then used to identify Quantitative Trait Loci (QTL) for seed and pod traits that were phenotyped over three consecutive years for the purpose of developing trait-associated markers for breeding. Forty-nine QTL were identified in 14 LG for seed size index, kernel percentage, seed weight, pod weight, single-kernel, double-kernel, pod area and pod density. Twenty QTL demonstrated phenotypic variance explained (PVE) greater than 10% and eight more than 20%. Of note, seven of the eight major QTL for pod area, pod weight and seed weight (PVE >20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.
Collapse
Affiliation(s)
- Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793
| | - Corley Holbrook
- USDA- Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793
| | - Thomas Isleib
- Department of Crop Science, North Carolina State University, P.O. Box 7629, Raleigh, NC 27695
| | - David Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ran Hovav
- Department of Field and Vegetable Crops, Plant Sciences Institute, ARO (Volcani Center), Bet Dagan, Israel, and
| | - Christopher Butts
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Marshall Lamb
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Ronald Sorensen
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793,
| |
Collapse
|
8
|
Li L, Hu B, Li X, Li L. Characterization of mTERF family in allotetraploid peanut and their expression levels in response to dehydration stress. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1825121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Bo Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| |
Collapse
|
9
|
Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli SCM, Ren L, Farmer AD, Pandey MK, Samoluk SS, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim KD, Korani W, Lanciano S, Lui CG, Mirouze M, Moretzsohn MC, Pham M, Shin JH, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks NT, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden EL, Michelmore R, Varshney RK, Holbrook CC, Cannon EKS, Scheffler BE, Grimwood J, Ozias-Akins P, Cannon SB, Jackson SA, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 2019; 51:877-884. [PMID: 31043755 DOI: 10.1038/s41588-019-0405-z] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
Abstract
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.
Collapse
Affiliation(s)
- David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. .,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. .,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA.
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Josh Clevenger
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.,FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Longhui Ren
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, USA
| | | | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sergio S Samoluk
- Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.,FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Gaurav Agarwal
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | | | | | | | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA, USA
| | - Sudhansu Dash
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Moaine El Baidouri
- UMR5096, Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France.,UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | - Baozhu Guo
- Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA
| | - Wei Huang
- Department of Computer Science, Iowa State University, Ames, IA, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Corporate R&D, LG Chem, Seoul, Republic of Korea
| | - Walid Korani
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Sophie Lanciano
- UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.,UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.,UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France
| | - Christopher G Lui
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Marie Mirouze
- UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.,UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.,UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France
| | | | - Melanie Pham
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Corporate R&D, LG Chem, Seoul, Republic of Korea
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | | | - Nathan T Weeks
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agricultural Research Service, Ames, IA, USA
| | - Xinyou Zhang
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Zheng Zheng
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Ziqi Sun
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Lutz Froenicke
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Erez L Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | | | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Corley Holbrook
- Crop Genetics and Breeding Research Unit, US Department of Agriculture Agricultural Research Service, Tifton, GA, USA
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, US Department of Agriculture Agricultural Research Service, Stoneville, MS, USA
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Horticulture, University of Georgia, Tifton, GA, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agricultural Research Service, Ames, IA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. .,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. .,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA. .,Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|
10
|
The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 2019; 51:865-876. [PMID: 31043757 PMCID: PMC7188672 DOI: 10.1038/s41588-019-0402-2] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022]
Abstract
High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42-0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement.
Collapse
|
11
|
Samoluk SS, Chalup LMI, Chavarro C, Robledo G, Bertioli DJ, Jackson SA, Seijo G. Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. PLANTA 2019; 249:1405-1415. [PMID: 30680457 DOI: 10.1007/s00425-019-03096-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The most conspicuous difference among chromosomes and genomes in Arachis species, the patterns of heterochromatin, was mainly modeled by differential amplification of different members of one superfamily of satellite DNAs. Divergence in repetitive DNA is a primary driving force for genome and chromosome evolution. Section Arachis is karyotypically diverse and has six different genomes. Arachis glandulifera (D genome) has the most asymmetric karyotype and the highest reproductive isolation compared to the well-known A and B genome species. These features make A. glandulifera an interesting model species for studying the main repetitive components that accompanied the genome and chromosome diversification in the section. Here, we performed a genome-wide analysis of repetitive sequences in A. glandulifera and investigated the chromosome distribution of the identified satellite DNA sequences (satDNAs). LTR retroelements, mainly the Ty3-gypsy families "Fidel/Feral" and "Pipoka/Pipa", were the most represented. Comparative analyses with the A and B genomes showed that many of the previously described transposable elements (TEs) were differently represented in the D genome, and that this variation accompanied changes in DNA content. In addition, four major satDNAs were characterized. Agla_CL8sat was the major component of pericentromeric heterochromatin, while Agla_CL39sat, Agla_CL69sat, and Agla_CL122sat were found in heterochromatic and/or euchromatic regions. Even though Agla_CL8sat belong to a different family than that of the major satDNA (ATR-2) found in the heterochromatin of the A, K, and F genomes, both satDNAs are members of the same superfamily. This finding suggests that closely related satDNAs of an ancestral library were differentially amplified leading to the major changes in the heterochromatin patterns that accompanied the karyotype and genome differentiation in Arachis.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina.
