1
|
Soleymani S, Piri S, Aazami MA, Salehi B. Cerium oxide nanoparticles alleviate drought stress in apple seedlings by regulating ion homeostasis, antioxidant defense, gene expression, and phytohormone balance. Sci Rep 2025; 15:11805. [PMID: 40189632 PMCID: PMC11973181 DOI: 10.1038/s41598-025-96250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Drought stress is one of the most important environmental constraints that negatively affect the growth and production of crops worldwide. Recently, nanotechnology has been increasingly used to improve the tolerance of plants exposed to abiotic stresses such as drought. The present study was designed to investigate the moderating effect of cerium oxide nanoparticles (CeO2 NPs) on alleviating drought stress for the apple cv. 'Red Delicious' on M9 rootstock. Drought stress caused a significant increase in CAT, GPX, APX, and SOD enzyme activities compared to control plants. Drought decreased the content of macro and microelements, and the application of CeO2 NPs led to significant changes in the content of these elements in plants under drought stress. CeO2 NPs significantly reduced chlorophyll damage under high drought levels. In addition, they alleviated the damage caused by drought, which was shown by lower levels of MDA and EL. When these nanoparticles were used during drought stress, they greatly increased the production of abscisic acid and indole-3-acetic acid hormone. In response to drought stress, the expression of DREB1A and DREB1E genes increased. The use of CeO2 NPs in stressful and non-stressful conditions had a positive effect on improving the studied traits of the apple plants and enhancing nutrient levels. Taken together, the findings suggest that CeO2 NPs can be used as promising drought stress-reducing agents in apples. Therefore, understanding the mechanisms of abiotic stress in global horticulture and the role of nanoparticles is essential for developing improved, drought-tolerant crops and the adoption of measures to deal with changing climatic conditions.
Collapse
Affiliation(s)
- Sohrab Soleymani
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran
| | - Saeed Piri
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran.
| | - Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Behhrooz Salehi
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran
| |
Collapse
|
2
|
Mohammadi MA, Wang Y, Zhang C, Ma H, Sun J, Wang L, Niu X, Wang G, Zheng P, Wang L, Wang S, Qin Y, Cheng Y. Heterologous overexpression of the Suaeda glauca stress-associated protein (SAP) family genes enhanced salt tolerance in Arabidopsis transgenic lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109868. [PMID: 40245556 DOI: 10.1016/j.plaphy.2025.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Stress-associated proteins (SAPs), characterized by zinc finger domains, play a crucial role in regulating plant responses to various stresses. These proteins modulate stress-related gene expression and are integral to enhancing plant immunity, development, cell proliferation, and hormone regulation. In this study, we conducted a genome-wide analysis of the SAP gene family in Suaeda glauca (S. glauca), identifying 15 SAP genes encoding A20/AN1 zinc finger proteins. Functional analyses of three candidate genes under salinity stress were performed, examining phenotypic and physiological responses to better understand their role in stress tolerance. Sequence alignment, conserved domain analysis, and gene structure analysis revealed high conservation among S. glauca SAPs. Phylogenetic analysis identified two major groups within the gene family, providing insights into their evolutionary relationships. Transcription profiling analysis demonstrated significant expression of most SAP genes in response to salt stress, with qPCR validation confirming the upregulation of specific genes. Notably, transgenic Arabidopsis lines heterologously overexpressing the candidate genes SgSAP4, SgSAP5, and SgSAP7 demonstrated enhanced tolerance to salinity stress. This was evident from improved seed germination, root elongation, and reduced levels of stress markers, including malondialdehyde and free proline, compared to wild-type plants. These findings highlight the potential of these SAP genes in breeding programs aimed at improving salinity tolerance in crops.
