1
|
Jia H, Li P, Li M, Liu N, Dong J, Qu Q, Cao Z. Trans-Kingdom RNA Dialogues: miRNA and milRNA Networks as Biotechnological Tools for Sustainable Crop Defense and Pathogen Control. PLANTS (BASEL, SWITZERLAND) 2025; 14:1250. [PMID: 40284138 PMCID: PMC12030539 DOI: 10.3390/plants14081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 20-24 nucleotides in length, which play a crucial role during gene regulation in plant-pathogen interaction. They negatively regulate the expression of target genes, primarily at the transcriptional or post-transcriptional level, through complementary base pairing with target gene sequences. Recent studies reveal that during pathogen infection, miRNAs produced by plants and miRNA-like RNAs (milRNAs) produced by fungi can regulate the expression of endogenous genes in their respective organisms and undergo trans-kingdom transfer. They can thereby negatively regulate the expression of target genes in recipient cells. These findings provide novel perspectives for deepening our understanding of the regulatory mechanisms underlying plant-pathogen interactions. Here, we summarize and discuss the roles of miRNAs and milRNAs in mediating plant-pathogen interactions via multiple pathways, providing new insights into the functions of these RNAs and their modes of action. Collectively, these insights lay a theoretical foundation for the targeted management of crop diseases.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Minye Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Ning Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| | - Qing Qu
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (H.J.); (P.L.); (N.L.); (J.D.)
| |
Collapse
|
2
|
Zhao R, Suo X, Meng X, Wang Y, Dai P, Hu T, Cao K, Wang S, Li B. Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Fusarium oxysporum HS2 Causing Apple Replant Disease. J Fungi (Basel) 2024; 10:883. [PMID: 39728379 DOI: 10.3390/jof10120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in Fusarium oxysporum HS2 (FoHS2), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways. Notably, the highest number of differentially or specifically expressed milRNAs (DEmilRNAs/SEmilRNAs) was found during the spore stage, with FoHS2-milR19 targeting genes encoding histone acetyltransferases, methyltransferases, and cell wall-degrading enzymes (CWDEs), which are crucial for growth, development, and pathogenicity. We validated the reliability of our sRNA-seq data and the expression of target genes using stem-loop RT-PCR and qRT-PCR. Our results highlight the stage-specific expression of milRNAs in FoHS2, particularly in the spore stage, suggesting a key role in regulating host life activities and providing a theoretical basis for developing RNA-based pesticides to control ARD.
Collapse
Affiliation(s)
- Ruxin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xiangmin Suo
- Shijiazhuang Institute of Fruit, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
3
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Zhong S, Zhang S, Zheng Y, Zhang Q, Liu F, Wang Z, Liu X. Distinct small RNAs are expressed at different stages of Phytophthora capsici and play important roles in development and pathogenesis. Front Genet 2024; 15:1296533. [PMID: 38919951 PMCID: PMC11196614 DOI: 10.3389/fgene.2024.1296533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Small RNAs (sRNAs) are important non-coding RNA regulators that play key roles in the development and pathogenesis of plant pathogens, as well as in other biological processes. However, whether these abundant and varying sRNAs are involved in Phytophthora development or infection remains enigmatic. In this study, sRNA sequencing of 4 asexual stages of Phytophthora capsici (P. capsici), namely, as mycelia (HY), sporangia (SP), zoospores (ZO), cysts (CY), and pepper infected with P. capsici (IN), were performed, followed by sRNA analysis, microRNA (miRNA) identification, and miRNA target prediction. sRNAs were mainly distributed at 25-26 nt in HY, SP, and ZO but distributed at 18-34 nt in CY and IN. 92, 42, 176, 39, and 148 known miRNAs and 15, 19, 54, 13, and 1 novel miRNA were identified in HY, SP, ZO, CY, and IN, respectively. It was found that the expression profiles of known miRNAs vary greatly at different stages and could be divided into 4 categories. Novel miRNAs mostly belong to part I. Gene ontology (GO) analysis of known miRNA-targeting genes showed that they are involved in the catalytic activity pathway, binding function, and other biological processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis of novel miRNA-targeting genes showed that they are involved in the lysine degradation pathway. The expression of candidate miRNAs was validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and miRNAs were downregulated in PcDCL1 or PcAGO1 mutants. To further explore the function of the detected miRNAs, the precursor of a novel miRNA, miR91, was knockout by CRISPR-Cas9, the mutants displayed decreased mycelial growth, sporangia production, and zoospore production. It was found that 503142 (Inositol polyphosphate 5-phosphatase and related proteins) can be predicted as a target of miR91, and the interaction between miR91 and 503142 was verified using the tobacco transient expression system. Overall, our results indicate that the diverse and differentially expressed sRNAs are involved in the development and pathogenesis of P. capsici.
Collapse
Affiliation(s)
- Shan Zhong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Sicong Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinghua Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fangmin Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiwen Wang
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Pardo-Medina J, Dahlmann TA, Nowrousian M, Limón MC, Avalos J. The RNAi Machinery in the Fungus Fusarium fujikuroi Is Not Very Active in Synthetic Medium and Is Related to Transposable Elements. Noncoding RNA 2024; 10:31. [PMID: 38804363 PMCID: PMC11130915 DOI: 10.3390/ncrna10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Tim A. Dahlmann
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780 Bochum, Germany; (T.A.D.); (M.N.)
| | - M. Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain;
| |
Collapse
|
6
|
Li N, Sun Y, Liu Y, Wei L, Zhang J, Li N, Sun D, Jiao J, Zuo Y, Li R, Cai X, Qiao J, Meng Q. Expression profiles and characterization of microRNAs responding to chitin in Arthrobotrys oligospora. Arch Microbiol 2024; 206:220. [PMID: 38630188 DOI: 10.1007/s00203-024-03949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.