| | - Laura M I Chalup
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Germán Robledo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
12
|
Homology modeling, molecular docking, and dynamics of two α-methyl-d-mannoside-specific lectins from Arachis genus. J Mol Model 2018; 24:251. [DOI: 10.1007/s00894-018-3800-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/16/2018] [Indexed: 02/04/2023]
|
13
|
do Nascimento EFDMB, Dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG. The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. COMPARATIVE CYTOGENETICS 2018; 12:111-140. [PMID: 29675140 PMCID: PMC5904367 DOI: 10.3897/compcytogen.v12i1.20334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 05/03/2023]
Abstract
Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994) and A. ipaensis (Krapovickas & W. C. Gregory, 1994), followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis)4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.
Collapse
Affiliation(s)
- Eliza F de M B do Nascimento
- University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Bruna V Dos Santos
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Lara O C Marques
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
- Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil
| | - Patricia M Guimarães
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Ana C M Brasileiro
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - Ana C G Araujo
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| |
Collapse
|
14
|
Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons. Mol Genet Genomics 2017; 292:741-754. [DOI: 10.1007/s00438-017-1308-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
|
15
|
Seijo G, Samoluk SS, Ortiz AM, Silvestri MC, Chalup L, Robledo G, Lavia GI. Cytological Features of Peanut Genome. COMPENDIUM OF PLANT GENOMES 2017. [DOI: 10.1007/978-3-319-63935-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Samoluk SS, Robledo G, Bertioli D, Seijo JG. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 2016; 292:283-296. [DOI: 10.1007/s00438-016-1271-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
|
17
|
Zhang L, Yang X, Tian L, Chen L, Yu W. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation. THE NEW PHYTOLOGIST 2016; 211:1424-39. [PMID: 27176118 DOI: 10.1111/nph.13999] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/31/2016] [Indexed: 05/17/2023]
Abstract
The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut.
Collapse
Affiliation(s)
- Laining Zhang
- School of Life Sciences, Institute of Plant Molecular Biology and Agricultural Biotechnology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xiaoyu Yang
- School of Life Sciences, Institute of Plant Molecular Biology and Agricultural Biotechnology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Lei Chen
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Weichang Yu
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
18
|
Chaintreuil C, Rivallan R, Bertioli DJ, Klopp C, Gouzy J, Courtois B, Leleux P, Martin G, Rami JF, Gully D, Parrinello H, Séverac D, Patrel D, Fardoux J, Ribière W, Boursot M, Cartieaux F, Czernic P, Ratet P, Mournet P, Giraud E, Arrighi JF. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes. DNA Res 2016; 23:365-76. [PMID: 27298380 PMCID: PMC4991833 DOI: 10.1093/dnares/dsw020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia.
Collapse
Affiliation(s)
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - David J Bertioli
- University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Christophe Klopp
- INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | | | - Philippe Leleux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France INRA, Plateforme GenoToul Bioinfo, UR 875, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | | | - Djamel Gully
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Dany Séverac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France
| | - Delphine Patrel
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Joël Fardoux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - William Ribière
- IRD, Centre IRD de Montpellier France Sud, F-34394 Montpellier, France
| | - Marc Boursot
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Fabienne Cartieaux
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pierre Czernic
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405 Orsay, France Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
| | - Eric Giraud
- IRD, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
| | | |
Collapse
|
19
|
Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci U S A 2016; 113:6785-90. [PMID: 27247390 DOI: 10.1073/pnas.1600899113] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.
Collapse
|
20
|
The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 2016; 48:438-46. [PMID: 26901068 DOI: 10.1038/ng.3517] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.