Collapse
Affiliation(s)
- Mohammad Aqa Mohammadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yining Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chunyin Zhang
- Yancheng Lvyuan Salt Soil Agricultural Technology Co. Ltd., Yancheng, Jiangsu, 224051, China
| | - Haifeng Ma
- Desertification Combating Centre of Bayannur, Bayannur, Inner Mongolia, 015000, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoping Niu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224051, China
| | - Ping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lichen Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
3
|
Mei Q, Li M, Chen J, Yang J, Duan D, Yang J, Ma F, Mao K. Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple. Gene 2025; 935:149076. [PMID: 39505090 DOI: 10.1016/j.gene.2024.149076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
E3 ligases are essential for ubiquitination and play a role in regulating various aspects of eukaryotic life. Ariadne (ARI) proteins, a subfamily of RBR (RING-between-RING) proteins, have been recognized as a new class of RING-finger E3 ligases. Recent research has shed light on their potential involvement in plants' responses to abiotic stress. However, comprehensive studies on ARI genes in apple (Malus domestica) are still lacking. This study identified ten MdARI genes in the apple genome, and examined intraspecific and interspecific collinearity to explore the evolutionary relationships of ARI family members. Phylogenetic analyses classified MdARIs into two subfamilies (A and B), and by integrating gene structure, conserved motifs, and sequence comparison results, subfamily B was further divided into two subgroups (I and II). Tissue expression analyses revealed varied expression patterns of MdARI genes in different tissues, and subcellular localization showed that MdARI1-1, MdARI1-2, and MdARI9-1 were located in the nucleus, while the other seven MdARIs were distributed throughout the cell. Analyses of promoter cis-elements and expression patterns under cold, salt, and drought treatments indicated the involvement of MdARIs in abiotic stress responses. Several proteins crucial to the plant stress response were predicted to be potential MdARIs-interacting proteins based on the protein interaction network. Additionally, the interaction between UBC11 (E2) and MdARI7-2 was confirmed by a yeast two-hybrid (Y2H) experiment, suggesting that MdARI7-2 may function as an E3. These findings will greatly benefit future research on the role and mechanisms of ARI proteins in apple stress response.
Collapse
Affiliation(s)
- Quanlin Mei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Xia P, Zhang Y, Zhang X. The Potential Relevance of PnDREBs to Panax notoginseng Nitrogen Sensitiveness. Biochem Genet 2024; 62:2631-2651. [PMID: 37999875 DOI: 10.1007/s10528-023-10567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The dehydration response element-binding (DREB) transcription factor is a subfamily of AP2/ERF. It actively responds to various abiotic stresses in plants. As one of the representative plants, Panax notoginseng is sensitive to Nitrogen (N). Here, bioinformatics analysis, the identification, chromosomal location, phylogeny, structure, cis-acting elements, and collinearity of PnDREBs were analyzed. In addition, the expression levels of PnDREBs were analyzed by quantitative reverse transcription PCR. In this study, 54 PnDREBs were identified and defined as PnDREB1 to PnDREB54. They were divided into 6 subfamilies (A1-A6). And 44 PnDREBs were irregularly distributed on 10 of 12 chromosomes. Each group showed specific motifs and exon-intron structures. By predicting cis-acting elements, the PnDREBs may participate in biotic stress, abiotic stress, and hormone induction. Collinear analysis showed that fragment duplication events were beneficial to the amplification and evolution of PnDREB members. The expression of PnDREBs showed obvious tissue specificity in its roots, flowers, and leaves. In addition, under the action of ammonium nitrogen and nitrate nitrogen at the 15 mM level, the level of PnDREB genes expression in roots varied to different degrees. In this study, we identified and characterized PnDREBs for the first time, and analyzed that PnDREBs may be related to the response of P. Notoginseng to N sensitiveness. The results of this study lay a foundation for further research on the function of PnDREBs in P. Notoginseng.