Collapse
Affiliation(s)
- Ningxing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yansen Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yucheng Liu
- State key laboratory of sheep genetic improvement and healthy breeding, Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jiahua Zhang
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Dianming Sun
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Ruobing Li
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China
| | - Xuepeng Cai
- State key laboratory of veterinary etiological biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, North Street No.4, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
7
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
8
|
Regmi R, Newman TE, Khentry Y, Kamphuis LG, Derbyshire MC. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets. BMC Genomics 2023; 24:582. [PMID: 37784009 PMCID: PMC10544508 DOI: 10.1186/s12864-023-09686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Several phytopathogens produce small non-coding RNAs of approximately 18-30 nucleotides (nt) which post-transcriptionally regulate gene expression. Commonly called small RNAs (sRNAs), these small molecules were also reported to be present in the necrotrophic pathogen Sclerotinia sclerotiorum. S. sclerotiorum causes diseases in more than 400 plant species, including the important oilseed crop Brassica napus. sRNAs can further be classified as microRNAs (miRNAs) and short interfering RNAs (siRNAs). Certain miRNAs can activate loci that produce further sRNAs; these secondary sRNA-producing loci are called 'phased siRNA' (PHAS) loci and have only been described in plants. To date, very few studies have characterized sRNAs and their endogenous targets in S. sclerotiorum. RESULTS We used Illumina sequencing to characterize sRNAs from fungal mycelial mats of S. sclerotiorum spread over B. napus leaves. In total, eight sRNA libraries were prepared from in vitro, 12 h post-inoculation (HPI), and 24 HPI mycelial mat samples. Cluster analysis identified 354 abundant sRNA clusters with reads of more than 100 Reads Per Million (RPM). Differential expression analysis revealed upregulation of 34 and 57 loci at 12 and 24 HPI, respectively, in comparison to in vitro samples. Among these, 25 loci were commonly upregulated. Altogether, 343 endogenous targets were identified from the major RNAs of 25 loci. Almost 88% of these targets were annotated as repeat element genes, while the remaining targets were non-repeat element genes. Fungal degradome reads confirmed cleavage of two transposable elements by one upregulated sRNA. Altogether, 24 milRNA loci were predicted with both mature and milRNA* (star) sequences; these are both criteria associated previously with experimentally verified miRNAs. Degradome sequencing data confirmed the cleavage of 14 targets. These targets were related to repeat element genes, phosphate acetyltransferases, RNA-binding factor, and exchange factor. A PHAS gene prediction tool identified 26 possible phased interfering loci with 147 phasiRNAs from the S. sclerotiorum genome, suggesting this pathogen might produce sRNAs that function similarly to miRNAs in higher eukaryotes. CONCLUSIONS Our results provide new insights into sRNA populations and add a new resource for the study of sRNAs in S. sclerotiorum.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
- Present address: Microbiome for One Systems Health, CSIRO, Urrbrae, South Australia, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
9
|
Hirpara DG, Gajera HP. Intracellular metabolomics and microRNAomics unveil new insight into the regulatory network for potential biocontrol mechanism of stress-tolerant Tricho-fusants interacting with phytopathogen Sclerotium rolfsii Sacc. J Cell Physiol 2023; 238:1288-1307. [PMID: 37021806 DOI: 10.1002/jcp.31009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
The present study employed microRNA (miRNA) sequencing and metabolome profiling of Trichoderma parental strains and fusants during normal growth and interaction with the phytopathogen Sclerotium rolfsii Sacc. In-vitro antagonism indicated that abiotic stress-tolerant Tricho-fusant FU21 was examined as a potent biocontroller with mycoparasitic action after 10 days. During interaction with the test pathogen, the most abundant uprising intracellular metabolite was recognized as l-proline, which corresponds to held-down l-alanine, associated with arginine and proline metabolism, biosynthesis of secondary metabolites, and nitrogen metabolism linked to predicted genes controlled by miRNAs viz., cel-miR-8210-3p, hsa-miR-3613-5p, and mml-miR-7174-3p. The miRNAs- mml-miR-320c and mmu-miR-6980-5p were found to be associated with phenylpropanoid biosynthesis, transcription factors, and signal transduction pathways, respectively, and were ascertained downregulated in potent FU21_IB compared with FU21_CB. The amino benzoate degradation and T cell receptor signaling pathways were regulated by miRNAs cel-miR-8210 and tca-miR-3824 as stress tolerance mechanisms of FU21. The intracellular metabolites l-proline, maleic acid, d-fructose, Myo-inositol, arabinitol, d-xylose, mannitol, and butane were significantly elevated as potential biocontrol and stress-tolerant constituents associated with miRNA regulatory pathways in potent FU21_IB. A network analysis between regulatory miRNA-predicted genes and intracellular metabolomics acknowledged possible biocontrol pathways/mechanisms in potent FU21_IB to restrain phytopathogen.
Collapse
Affiliation(s)
- Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Harsukh P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
10
|
Hirpara DG, Gajera HP, Savaliya DD, Parakhia MV. Exploring conserved and novel MicroRNA-like small RNAs from stress tolerant Trichoderma fusants and parental strains during interaction with fungal phytopathogen Sclerotium rolfsii Sacc. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105368. [PMID: 36963937 DOI: 10.1016/j.pestbp.2023.105368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The study investigated potential microRNA-like small RNAs (milRNAs) from multi-stress-tolerant Tricho-fusants and parental strains (P1- Trichoderma virens NBAIITvs12 and P2- Trichoderma koningii MTCC796) for antagonistic activity during interaction with phytopathogen Sclerotium rolfsii. The Trichoderma was cultured in-vitro, with and without antagonism, against the pathogen and total RNA was extracted followed by small RNA library construction and sequencing. The milRNAs were identified by mapping high-quality unique reads against a reference genome. The milRNAs were recognized higher in antagonist Trichoderma during interaction with test pathogen compared to normal growth. The novel milRNAs candidates were found to vary during interaction with the pathogen and normal growth. The gene ontology and functional analysis illustrated that a total of 5828 potential targeted genes were recognized for 93 milRNAs of potent Fu21_IB and 3053 genes for 62 milRNAs of least fusant Fu28_IL. Functional annotation of milRNA-predicted genes integrating KEGG pathways indicates new insights into regulatory mechanisms, by interfering with milRNAs, associated with signal transduction, amino sugar metabolism, benzoate degradation, amino acid metabolism, and steroid and alkaloid metabolism for potential biocontrol of stress-tolerant Tricho-fusant FU21 during interaction with S. rolfsii. The present investigation is the first report of conserved and novel milRNAs from Tricho-fusants and parental strains interacting with S. rolfsii.
Collapse
Affiliation(s)
- Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India.
| | - Disha D Savaliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - M V Parakhia
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| |
Collapse
|
11
|
Rutter BD, Innes RW. Extracellular vesicles in phytopathogenic fungi. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:90-106. [PMID: 39698296 PMCID: PMC11648432 DOI: 10.20517/evcna.2023.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid compartments that mediate the intercellular transport of lipids, proteins, nucleic acids and metabolites. During infectious diseases, EVs released by host cells promote immune responses, while those released by pathogens attempt to subvert host immunity. There is a growing body of research investigating the role of fungal EVs in plant pathosystems. It is becoming clear that EVs released by fungal phytopathogens play a role during infection through the transport of protein effectors, toxic metabolites and RNA. Here, we discuss recent findings on EVs in fungal phytopathogens, including the methods employed in their isolation, their characterization, contents and functionality, as well as the key questions remaining to be addressed.