Collapse
|
21
|
Abstract
High-throughput next-generation sequence-based genotyping and single nucleotide polymorphism (SNP) detection opens the door for emerging genomics-based breeding strategies such as genome-wide association analysis and genomic selection. In polyploids, SNP detection is confounded by a highly similar homeologous sequence where a polymorphism between subgenomes must be differentiated from a SNP. We have developed and implemented a novel tool called SWEEP: Sliding Window Extraction of Explicit Polymorphisms. SWEEP uses subgenome polymorphism haplotypes as contrast to identify true SNPs between genotypes. The tool is a single command script that calls a series of modules based on user-defined options and takes sorted/indexed bam files or vcf files as input. Filtering options are highly flexible and include filtering based on sequence depth, alternate allele ratio, and SNP quality on top of the SWEEP filtering procedure. Using real and simulated data we show that SWEEP outperforms current SNP filtering methods for polyploids. SWEEP can be used for high-quality SNP discovery in polyploid crops.
Collapse
|
22
|
Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA. Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. MOLECULAR PLANT 2015; 8:831-46. [PMID: 25676455 DOI: 10.1016/j.molp.2015.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 05/23/2023]
Abstract
Understanding the relationship between genotype and phenotype is a major biological question and being able to predict phenotypes based on molecular genotypes is integral to molecular breeding. Whole-genome duplications have shaped the history of all flowering plants and present challenges to elucidating the relationship between genotype and phenotype, especially in neopolyploid species. Although single nucleotide polymorphisms (SNPs) have become popular tools for genetic mapping, discovery and application of SNPs in polyploids has been difficult. Here, we summarize common experimental approaches to SNP calling, highlighting recent polyploid successes. To examine the impact of software choice on these analyses, we called SNPs among five peanut genotypes using different alignment programs (BWA-mem and Bowtie 2) and variant callers (SAMtools, GATK, and Freebayes). Alignments produced by Bowtie 2 and BWA-mem and analyzed in SAMtools shared 24.5% concordant SNPs, and SAMtools, GATK, and Freebayes shared 1.4% concordant SNPs. A subsequent analysis of simulated Brassica napus chromosome 1A and 1C genotypes demonstrated that, of the three software programs, SAMtools performed with the highest sensitivity and specificity on Bowtie 2 alignments. These results, however, are likely to vary among species, and we therefore propose a series of best practices for SNP calling in polyploids.
Collapse
Affiliation(s)
- Josh Clevenger
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Stephanie A Pearl
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
23
|
Samoluk SS, Robledo G, Podio M, Chalup L, Ortiz JPA, Pessino SC, Seijo JG. First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 2015; 143:113-25. [PMID: 25633099 DOI: 10.1007/s10709-015-9820-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/23/2015] [Indexed: 12/26/2022]
Abstract
Peanut is an allotetraploid (2n = 2x = 40, AABB) of recent origin. Arachis duranensis and A. ipaënsis, the most probable diploid ancestors of the cultigen, and several other wild diploid species with different genomes (A, B, D, F and K) are used in peanut breeding programs. However, the genomic relationships and the evolutionary pathways of genome differentiation of these species are poorly understood. We performed a sequence-based phylogenetic analysis of the L1 reverse transcriptase and estimated its representation and chromosome distribution in species of five genomes and three karyotype groups with the aim of contributing to the knowledge of the genomic structure and evolution of peanut and wild diploid relatives. All the isolated rt fragments were found to belong to plant L1 lineage and were named ALI. The best supported phylogenetic groups were not concordant with the genomes or karyotype groups. The copy number of ALI sequences was higher than the expected one for plants and directly related to genome size. FISH experiments revealed that ALI is mainly located on the euchromatin of interstitial and distal regions of most chromosome arms. Divergence of ALI sequences would have occurred before the differentiation of the genomes and karyotype groups of Arachis. The representation and chromosome distribution of ALI in peanut was almost additive of those of the parental species suggesting that the spontaneous hybridization of the two parental species of peanut followed by chromosome doubling would not have induced a significant burst of ALI transposition.