Collapse
Affiliation(s)
- Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Yan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd., Tianjin, 300402, People's Republic of China
| |
Collapse
|
5
|
Wu X, Zhu J, Zhu L, Tang Y, Hao Z, Zhang J, Shi J, Cheng T, Lu L. Genome-wide analyses of calmodulin and calmodulin-like proteins in the halophyte Nitraria sibirica reveal their involvement in response to salinity, drought and cold stress. Int J Biol Macromol 2023; 253:127442. [PMID: 37844818 DOI: 10.1016/j.ijbiomac.2023.127442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
The calmodulin (CaM) and calmodulin-like (CML) proteins are major calcium sensors that play a critical role in environmental stimulus response in plants. Nevertheless, the CaM/CML proteins from the specific plants with extreme tolerance to abiotic stresses remained so far uncharacterized. In this study, 66 candidate proteins (three NsCaMs and sixty-three NsCMLs) were identified from the halophyte Nitraria sibirica, which can withstand an extreme salinity. Bioinformatic analysis of upstream cis-acting elements predicted the potential involvement of NsCaM/CMLs in abiotic stress responses and various hormone responses. Additionally, the Nitraria sibirica transcriptome revealed that 17 and 7 NsCMLs were significantly upregulated under 100 mM or 400 mM NaCl treatment. Transcription of most salt-responsive genes was similarly upregulated under cold stress, yet downregulated under drought treatment. Moreover, predictive subcellular localization analysis suggested that the stress-responsive NsCML proteins mainly localize at the cellular membrane and within the nucleus. Furthermore, transgenic overexpression of two NsCMLs (NISI03G1136 and NISI01G1645) was found to mitigate H2O2 accumulation caused by salt stress. These results provide insights into the potential function of Nitraria sibirica CaM/CML proteins, which could aid the investigation of molecular mechanisms of extreme tolerance to abiotic stresses in halophytes.
Collapse
Affiliation(s)
- Xinru Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Junjie Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Tang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Jiang L, Lv J, Li K, Zhai L, Wu Y, Wu T, Zhang X, Han Z, Wang Y. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111782. [PMID: 37406680 DOI: 10.1016/j.plantsci.2023.111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
14-3-3 proteins play an important role in the response of plants to drought resistance. In this study, 14-3-3 protein MdGRF11 was cloned from Malus xiaojinensis, and its positive regulation of drought resistance was verified using Orin calli and M. xiaojinensis plants. The transcription factor MdARF19-2 was further screened for interaction with this protein in vitro and in vivo. We also conducted experiments using Orin calli and found that the overexpression of MdARF19-2 decreased the level of reactive oxygen species (ROS) and increased the activity of enzymes that scavenge ROS in plant materials. This indicates that MdARF19-2 is a positive regulator in the drought resistance of plants. The drought tolerance was further improved by the overexpression of both MdGRF11 and MdARF19-2 in the calli. In addition, we examined several genes related to ROS scavenging with auxin response factor binding elements in their promoters and found that their level of expression was regulated by the MdGRF11-MdARF19-2 module. In conclusion, the enhancement of plant drought resistance by MdGRF11 could be owing to its accumulation at the protein level in response to drought, which then combined with MdARF19-2, affecting the expression of MdARF19-2 downstream genes. Thus, it scavenges ROS, which ultimately improves the resistance of plant to drought stress.
Collapse
Affiliation(s)
- Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
7
|
Kuzmitskaya P, Koroleva E, Urbanovich O. Genome-wide identification of trihelix transcription factors in the apple genome in silico. J Appl Genet 2023; 64:445-458. [PMID: 37454028 DOI: 10.1007/s13353-023-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Trihelix transcription factors are involved in the growth and development of plants, as well as various stress responses. In the study presented, we identified 37 trihelix family genes in the apple genome (MdTH). The trihelix genes were located on 13 chromosomes. Phylogenetic analysis of these MdTH and the trihelix genes of other species divided them into six subfamilies: GT-1, GT-2, SH4, SIP1, GTγ, and GTδ. The genes of different groups significantly diverged in their gene structure and conserved functional domains. Cis-element analysis showed that promoter sequences of MdTH genes contained light response elements, phytohormone response elements, and stress-related cis-elements. The expression pattern analysis results demonstrated that MdTH were regulated by drought, salinity, as well as high and low temperatures. MdTH4 and MdTH24 were highly regulated by soil salinity, MdTH4-by drought. MdTH30 showed high expression under low temperature; MdTH8, MdTH20, and MdTH36-under high temperature.
Collapse
Affiliation(s)
- Polina Kuzmitskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Ekaterina Koroleva
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Oksana Urbanovich
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
8
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
9
|
Hou L, Wu Q, Zhu X, Li X, Fan X, Hui M, Ye Q, Liu G, Liu X. Transcription Factor VvDREB2A from Vitis vinifera Improves Cold Tolerance. Int J Mol Sci 2023; 24:ijms24119381. [PMID: 37298332 DOI: 10.3390/ijms24119381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar 'Zuoyouhong' tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels.