Collapse
Affiliation(s)
- Brian D. Rutter
- Department of Biology, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | |
Collapse
|
12
|
Qi Y, Huang C, Zhao M, Wu X, Li G, Zhang Y, Zhang L. milR20 negatively regulates the development of fruit bodies in Pleurotus cornucopiae. Front Microbiol 2023; 14:1177820. [PMID: 37213518 PMCID: PMC10192896 DOI: 10.3389/fmicb.2023.1177820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
The mechanism underlying the development of fruit bodies in edible mushroom is a widely studied topic. In this study, the role of milRNAs in the development of fruit bodies of Pleurotus cornucopiae was studied by comparative analyses of the mRNAs and milRNAs at different stages of development. The genes that play a crucial role in the expression and function of milRNAs were identified and subsequently expressed and silenced at different stages of development. The total number of differentially expressed genes (DEGs) and differentially expressed milRNAs (DEMs) at different stages of development was determined to be 7,934 and 20, respectively. Comparison of the DEGs and DEMs across the different development stages revealed that DEMs and its target DEGs involved in the mitogen-activated protein kinase (MAPK) signaling pathway, protein processing in endoplasmic reticulum, endocytosis, aminoacyl-tRNA biosynthesis, RNA transport, and other metabolism pathways, which may play important roles in the development of the fruit bodies of P. cornucopiae. The function of milR20, which targeted pheromone A receptor g8971 and was involved in the MAPK signaling pathway, was further verified by overexpression and silencing in P. cornucopiae. The results demonstrated that the overexpression of milR20 reduced the growth rate of mycelia and prolonged the development of the fruit bodies, while milR20 silencing had an opposite effect. These findings indicated that milR20 plays a negative role in the development of P. cornucopiae. This study provides novel insights into the molecular mechanism underlying the development of fruit bodies in P. cornucopiae.
Collapse
Affiliation(s)
- Yuhui Qi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Guangyu Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
| | - Yingjie Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lijiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, China
- *Correspondence: Lijiao Zhang,
| |
Collapse
|
13
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
14
|
Small RNA Analyses of a Ceratobasidium Isolate Infected with Three Endornaviruses. Viruses 2022; 14:v14102276. [PMID: 36298830 PMCID: PMC9610886 DOI: 10.3390/v14102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Isolates of three endornavirus species were identified co-infecting an unidentified species of Ceratobasidium, itself identified as a symbiont from within the roots of a wild plant of the terrestrial orchid Pterostylis vittata in Western Australia. Isogenic lines of the fungal isolate lacking all three mycoviruses were derived from the virus-infected isolate. To observe how presence of endornaviruses influenced gene expression in the fungal host, we sequenced fungus-derived small RNA species from the virus-infected and virus-free isogenic lines and compared them. The presence of mycoviruses influenced expression of small RNAs. Of the 3272 fungus-derived small RNA species identified, the expression of 9.1% (300 of 3272) of them were up-regulated, and 0.6% (18 of 3272) were down-regulated in the presence of the viruses. Fourteen novel micro-RNA-like RNAs (Cer-milRNAs) were predicted. Gene target prediction of the differentially expressed Cer-milRNAs was quite ambiguous; however, fungal genes involved in transcriptional regulation, catalysis, molecular binding, and metabolic activities such as gene expression, DNA metabolic processes and regulation activities were differentially expressed in the presence of the mycoviruses.
Collapse
|
15
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
16
|
Li M, Xie L, Wang M, Lin Y, Zhong J, Zhang Y, Zeng J, Kong G, Xi P, Li H, Ma LJ, Jiang Z. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathog 2022; 18:e1010157. [PMID: 35512028 PMCID: PMC9113603 DOI: 10.1371/journal.ppat.1010157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. However, knowledge about pathogenesis of Foc is limited. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, an Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, milR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Banana Fusarium wilt.
Collapse
Affiliation(s)
- Minhui Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| | - Lifei Xie
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Meng Wang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yilian Lin
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Jiaqi Zhong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Bioinformatics section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Jing Zeng
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Guanghui Kong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Pinggen Xi
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Huaping Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (ML); (LJM); (ZJ)
| | - Zide Jiang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| |
Collapse
|
17
|
Marin FR, Dávalos A, Kiltschewskij D, Crespo MC, Cairns M, Andrés-León E, Soler-Rivas C. RNA-Seq, Bioinformatic Identification of Potential MicroRNA-like Small RNAs in the Edible Mushroom Agaricus bisporus and Experimental Approach for Their Validation. Int J Mol Sci 2022; 23:4923. [PMID: 35563314 PMCID: PMC9100230 DOI: 10.3390/ijms23094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco R. Marin
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Maria C. Crespo
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)—Food, CEI UAM + CSIC, Pabellón Central del Antiguo Hospital de Cantoblanco, 28049 Madrid, Spain; (A.D.); (M.C.C.)
| | - Murray Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; (D.K.); (M.C.)
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López Neyra”, Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
18
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
19
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Jeseničnik T, Štajner N, Radišek S, Mishra AK, Košmelj K, Kunej U, Jakše J. Discovery of microRNA-like Small RNAs in Pathogenic Plant Fungus Verticillium nonalfalfae Using High-Throughput Sequencing and qPCR and RLM-RACE Validation. Int J Mol Sci 2022; 23:900. [PMID: 35055083 PMCID: PMC8778906 DOI: 10.3390/ijms23020900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant-fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5' RLM-RACE approach.
Collapse
Affiliation(s)
- Taja Jeseničnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic;
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.J.); (N.Š.); (K.K.); (U.K.)
| |
Collapse
|
21
|
Piombo E, Dubey M. Computational Analysis of HTS Data and Its Application in Plant Pathology. Methods Mol Biol 2022; 2536:275-307. [PMID: 35819611 DOI: 10.1007/978-1-0716-2517-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput sequencing is a basic tool of biological research, and it is extensively used in plant pathology projects. Here, we describe how to handle data coming from a variety of sequencing experiments, focusing on the analysis of Illumina reads. We describe how to perform genome assembly and annotation with DNA reads, correctly analyze RNA-seq data to discover differentially expressed genes, handle amplicon sequencing data from microbial communities, and utilize small RNA sequencing data to predict miRNA sequences and their putative targets.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Kwasiborski A, Bastide F, Hamon B, Poupard P, Simoneau P, Guillemette T. In silico analysis of RNA interference components and miRNAs-like RNAs in the seed-borne necrotrophic fungus Alternaria brassicicola. Fungal Biol 2021; 126:224-234. [DOI: 10.1016/j.funbio.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
|
23
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Wu D, Wang L, Zhang Y, Bai L, Yu F. Emerging roles of pathogen-secreted host mimics in plant disease development. Trends Parasitol 2021; 37:1082-1095. [PMID: 34627670 DOI: 10.1016/j.pt.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Plant pathogens and parasites use multiple virulence factors to successfully infect plants. While most plant-pathogen interaction studies focus on pathogen effectors and their functions in suppressing plant immunity or interfering with normal cellular processes, other virulence factors likely also contribute. Here we highlight another important strategy used by pathogens to promote virulence: secretion of mimics of host molecules, including peptides, phytohormones, and small RNAs, which play diverse roles in plant development and stress responses. Pathogen-secreted mimics hijack the host endogenous signaling pathways, thereby modulating host cellular functions to the benefit of the pathogen and promoting infection. Understanding the mechanisms of pathogen-secreted host mimics will expand our knowledge of host-pathogen coevolution and interactions, while providing new targets for plant disease control.