Collapse
Affiliation(s)
- Sergio Sebastián Samoluk
- Instituto de Botánica del Nordeste (Facultad de Ciencias Agrarias, UNNE-CONICET), Casilla de Correo 209, 3400, Corrientes, Argentina,
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen YN, Wei WH, Ren XP, Zhao XY, Zhou XJ, Huang L, Tang XC, Jiang HF. Construction of a high-quality genomic BAC library for Chinese peanut cultivar Zhonghua 8 with high oil content. BOTANICAL STUDIES 2014; 55:8. [PMID: 28510971 PMCID: PMC5432765 DOI: 10.1186/1999-3110-55-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 07/31/2013] [Indexed: 05/30/2023]
Abstract
BACKGROUND Arachis hypogaea L. (2n = 4× = 40, AABB) is one of the most important oil and economic crop plants in the word. This species has the largest genome size of about 2,813 Mb among the oil crop species. Zhonghua 8 is a peanut cultivar planted widely in central China and has several superior traits including high oil content, high yield and disease resistance. A high-quality BAC library of Zhonghua 8 was constructed for future researches on the genomics of Chinese peanut cultivars. RESULTS A Hin d III-digested genomic BAC (bacterial artificial chromosome) library was constructed with the genomic DNA from leaves of Zhonghua 8. This BAC library consists of 160,512 clones and the average insert is estimated about 102 kb ranging from 30 to 150 kb. The library represents about 5.55× haploid genome equivalents, and provides a 99.71% probability of finding specific genes. The empty-vector rate is under 5 percent detected from 200 randomly selected clones. Probing of 384 clones with the psbA gene of barley chloroplast and the atp6 gene of rice mitochondrion indicated that the contamination with organellar DNA is insignificant. Successive subculture of three clones showed that the inserts are stable in one hundred generations. CONCLUSIONS This study presented the construction of a high-quality BAC library for the genome of Chinese cultivated peanut. Many essential experiences were summarized in the present study. This BAC library can serve as a substantial platform for development of molecular marker, isolation of genes and further genome research.
Collapse
Affiliation(s)
- Yu-Ning Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Wen-Hui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xiao-Ping Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xue-Ya Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xiao-Jing Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Li Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| | - Xing-Chun Tang
- School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui-Fang Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 China
| |
Collapse
|
25
|
Abstract
Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)4×]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.
Collapse
|
26
|
Alipour A, Tsuchimoto S, Sakai H, Ohmido N, Fukui K. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:129. [PMID: 24020916 PMCID: PMC3852365 DOI: 10.1186/1754-6834-6-129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/02/2013] [Indexed: 05/14/2023]
Abstract
BACKGROUND Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. RESULTS In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. CONCLUSION This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA markers. Distinct dynamics of individual copia-type families, feasibility of a retrotransposon-based insertion polymorphism marker system in examining genetic variability, and approaches for the development of breeding strategies in jatropha using copia-type retrotransposons are discussed.
Collapse
Affiliation(s)
- Atefeh Alipour
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Suguru Tsuchimoto
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroe Sakai
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee TH, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. ANNALS OF BOTANY 2013; 112:545-59. [PMID: 23828319 PMCID: PMC3718217 DOI: 10.1093/aob/mct128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes. METHODS The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues. KEY RESULTS BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity. CONCLUSIONS A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.
Collapse
Affiliation(s)
- David J. Bertioli
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
| | - Bruna Vidigal
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | - Stephan Nielen
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | | | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Changsoo Kim
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Guillermo Seijo
- Plant Cytogenetic and Evolution Laboratory, Instituto de Botánica del Nordeste and Faculty of Exact and Natural Sciences, National University of the Northeast, Corrientes, Argentina
| | | | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Ana C. G. Araujo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- For correspondence. E-mail
| |
Collapse
|
28
|
Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, Thudi M, Pandey MK, Rami JF, Foncéka D, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 2013; 20:173-84. [PMID: 23315685 PMCID: PMC3628447 DOI: 10.1093/dnares/dss042] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)(4×), were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.
Collapse
|
29
|
Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. ANNALS OF BOTANY 2013; 111:113-26. [PMID: 23131301 PMCID: PMC3523650 DOI: 10.1093/aob/mcs237] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. METHODS Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. KEY RESULTS Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3-2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. CONCLUSIONS The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.
Collapse
Affiliation(s)
- Márcio C Moretzsohn
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, CEP 70·770-917, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Guimarães PM, Brasileiro ACM, Morgante CV, Martins ACQ, Pappas G, Silva OB, Togawa R, Leal-Bertioli SCM, Araujo ACG, Moretzsohn MC, Bertioli DJ. Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 2012; 13:387. [PMID: 22888963 PMCID: PMC3496627 DOI: 10.1186/1471-2164-13-387] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/05/2012] [Indexed: 11/25/2022] Open
Abstract
Background Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development. Results Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR. Conclusions This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.
Collapse
Affiliation(s)
- Patricia M Guimarães
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372 Final W5 Norte, Brasília, DF, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|