Collapse
Affiliation(s)
- Lixia Hou
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiqi Wu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Zhu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyu Li
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Fan
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengling Hui
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Ye
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Chaudhari RS, Jangale BL, Krishna B, Sane PV. Improved abiotic stress tolerance in Arabidopsis by constitutive active form of a banana DREB2 type transcription factor, MaDREB20.CA, than its native form, MaDREB20. PROTOPLASMA 2023; 260:671-690. [PMID: 35996008 DOI: 10.1007/s00709-022-01805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Banana is grown as one of the important fruit crops in tropical and subtropical regions of the world. In this study, we report induced expression of a dehydration responsive element binding 2 (DREB2) gene (MaDREB20) under individual heat, drought, and combined drought and heat stress in root of two banana genotypes Grand Nain (GN) and Hill Banana (HB). Motif analysis of MaDREB20 protein demonstrated the presence of a negative regulatory domain (NRD) or PEST motif between 150 and 184 amino acids. Transgenic Arabidopsis overexpressing MaDREB20 gene showed more survival rate, above-ground biomass, seed yield, leaf relative water content, and proline content but less ion leakage and malonaldehyde content, revealing improved tolerance against heat and drought as well as their combination than the wild-type. Overexpression of MaDREB20.CA (constitutive active form of MaDREB20 after removal of PEST region) showed better abiotic stress tolerance in Arabidopsis than its native form (MaDREB20). Transgenic Arabidopsis overexpressing MaDREB20 and MaDREB20.CA genes appeared to be associated with reduced stomatal densities under normal condition, better regulation of stomatal aperture under drought than in wild-type plants, and differential regulation of downstream target (AtTCH4 and AtIAA1) genes under heat, drought, and combined stress. Taken together, our findings revealed important functions of MaDREB20 in abiotic stress responses in transgenic Arabidopsis and could form a basis for CRISPR/Cas9-mediated removal of its NRD to enhance stress tolerance in banana.
Collapse
Affiliation(s)
- Rakesh Shashikant Chaudhari
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| | - Bhavesh Liladhar Jangale
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| | - Bal Krishna
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India.
| | - Prafullachandra Vishnu Sane
- Jain R&D lab is a Recognized Research Centre by Kavayitri Bahinabai Chaudhari North Maharashtra University, Bambhori, Jalgaon, 425001, India
| |
Collapse
|
11
|
Li XL, Meng D, Li MJ, Zhou J, Yang YZ, Zhou BB, Wei QP, Zhang JK. Transcription factors MhDREB2A/MhZAT10 Play a Role in Drought and Cold Stress Response Crosstalk in Apple. PLANT PHYSIOLOGY 2023:kiad147. [PMID: 36880407 DOI: 10.1093/plphys/kiad147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Drought and cold stresses seriously affect tree growth and fruit yield during apple (Malus domestica) production, with combined stress causing injury such as shoot shriveling. However, the molecular mechanism underlying crosstalk between responses to drought and cold stress remains to be clarified. In this study, we characterized the zinc finger transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10) through comparative analysis of shoot-shriveling tolerance between tolerant and sensitive apple rootstocks. MhZAT10 responded to both drought and cold stress. Heterologous expression of MhZAT10 in the sensitive rootstock 'G935' from domesticated apple (Malus domestica) promoted shoot-shriveling tolerance, while silencing of MhZAT10 expression in the tolerant rootstock 'SH6' of Malus honanensis reduced stress tolerance. We determined that the apple transcription factor DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) is a direct regulator activating the expression of MhZAT10 in response to drought stress. Apple plants overexpressing both MhDREB2A and MhZAT10 genes exhibited enhanced tolerance to drought and cold stress, while plants overexpressing MhDREB2A but with silenced expression of MhZAT10 showed reduced tolerance, suggesting a critical role of MhDREB2A-MhZAT10 in the crosstalk between drought and cold stress responses. We further identified drought-tolerant MhWRKY31 and cold-tolerant MhMYB88 and MhMYB124 as downstream regulatory target genes of MhZAT10. Our findings reveal a MhDREB2A-MhZAT10 module involved in crosstalk between drought and cold stress responses, which may have applications in apple rootstock breeding programs aimed at developing shoot-shriveling tolerance.