Collapse
Affiliation(s)
- Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
25
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
26
|
Wang W, Zhang F, Cui J, Chen D, Liu Z, Hou J, Zhang R, Liu T. Identification of microRNA-like RNAs from Trichoderma asperellum DQ-1 during its interaction with tomato roots using bioinformatic analysis and high-throughput sequencing. PLoS One 2021; 16:e0254808. [PMID: 34293017 PMCID: PMC8297844 DOI: 10.1371/journal.pone.0254808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
MicroRNA-like small RNAs (milRNAs) and their regulatory roles in the interaction between plant and fungus have recently aroused keen interest of plant pathologists. Trichoderma spp., one of the widespread biocontrol fungi, can promote plant growth and induce plant disease resistance. To investigate milRNAs potentially involved in the interaction between Trichoderma and tomato roots, a small RNA (sRNA) library expressed during the interaction of T. asperellum DQ-1 and tomato roots was constructed and sequenced using the Illumina HiSeqTM 2500 sequencing platform. From 13,464,142 sRNA reads, we identified 21 milRNA candidates that were similar to other known microRNAs in the miRBase database and 22 novel milRNA candidates that possessed a stable microRNA precursor hairpin structure. Among them, three milRNA candidates showed different expression level in the interaction according to the result of stem-loop RT-PCR indicating that these milRNAs may play a distinct regulatory role in the interaction between Trichoderma and tomato roots. The potential transboundary milRNAs from T. asperellum and their target genes in tomato were predicted by bioinformatics analysis. The results revealed that several interesting proteins involved in plant growth and development, disease resistance, seed maturation, and osmotic stress signal transduction might be regulated by the transboundary milRNAs. To our knowledge, this is the first report of milRNAs taking part in the process of interaction of T. asperellum and tomato roots and associated with plant promotion and disease resistance. The results might be useful to unravel the mechanism of interaction between Trichoderma and tomato.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Haikou, Hainan, PR China
| | - Fengtao Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Jia Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Di Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Rongyi Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
- * E-mail:
| |
Collapse
|
27
|
Prathi NB, Durga Rani CV, Balachandran SM, Prakasam V, Chandra Mohan Y, Nagalakshmi S, Srivastava SK, Sundaram RM, Mangrauthia SK. Genome-Wide Expression Profiling of Small RNAs in Indian Strain of Rhizoctonia solani AG1-1A Reveals Differential Regulation of milRNAs during Pathogenesis and Crosstalk of Gene Regulation. J Fungi (Basel) 2021; 7:jof7070561. [PMID: 34356939 PMCID: PMC8304579 DOI: 10.3390/jof7070561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani AG1-1A is a necrotrophic fungus that causes sheath blight disease in rice. The reliable resistant source against this phytopathogenic fungus is not available in the gene pool of rice. Better understanding of pathogen genomics and gene regulatory networks are critical to devise alternate strategies for developing resistance against this noxious pathogen. In this study, miRNA-like RNAs (milRNAs) of an Indian strain of R. solani were identified by deep sequencing of small RNAs. We identified 128 known and 22 novel milRNAs from 20,963,123 sequence reads. These milRNAs showed 1725 target genes in the fungal genome which include genes associated with growth, development, pathogenesis and virulence of R. solani. Notably, these fungal milRNAs showed their target genes in host (rice) genome also which were later verified by qRT-PCR. The host target genes are associated with auxin metabolism, hypersensitive response, defense genes, and genes related to growth and development of rice. Osa-vacuolar-sorting receptor precursor: Rhi-milR-13, Osa-KANADI1:Rhi-milR-124, Osa-isoflavone reductase: Rhi-milR-135, Osa-nuclear transcription factor Y:Rhi-milR-131, Osa-NB-ARC domain containing protein: Rhi-milR-18, and Osa-OsFBX438: Rhi-milR-142 are notable potential regulons of host target genes: fungal milRNAs that need to be investigated for better understanding of the crosstalk of RNAi pathways between R. solani and rice. The detailed expression analysis of 17 milRNAs by qRT-PCR was analysed during infection at different time points of inoculation, at different growth stages of the host, in four different genotypes of the host, and also in four different strains of fungi which revealed differential regulation of milRNAs associated with pathogenesis and virulence. This study highlights several important findings on fungal milRNAs which need to be further studied and characterized to decipher the gene expression and regulation of this economically important phytopathogen.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sena Munuswamy Balachandran
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Vellaisamy Prakasam
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Yeshala Chandra Mohan
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad 500030, India; (N.B.P.); (C.V.D.R.); (Y.C.M.)
| | - Sanivarapu Nagalakshmi
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Sunil K. Srivastava
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036, India;
| | - Raman Meenakshi Sundaram
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
| | - Satendra K. Mangrauthia
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research, Hyderabad 500030, India; (S.M.B.); (V.P.); (S.N.); (R.M.S.)
- Correspondence: or ; Tel.: +91-40-24591342
| |
Collapse
|
28
|
Xu D, Zhou Q, Yan B, Ma A. Identification and physiological function of one microRNA ( Po-MilR-1) in oyster mushroom Pleurotus ostreatus. MYCOSCIENCE 2021; 62:182-188. [PMID: 37091326 PMCID: PMC9157778 DOI: 10.47371/mycosci.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs are essential regulators of gene expression and have been extensively studied in plants and animals; however, few reports have been published in mushrooms. Po-MilR-1 is a novel microRNA with a length of 22 bp in Pleurotus ostreatus. The secondary structures of five precursors and the target genes of Po-MilR-1 were predicted. Expression profile analysis showed Po-MilR-1 had specific expression in the primordium and fruiting body. To explore its physiological function, Po-MilR-1 was overexpressed in P. ostreatus. The transformants showed slow mycelium growth rate and abnormal pileus with irregular edge, which suggested Po-MilR-1 plays an important role in P. ostreatus development. Additionally, Po-MilR-1 and one of its target hydrophobin genes POH1 had opposite temporal expression profiles in the primordium and fruiting body, which revealed that Po-MilR-1 may perform its physiological function through the negative regulation of POH1. This study explored the development-related function of a mushroom microRNA and will provide a reference for other microRNAs.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University
| | - Qixia Zhou
- College of Food Science and Technology, Huazhong Agricultural University
| | - Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University
| |
Collapse
|
29
|
Meng H, Wang S, Yang W, Ding X, Li N, Chu Z, Li X. Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC PLANT BIOLOGY 2021; 21:155. [PMID: 33771101 PMCID: PMC8004440 DOI: 10.1186/s12870-021-02930-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anastomosis group 1 IA (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular mechanisms of fungi-host interactions. RESULTS In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize to reinforce its pathogenicity. CONCLUSIONS Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that they are probably the virulence factors by directly interfered in host targeting genes. These results offer new insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
Collapse
Affiliation(s)
- Hongxu Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yan'tai, 265500, Shandong, People's Republic of China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Feng H, Xu M, Gao Y, Liang J, Guo F, Guo Y, Huang L. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. MOLECULAR PLANT PATHOLOGY 2021; 22:243-254. [PMID: 33278058 PMCID: PMC7814965 DOI: 10.1111/mpp.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 05/22/2023]
Abstract
MicroRNAs play important roles in various biological processes by regulating their corresponding target genes. However, the function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) are still largely unknown. In this study, a milRNA (Vm-milR37) was isolated and identified from Valsa mali, which causes the most serious disease on the trunk of apple trees in China. Based on the results of deep sequencing and quantitative reverse transcription PCR, Vm-milR37 was found to be expressed in the mycelium, while it was not expressed during the V. mali infection process. Overexpression of Vm-milR37 did not affect vegetative growth, but significantly decreased pathogenicity. Based on degradome sequencing, the target of Vm-milR37 was identified as VmGP, a glutathione peroxidase. The expression of Vm-milR37 and VmGP showed a divergent trend in V. mali-apple interaction samples and Vm-milR37 overexpression transformants. The expression of VmGP could be suppressed significantly by Vm-milR37 when coexpressed in tobacco leaves. Deletion of VmGP showed significantly reduced pathogenicity compared with the wild type. VmGP deletion mutants showed more sensitivity to hydrogen peroxide. Apple leaves inoculated with Vm-milR37 overexpression transformants and VmGP deletion mutant displayed increased accumulation of reactive oxygen species compared with the wild type. Thus, Vm-milR37 plays a critical role in pathogenicity by regulating VmGP, which contributes to the oxidative stress response during V. mali infection. These results provide important evidence to define the roles of milRNAs and their corresponding target genes in pathogenicity.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiahao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
31
|
Middleton H, Yergeau É, Monard C, Combier JP, El Amrani A. Rhizospheric Plant-Microbe Interactions: miRNAs as a Key Mediator. TRENDS IN PLANT SCIENCE 2021; 26:132-141. [PMID: 33036916 DOI: 10.1016/j.tplants.2020.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
The importance of microorganisms in plant development, nutrition, and stress resistance is unquestioned and has led to a more holistic approach of plant-microbe interactions, under the holobiont concept. The structure of the plant microbiota is often described as host driven, especially in the rhizosphere, where microbial communities are shaped by diverse rhizodeposits. Gradually, this anthropogenic vision is fading and being replaced by the idea that plants and microorganisms co-shape the plant microbiota. Through coevolution, plants and microbes have developed cross-kingdom communication channels. Here, we propose that miRNAs are crucial mediators of plant-microbe interactions and microbiota shaping in the rhizosphere. Moreover, we suggest, as an alternative to generally unsuccessful strategies based on microbial inoculants, miRNAs as a promising tool for novel holobiont engineering.
Collapse
Affiliation(s)
- Harriet Middleton
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France.
| | - Étienne Yergeau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, Canada
| | - Cécile Monard
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Vegetales, UMR 5546, UPS, CNRS, Auzeville-Tolosane 31320, France
| | - Abdelhak El Amrani
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| |
Collapse
|
32
|
Xia Z, Wang Z, Kav NNV, Ding C, Liang Y. Characterization of microRNA-like RNAs associated with sclerotial development in Sclerotinia sclerotiorum. Fungal Genet Biol 2020; 144:103471. [PMID: 32971275 DOI: 10.1016/j.fgb.2020.103471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum is a model necrotrophic pathogen causing great economic losses worldwide. Sclerotia are dormant structures that play significant biological and ecological roles in the life and disease cycles of S. sclerotiorum and other species of sclerotia-forming fungi. microRNA-like RNAs (milRNAs) as non-coding small RNAs play regulatory roles in fungal development and pathogenicity. Therefore, milRNAs associated with sclerotial development in S. sclerotiorum were investigated in this study. A total of 275 milRNAs with induced expression during sclerotia development were identified, in which 51 were differentially expressed. The target genes of all milRNAs were predicted. The putative functions of the targets regulated by milRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The expression levels of six selected milRNAs that coordinated with their corresponding targets were validated by qRT-PCR. Among these six milRNAs, Ssc-milR-240 was potentially associated with sclerotial development by epigenetic regulation of its target histone acetyltransferase. This study will facilitate the better understanding of the milRNA regulation associated with sclerotial development in S. sclerotiorum and even other sclerotia-forming fungi. This work will provide novel insights into the molecular regulations of fungal morphogenesis and the candidate targets of milRNAs used for the sustainable management of plant diseases caused by S. sclerotiorum.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
33
|
Saçar Demirci MD. Computational prediction of microRNAs in Histoplasma capsulatum. Microb Pathog 2020; 148:104433. [PMID: 32858119 DOI: 10.1016/j.micpath.2020.104433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that regulate gene expression through post-transcriptional regulation. Although, the standard miRNA repository, MiRBase, lists more than 200 organisms having miRNA mediated regulation mechanism and thousands of miRNAs, there is not enough information about miRNAs of fungal species. Considering that there are various fungal pathogens causing disease phenotypes, it is important to search for miRNAs of those organisms. The leading cause of endemic mycosis in the USA is a fungal disease known as histoplasmosis, which is resulted by infection with a fungal intracellular parasite, Histoplasma capsulatum (H. capsulatum). In this work, genomes of H. capsulatum strains NAm1 and G217B were explored for potential miRNA like sequences and structures. Through a complex workflow involving miRNA detection and target prediction, several miRNA candidates of H. capsulatum and their possible targets in human were identified. The results presented here indicate that H. capsulatum might be one of the fungal pathogens having a miRNA based post-transcriptional gene regulation mechanism and it might have a miRNA mediated host - parasite interaction with human.