Collapse
Affiliation(s)
- Xing-Liang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Dong Meng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Min-Ji Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Jia Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Yu-Zhang Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Bei-Bei Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Qin-Ping Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Jun-Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| |
Collapse
|
12
|
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020328. [PMID: 36679041 PMCID: PMC9861506 DOI: 10.3390/plants12020328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
13
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
14
|
ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 2021; 16:e0261215. [PMID: 34914734 PMCID: PMC8675703 DOI: 10.1371/journal.pone.0261215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.
Collapse
Affiliation(s)
- Qurat-ul ain-Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
15
|
Singh K, Chandra A. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00840-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Physiological and Molecular Responses of Six Apple Rootstocks to Osmotic Stress. Int J Mol Sci 2021; 22:ijms22158263. [PMID: 34361028 PMCID: PMC8348187 DOI: 10.3390/ijms22158263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023] Open
Abstract
The growth and productivity of several apple rootstocks have been evaluated in various previous studies. However, limited information is available on their tolerance to osmotic stress. In the present study, the physiological and molecular responses as well as abscisic acid (ABA) levels were assessed in six apple rootstocks (M26, V3, G41, G935, B9 and B118) osmotically stressed with polyethylene glycol (PEG, 30%) application under greenhouse conditions. Our results showed that V3, G41, G935 and B9 had higher relative water content (RWC), and lower electrolyte leakage (EL) under stress conditions compared to M26 and B118. Additionally, water use efficiency (WUE) was higher in V3, G41 and B9 than M26, which might be partially due to the lower transpiration rate in these tolerant rootstocks. V3, G41 and B9 rootstocks also displayed high endogenous ABA levels which was combined with a reduction in stomatal conductance and decreased water loss. At the transcriptional level, genes involved in ABA-dependent and ABA-independent pathways, e.g., SnRK, DREB, ERD and MYC2, showed higher expression in V3, G41, G935 and B9 rootstocks compared to M26 in response to stress. In contrast, WRKY29 was down-regulated in response to stress in the tolerant rootstocks, and its expression was negatively correlated with ABA content and stomatal closure. Overall, the findings of this study showed that B9, V3 and G41 displayed better osmotic stress tolerance followed by G935 then M26 and B118 rootstocks.
Collapse
|
17
|
Mushtaq N, Munir F, Gul A, Amir R, Zafar Paracha R. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. PeerJ 2021; 9:e11647. [PMID: 34221730 PMCID: PMC8236231 DOI: 10.7717/peerj.11647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background The dehydration responsive element-binding (DREB) gene family plays a crucial role as transcription regulators and enhances plant tolerance to abiotic stresses. Although the DREB gene family has been identified and characterized in many plants, knowledge about it in Solanum tuberosum (Potato) is limited. Results In the present study, StDREB gene family was comprehensively analyzed using bioinformatics approaches. We identified 66 StDREB genes through genome wide screening of the Potato genome based on the AP2 domain architecture and amino acid conservation analysis (Valine at position 14th). Phylogenetic analysis divided them into six distinct subgroups (A1–A6). The categorization of StDREB genes into six subgroups was further supported by gene structure and conserved motif analysis. Potato DREB genes were found to be distributed unevenly across 12 chromosomes. Gene duplication proved that StDREB genes experienced tandem and segmental duplication events which led to the expansion of the gene family. The Ka/Ks ratios of the orthologous pairs also demonstrated the StDREB genes were under strong purification selection in the course of evolution. Interspecies synteny analysis revealed 45 and 36 StDREB genes were orthologous to Arabidopsis and Solanum lycopersicum, respectively. Moreover, subcellular localization indicated that StDREB genes were predominantly located within the nucleus and the StDREB family’s major function was DNA binding according to gene ontology (GO) annotation. Conclusions This study provides a comprehensive and systematic understanding of precise molecular mechanism and functional characterization of StDREB genes in abiotic stress responses and will lead to improvement in Solanum tuberosum.