Collapse
|
34
|
Xu M, Guo Y, Tian R, Gao C, Guo F, Voegele RT, Bao J, Li C, Jia C, Feng H, Huang L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. THE NEW PHYTOLOGIST 2020; 227:899-913. [PMID: 32222083 DOI: 10.1111/nph.16561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs play important roles in the regulation of gene expression in plants and animals. However, little information is known about the action mechanism and function of fungal microRNA-like RNAs (milRNAs). In this study, combining deep sequencing, molecular and histological assays, milRNAs and their targets in the phytopathogenic fungus Valsa mali were isolated and identified. A critical milRNA, Vm-milR16, was identified to adaptively regulate the expression of virulence genes. Fourteen isolated milRNAs showed high expression abundance. Based on the assessment of a pathogenicity function of these milRNAs, Vm-milR16 was found to be a critical milRNA in V. mali by regulating sucrose non-fermenting 1 (VmSNF1), 4,5-DOPA dioxygenase extradiol (VmDODA), and a hypothetical protein (VmHy1). During V. mali infection, Vm-milR16 is downregulated, while its targets are upregulated. Overexpression of Vm-milR16, but not mutated Vm-milR16, significantly reduces the expression of targets and virulence of V. mali. Furthermore, deletion of VmSNF1, VmDODA and VmHy1 significantly reduce virulence of V. mali. All three targets seem to be essential for oxidative stress response and VmSNF1 is required for expression of pectinase genes during V. mali-host interaction. Our results demonstrate Vm-milRNAs contributing to the infection of V. mali on apple trees by adaptively regulating virulence genes.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf T Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenjing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
35
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
36
|
Mathur M, Nair A, Kadoo N. Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 2020; 112:3021-3035. [PMID: 32454170 DOI: 10.1016/j.ygeno.2020.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) have been prevalently studied in plants, animals, and viruses. However, recent studies show evidences of miRNA-like RNAs (milRNAs) in fungi as well. It is known that after successful infection, pathogens hijack the host machinery and use it for their own growth and multiplication. Alternatively, resistant plants can overcome the pathogen attack by a variety of mechanisms. Based on this prior knowledge, we computationally predicted milRNAs from 13 fungi, and identified their targets in transcriptomes of the respective fungi as well as their host plants. The expressions of the milRNAs and targets were confirmed using qRT-PCR. We found that plant miRNAs targeted fungal virulence genes, while fungal milRNAs targeted plant resistance genes; corroborating miRNA-mediated trans-kingdom gene regulation and the roles of miRNAs in plant-pathogen interactions. Transgenic plants with miRNAs targeting fungal virulence genes, or anti-sense of fungal milRNAs, would be expected to be highly resistant to the fungal pathogens.
Collapse
Affiliation(s)
- Monika Mathur
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aswathy Nair
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
37
|
Shao J, Wang L, Liu Y, Qi Q, Wang B, Lu S, Liu C. Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis. Fungal Genet Biol 2020; 136:103313. [DOI: 10.1016/j.fgb.2019.103313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
38
|
Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180309. [PMID: 30967013 DOI: 10.1098/rstb.2018.0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MiRNAs in animals and plants play crucial roles in diverse developmental processes under both normal and stress conditions. miRNA-like small RNAs (milRNAs) identified in some fungi remain functionally uncharacterized. Here, we identified a number of milRNAs in Verticillium dahliae, a soil-borne fungal pathogen responsible for devastating wilt diseases in many crops. Accumulation of a V. dahliae milRNA1, named VdmilR1, was detected by RNA gel blotting. We show that the precursor gene VdMILR1 is transcribed by RNA polymerase II and is able to produce the mature VdmilR1, in a process independent of V. dahliae DCL (Dicer-like) and AGO (Argonaute) proteins. We found that an RNaseIII domain-containing protein, VdR3, is essential for V. dahliae and participates in VdmilR1 biogenesis. VdmilR1 targets a hypothetical protein-coding gene, VdHy1, at the 3'UTR for transcriptional repression through increased histone H3K9 methylation of VdHy1. Pathogenicity analysis reveals that VdHy1 is essential for fungal virulence. Together with the time difference in the expression patterns of VdmilR1 and VdHy1 during fungal infection in cotton plants, our findings identify a novel milRNA, VdmilR1, in V. dahliae synthesized by a noncanonical pathway that plays a regulatory role in pathogenicity and uncover an epigenetic mechanism for VdmilR1 in regulating a virulence target gene. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yun Jin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Jian-Hua Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Pan Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Tao Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Sheng Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hui-Shan Guo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
39
|
Li Y, Liu X, Yin Z, You Y, Zou Y, Liu M, He Y, Zhang H, Zheng X, Zhang Z, Wang P. MicroRNA-like milR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2020; 137:103349. [PMID: 32006681 DOI: 10.1016/j.fgb.2020.103349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play important roles in various cellular growth and developmental processes through post-transcriptional gene regulation via mRNA cleavage and degradation and the inhibition of protein translation. To explore if miRNAs play a role in appressoria formation and virulence that are also governed by the regulators of G-protein signaling (RGS) proteins in the rice blast fungus Magnaporthe oryzae, we have compared small RNA (sRNA) production between several ΔMorgs mutant and the wild-type strains. We have identified sRNA236 as a microRNA-like milR236 that targets the encoding sequence of MoHat1, a histone acetyltransferase type B catalytic subunit involved in appressorium function and virulence. We have also found that milR236 overexpression induces delayed appressorium formation and virulence attenuation, similar to those displayed by the ΔMohat1 mutant strain. Moreover, we have shown that the transcription factor MoMsn2 binds to the promoter sequence of milR236 to further suppress MoHAT1 transcription and MoHat1-regulated appressorium formation and virulence. In summary, by identifying a novel regulatory role of sRNA in the blast fungus, our studies reveal a new paradigm in the multifaceted regulatory pathways that govern the appressorium formation and virulence of M. oryzae.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yimei You
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yibin Zou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yanglan He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| | - Ping Wang
- Departments of Microbiology, Immunology, and Parasitology, and Pediatrics Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
milRNApredictor: Genome-free prediction of fungi milRNAs by incorporating k-mer scheme and distance-dependent pair potential. Genomics 2019; 112:2233-2240. [PMID: 31884158 DOI: 10.1016/j.ygeno.2019.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
MicroRNA-like small RNAs (milRNAs) with length of 21-22 nucleotides are a type of small non-coding RNAs that are firstly found in Neurospora crassa in 2010. Identifying milRNAs of species without genomic information is a difficult problem. Here, knowledge-based energy features are developed to identify milRNAs by tactfully incorporating k-mer scheme and distance-dependent pair potential. Compared with k-mer scheme, features developed here can alleviate the inherent curse of dimensionality in k-scheme once k becomes large. In addition, milRNApredictor built on novel features performs comparably to k-mer scheme, and achieves sensitivity of 74.21%, and specificity of 75.72% based on 10-fold cross-validation. Furthermore, for novel miRNA prediction, there exists high overlap of results from milRNApredictor and state-of-the-art mirnovo. However, milRNApredictor is simpler to use with reduced requirements of input data and dependencies. Taken together, milRNApredictor can be used to de novo identify fungi milRNAs and other very short small RNAs of non-model organisms.