Collapse
Affiliation(s)
- Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modelling & Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
18
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
19
|
Hassan S, Berk K, Aronsson H. Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress. J Biomol Struct Dyn 2021; 40:7191-7204. [PMID: 33754946 DOI: 10.1080/07391102.2021.1894980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Soil salinity and the resulting salt stress it imposes on crop plants is a major problem for modern agriculture. Understanding how salt tolerance mechanisms in plants are regulated is therefore important. One regulatory mechanism is the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor family, including dehydration responsive element binding (DREB) transcription factors. By binding to DNA, specifically upstream of genes that play roles in salt tolerance pathways, DREB proteins upregulate expression of these genes. DREB in Triticum aestivum (wheat) cluster in sub-groups and in this study by scanning the recently extended predicted proteome of wheat for DREB, we increased the number of members of this sub-family. Using the wheat genome, we identified 576 genes coding for the AP2 domain of which 508 were identified to have one AP2 domain, a characteristic of the DREB/ERF subfamily. We confirmed the existing four sub-groups by sequence-based phylogenetic analyses but also identified 32 new DREB subfamily members, not belonging to any known sub-group. Transcription factor profile inference analysis identified two genes, TraesCS2B02G002700 and TraesCS2D02G015200, being homologous to DREB1A of Arabidopsis thaliana. Based on molecular simulation (25 ns) analysis, TraesCS2B02G002700 with a CCGAC motif was observed to interact very stably with DNA. In silico mutational analysis at the 19th position in the DREB domain of TraesCS2B02G002700-DNA complex indicated this as a stable part for recognizing and forming interaction with DNA. Moreover, six target genes were predicted having an upstream CCGAC motif regulated by TraesCS2B02G002700. Our study provides an overall framework for exploring the transcription factors in plants and identifying e.g. potential salt stress target genes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sameer Hassan
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katrin Berk
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Chen K, Guo Y, Song M, Liu L, Xue H, Dai H, Zhang Z. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. HORTICULTURE RESEARCH 2020; 7:204. [PMID: 33328445 PMCID: PMC7705020 DOI: 10.1038/s41438-020-00433-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 05/15/2023]
Abstract
Clarifying the stress signal transduction pathway would be helpful for understanding the abiotic stress resistance mechanism in apple (Malus × domestica Borkh.) and could assist in the development of new varieties with high stress tolerance by genetic engineering. The key NAC transcription factor SND1, which is involved in the lignin biosynthesis process in apple, was functionally analyzed. The results of the stress treatments indicated that MdSND1 could be induced by salt, mannitol and ABA. Compared with wild-type GL-3 plants, MdSND1-overexpressing apple plants with greater antioxidant capacity and lignin were more resistant to salt and simulated osmotic stress, while RNAi plants were more vulnerable. Additionally, molecular experiments confirmed that MdSND1 could regulate the biosynthesis of lignin by activating the transcription of MdMYB46/83. Moreover, genes known to be involved in the stress signal transduction pathway (MdAREB1A, MdAREB1B, MdDREB2A, MdRD29A, and MdRD22) were screened for their close correlations with the expression of MdSND1 and the response to salt and osmotic stress. Multiple verification tests further demonstrated that MdSND1 could directly bind to these gene promoters and activate their transcription. The above results revealed that MdSND1 is directly involved in the regulation of lignin biosynthesis and the signal transduction pathway involved in the response to both salt and osmotic stress in apple.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hao Xue
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
21
|
Yang S, Zhang F, Wang Y, Xue H, Jiang Q, Shi J, Dai H, Zhang Z, Li L, He P, Li Y, Ma Y. MdHAL3, a 4'-phosphopantothenoylcysteine decarboxylase, is involved in the salt tolerance of autotetraploid apple. PLANT CELL REPORTS 2020; 39:1479-1491. [PMID: 32761275 DOI: 10.1007/s00299-020-02576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
MdHAL3 has PPCDC activity and is involved in the salt tolerance of autotetraploid apple. Apple (Malus × domestica) is the most widely planted fruit tree species worldwide. However, the growth and development of apple have been increasingly affected by abiotic stress, such as high salinity. In our previous study, RNA sequencing (RNA-seq) analysis revealed that the expression level of the MdHAL3 gene was significantly upregulated in the autotetraploid apple cultivar Hanfu. In the present study, we first isolated HAL3, whose product was shown to exert 4'-phosphopantothenoylcysteine decarboxylase (PPCDC) activity, from apple. MdHAL3 was expressed in all organs of apple, and its expression was rapidly induced by salt stress. The MdHAL3 protein was localized to the cytomembrane and cytoplasm. Five MdHAL3 overexpression (OE) lines and five MdHAL3-RNAi apple lines were obtained. We found that MdHAL3 enhanced the salt stress tolerance of apple and that the OE plants rooted more easily than the wild-type (WT) plants. The coenzyme A (CoA) content in the leaves of the OE plants was greater than that in the leaves of the WT plants, and the CoA content in the MdHAL3-RNAi plants was lower than that in the WT plants. Taken together, our findings indicate that MdHAL3 plays an essential role in the response to salt stress in apple.