Collapse
|
41
|
Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs - Big Players in Plant-Microbe Interactions. Cell Host Microbe 2019; 26:173-182. [PMID: 31415750 DOI: 10.1016/j.chom.2019.07.021] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Eukaryotic small RNAs (sRNAs) are short non-coding regulatory molecules that induce RNA interference (RNAi). During microbial infection, host RNAi machinery is highly regulated and contributes to reprogramming gene expression and balancing plant immunity and growth. While most sRNAs function endogenously, some can travel across organismal boundaries between hosts and microbes and silence genes in trans in interacting organisms, a mechanism called "cross-kingdom RNAi." During the co-evolutionary arms race between fungi and plants, some fungi developed a novel virulence mechanism, sending sRNAs as effector molecules into plant cells to silence plant immunity genes, whereas plants also transport sRNAs, mainly using extracellular vesicles, into the pathogens to suppress virulence-related genes. In this Review, we highlight recent discoveries on these key roles of sRNAs and RNAi machinery. Understanding the molecular mechanisms of sRNA biogenesis, trafficking, and RNAi machinery will help us develop innovative strategies for crop protection.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Huan Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Po Hu
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachael Hamby
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
42
|
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1279-1297. [PMID: 31361080 PMCID: PMC6715603 DOI: 10.1111/mpp.12841] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts. In particular, evidence for the production of sRNAs by S. sclerotiorum during infection is lacking. We sequenced sRNAs produced by S. sclerotiorum in vitro and during infection of two host species, Arabidopsis thaliana and Phaseolus vulgaris. We found that S. sclerotiorum produces at least 374 distinct highly abundant sRNAs during infection, mostly originating from repeat-rich plastic genomic regions. We predicted the targets of these sRNAs in A. thaliana and found that these genes were significantly more down-regulated during infection than the rest of the genome. Predicted targets of S. sclerotiorum sRNAs in A. thaliana were enriched for functional domains associated with plant immunity and were more strongly associated with quantitative disease resistance in a genome-wide association study (GWAS) than the rest of the genome. Mutants in A. thaliana predicted sRNA target genes SERK2 and SNAK2 were more susceptible to S. sclerotiorum than wild-type, suggesting that S. sclerotiorum sRNAs may contribute to the silencing of immune components in plants. The prediction of fungal sRNA targets in plant genomes can be combined with other global approaches, such as GWAS, to assist in the identification of plant genes involved in quantitative disease resistance.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| |
Collapse
|
43
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
44
|
Jeseničnik T, Štajner N, Radišek S, Jakše J. RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Sci Rep 2019; 9:8651. [PMID: 31209232 PMCID: PMC6572790 DOI: 10.1038/s41598-019-44494-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
The conserved RNA interference mechanism (RNAi) in the fungal kingdom has become a focus of intense scientific investigation. The three catalytic core components, Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RdRP), and their associated small interfering RNA molecules (siRNAs) have been identified and characterised in several fungal species. Recent studies have proposed that RNAi is a major contributor to the virulence of fungal pathogens as a result of so-called trans-kingdom RNA silencing. In the present study, we report on the existence of three core RNAi proteins in the pathogenic plant fungus Verticillium nonalfalfae, which is a soilborne plant pathogen that causes severe wilting disease in hops (Humulus lupulus L.). Two DCL proteins, two AGO proteins, and two RdRP proteins were identified, and their conserved RNAi domains were characterised. Our phylogeny results confirm the existing taxonomic relationships in the Ascomycete fungal phylum and show that the fungi of the Hypocreomycetidae subclass of the Sordariomycetes class have high amino acid sequence similarity. The expression analysis revealed a potential role of RNAi in the pathogenicity of the fungi, since all the RNAi genes were highly upregulated in the highly virulent isolate T2 and were also differentially expressed in the V. nonalfalfae-susceptible Celeia and V. nonalfalfae-resistant Wye Target cultivars.
Collapse
Affiliation(s)
- Taja Jeseničnik
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia
| | - Nataša Štajner
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec, 3310, Slovenia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Ljubljana, 1000, Slovenia.
| |
Collapse
|
45
|
Hu W, Luo H, Yang Y, Wang Q, Hong N, Wang G, Wang A, Wang L. Comprehensive analysis of full genome sequence and Bd-milRNA/target mRNAs to discover the mechanism of hypovirulence in Botryosphaeria dothidea strains on pear infection with BdCV1 and BdPV1. IMA Fungus 2019; 10:3. [PMID: 32647612 PMCID: PMC7325678 DOI: 10.1186/s43008-019-0008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 11/23/2022] Open
Abstract
Pear ring rot disease, mainly caused by Botryosphaeria dothidea, is widespread in most pear and apple-growing regions. Mycoviruses are used for biocontrol, especially in fruit tree disease. BdCV1 (Botryosphaeria dothidea chrysovirus 1) and BdPV1 (Botryosphaeria dothidea partitivirus 1) influence the biological characteristics of B. dothidea strains. BdCV1 is a potential candidate for the control of fungal disease. Therefore, it is vital to explore interactions between B. dothidea and mycovirus to clarify the pathogenic mechanisms of B. dothidea and hypovirulence of B. dothidea in pear. A high-quality full-length genome sequence of the B. dothidea LW-Hubei isolate was obtained using Single Molecule Real-Time sequencing. It has high repeat sequence with 9.3% and DNA methylation existence in the genome. The 46.34 Mb genomes contained 14,091 predicted genes, which of 13,135 were annotated. B. dothidea was predicted to express 3833 secreted proteins. In bioinformatics analysis, 351 CAZy members, 552 transporters, 128 kinases, and 1096 proteins associated with plant-host interaction (PHI) were identified. RNA-silencing components including two endoribonuclease Dicer, four argonaute (Ago) and three RNA-dependent RNA polymerase (RdRp) molecules were identified and expressed in response to mycovirus infection. Horizontal transfer of the LW-C and LW-P strains indicated that BdCV1 induced host gene silencing in LW-C to suppress BdPV1 transmission. To investigate the role of RNA-silencing in B. dothidea defense, we constructed four small RNA libraries and sequenced B. dothidea micro-like RNAs (Bd-milRNAs) produced in response to BdCV1 and BdPV1 infection. Among these, 167 conserved and 68 candidate novel Bd-milRNAs were identified, of which 161 conserved and 20 novel Bd-milRNA were differentially expressed. WEGO analysis revealed involvement of the differentially expressed Bd-milRNA-targeted genes in metabolic process, catalytic activity, cell process and response to stress or stimulus. BdCV1 had a greater effect on the phenotype, virulence, conidiomata, vertical and horizontal transmission ability, and mycelia cellular structure biological characteristics of B. dothidea strains than BdPV1 and virus-free strains. The results obtained in this study indicate that mycovirus regulates biological processes in B. dothidea through the combined interaction of antiviral defense mediated by RNA-silencing and milRNA-mediated regulation of target gene mRNA expression.
Collapse
Affiliation(s)
- Wangcheng Hu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Hui Luo
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Yuekun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Qiong Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3 Canada
| | - Liping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070 People's Republic of China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 People's Republic of China.,Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei 430070 People's Republic of China
| |
Collapse
|
46
|
Degradation of Fungal MicroRNAs Triggered by Short Tandem Target Mimics Is via the Small-RNA-Degrading Nuclease. Appl Environ Microbiol 2019; 85:AEM.03132-18. [PMID: 30824452 DOI: 10.1128/aem.03132-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) have been recognized as sequence-specific regulators of the genome, transcriptome, and proteome in eukaryotes. However, the functions and working mechanisms of hundreds of fungal miRNA-like (miR-like) RNAs are obscure. Here, we report that a short tandem target mimic (STTM) triggered the degradation of several fungal miR-like RNAs in two different fungal species, Metarhizium robertsii and Aspergillus flavus, and that small-RNA-degrading nucleases (SDNs) were indispensable for such degradation. STTMs were most effective when the fungal polymerase II (Pol II) promoter was used for their expression, while the Pol III promoter was less effective. The length of the STTM spacer, approximately 48 to 96 nucleotides, and the number of miR-like RNA binding sites, from 2 to 4 copies, showed no significant difference in the degradation of miR-like RNAs. STTMs modulated the miR-like RNA expression levels in at least two different fungal species, which further impacted fungal asexual growth and sporulation. Further analysis showed that the degraded miR-like RNAs in STTM mutants led to the upregulation of potential target genes involved in fungal development and conidial production, which result in different phenotypes in these mutants. The STTM technology developed in this study is an effective and powerful tool for the functional dissection of fungal miR-like RNAs.IMPORTANCE The development and application of STTM technology to block miR-like RNAs in M. robertsii and A. flavus may allow for efficient generation of miR-like RNA mutants in various fungi, providing a powerful tool for functional genomics of small RNA molecules in fungi.
Collapse
|
47
|
Curcio JSD, Batista MP, Paccez JD, Novaes E, Soares CMDA. In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Genet Mol Biol 2019; 42:95-107. [PMID: 30776047 PMCID: PMC6428129 DOI: 10.1590/1678-4685-gmb-2018-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells have different mechanisms of post-transcriptional regulation.
Among these mechanisms, microRNAs promote regulation of targets by cleavage or
degradation of the mRNA. Fungi of the Paracoccidioides complex
are the etiological agents of the main systemic mycosis of Latin America. These
fungi present a plasticity to adapt and survive in different conditions, and the
presence of microRNAs-like molecules could be part of the mechanisms that
provide such plasticity. MicroRNAs produced by the host influence the
progression of this mycosis in the lungs besides regulating targets involved in
apoptosis in macrophage, activation of T and B cells and the production of
cytokines. Therefore, this work analyzed the presence of regions in the genome
of this fungus with a potential to encode microRNAs-like molecules. Here we show
by analysis of sequence similarity the presence of 18 regions, putatively coding
for microRNAs-like molecules in the Paracoccidioides
brasiliensis genome. We also described the conservation of dicer
and argonaut proteins and the cognate transcripts induced in the yeast parasitic
phase. This work represents a starting point for the analysis of the presence of
those molecules in the morphological stages of the fungus and their role in
fungal development.
Collapse
Affiliation(s)
- Juliana S de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana P Batista
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| | - Juliano D Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, Goiânia, GO, Brazil
| |
Collapse
|
48
|
Shao Y, Tang J, Chen S, Wu Y, Wang K, Ma B, Zhou Q, Chen A, Wang Y. milR4 and milR16 Mediated Fruiting Body Development in the Medicinal Fungus Cordyceps militaris. Front Microbiol 2019; 10:83. [PMID: 30761116 PMCID: PMC6362416 DOI: 10.3389/fmicb.2019.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Cordyceps militaris readily performs sexual reproduction, thus providing a remarkably rich model for understanding the processes involved in sexual development. It could regulate expression of human genes by diet-derived miRNA-like RNAs (milRNAs). However, the study of miRNAs in C. militaris has been limited. In the present study, genes encoding Dicers, Argonautes, and RNA-dependent RNA polymerases were identified. Illumina deep sequencing was performed to characterize the milRNAs in C. militaris at asexual and sexual development stages. Total 38 milRNAs were identified and five milRNAs were validated by northern blot and qRT-PCR, out of which, 19 were specific for sexual development. Importantly, the fungi could not form fruiting bodies after disruption of milR4, while the perithecium was formed in advance after over-expression of milR4. Abnormal pale yellow fruiting body primordium, covered with abnormal primordium, was formed in the strain with miR16 disruption. Although no milR4 or milR16 target genes were identified, differential expression of many different genes involved in mycelium growth and sexual development (mating process, mating signaling, and fruiting body development) among these mutants were found. Overall, milRNAs play vital roles in sexual development in C. militaris.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Jin Tang
- Jiangsu Xuzhou Technician Institute, Xuzhou, China
| | - Shanglong Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yonghua Wu
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Kun Wang
- Jiangsu KONEN Biological Engineering Co., Ltd., Nanjing, China
| | - Bin Ma
- Jiangsu KONEN Biological Engineering Co., Ltd., Nanjing, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China.,Key Laboratory of Crop Quality Improvement of Anhui Province/Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
49
|
Dutta S, Jha SK, Prabhu KV, Kumar M, Mukhopadhyay K. Leaf rust (Puccinia triticina) mediated RNAi in wheat (Triticum aestivum L.) prompting host susceptibility. Funct Integr Genomics 2019; 19:437-452. [PMID: 30671704 DOI: 10.1007/s10142-019-00655-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/05/2018] [Accepted: 01/09/2019] [Indexed: 01/12/2023]
Abstract
Significance of microRNAs in regulating gene expression in higher eukaryotes as well as in pathogens like fungi to suppress host defense is a well-established phenomenon. The present study focuses on leaf rust fungi Puccinia triticina (Pathotype 77-5) mediated RNAi to make wheat (Triticum aestivum L.) more susceptible. To reach such conclusions, we first confirmed the presence of argonaute (AGO) and dicer-like protein (DCL) family sequences in Puccinia. Bioinformatic tools were applied to retrieve the sequences from Puccinia genome followed by cloning and sequencing from P. triticina pathotype 77-5 cDNA to obtain the specific sequences. Their homologs were searched in other 14 Puccinia races to relate them with pathogenesis. Further, precursor sequences for three miRNA-like RNA molecules (milRs) were cloned from P. triticina cDNA. Their target genes like MAP kinase were successfully predicted and validated through degradome mapping and qRT-PCR. Gradual increase in milR2 (milR and milR*) expression over progressive time point of infection and positive expression for all the milRs within 77-5 urediniospores confirmed a complete host- independent RNAi activity by P. triticina.
Collapse
Affiliation(s)
- Summi Dutta
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Shailendra Kumar Jha
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
50
|
Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 2019; 19:391-407. [PMID: 30618015 DOI: 10.1007/s10142-018-00652-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kanti Kiran
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India
| | - Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .,National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India.
| |
Collapse
|