Collapse
Affiliation(s)
- Shuang Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Feng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yangshu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hao Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Qiu Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Linguang Li
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, People's Republic of China
| | - Ping He
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, People's Republic of China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
22
|
Zhao S, Gao H, Luo J, Wang H, Dong Q, Wang Y, Yang K, Mao K, Ma F. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:517-529. [PMID: 32688296 DOI: 10.1016/j.plaphy.2020.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 05/27/2023]
Abstract
In higher plants, the light-harvesting chlorophyll a/b-binding (Lhc) proteins function in multiple processes that are critical to plant growth, development, and abiotic stress response. However, the Lhc gene family has not been well characterized in the important fruit crop, apple (Malus × domestica Borkh.). In this study, we identified 27 Lhc genes in the apple genome. Phylogenetic analysis showed that the Lhc gene family could be classified into three major subfamilies, each of whose members shared similar conserved motifs. Evolutionary analysis indicated that duplicated MdLhc genes were primarily under purifying selection. MdLhcs were expressed at varying levels in all tissues examined and showed different expression patterns under drought stress. The overexpression of MdLhcb4.3 in transgenic Arabidopsis and apple callus enhanced their tolerance to drought and osmotic stress. Taken together, these results demonstrate the important role of Lhc proteins in the regulation of plant resistance to drought and osmotic stress and provide valuable information for further study of Lhc functions in apple.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Hanbing Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Jiawei Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Haibo Wang
- Shandong Institute of Pomology, Tai'an, 271000, China.
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Kaiyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
23
|
Niu X, Luo T, Zhao H, Su Y, Ji W, Li H. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene 2020; 740:144514. [PMID: 32112985 DOI: 10.1016/j.gene.2020.144514] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
Abstract
As an important transcription factor family, DREB transcription factors play important roles in response to abiotic stresses. In this study, we identified wheat DREB genes at genome-level, and characterized the functions of TaDREB genes. Totally, there are 210 TaDREB genes, which can be divided into 6 subgroups. Some of these genes display tissue-specific expression patterns. Among them, the expression of three TaDREB3 homoeologous genes is induced by abiotic stresses. Meanwhile, as alternatively spliced genes, they generate three isoforms respectively. Transcripts I and II encode DREB proteins, while transcript III does not generate DREB proteins. Transgenic Arabidopsis over-expressing TaDREB3-AI displayed enhanced resistance to drought, salt and heat stresses. The physical indexes and the expression of stress-related genes further verified the functions in response to abiotic stresses. Our results lay a foundation for further study of wheat DREB genes. Especially, our findings indicate that TaDREB3 genes can be used for crop genetic improvement.
Collapse
Affiliation(s)
- Xin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Tengli Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Hongyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Xinjiang Agricultural Vocational Technical College, Changji, China.
| |
Collapse
|
24
|
Yang Y, Yu TF, Ma J, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. The Soybean bZIP Transcription Factor Gene GmbZIP2 Confers Drought and Salt Resistances in Transgenic Plants. Int J Mol Sci 2020; 21:E670. [PMID: 31968543 PMCID: PMC7013997 DOI: 10.3390/ijms21020670] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC cis-acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 GmbZIP genes could be induced by drought and salt stress. GmbZIP2 was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that GmbZIP2 can be induced by multiple stresses. The overexpression of GmbZIP2 in Arabidopsis and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of GmbZIP2 in soybean hairy roots could enhance the expression of the stress responsive genes GmMYB48, GmWD40, GmDHN15, GmGST1 and GmLEA. These results indicate that soybean bZIPs played pivotal roles in plant resistance to abiotic stresses.
Collapse
Affiliation(s)
- Yan Yang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China;
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou 434025, China;
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; (T.-F.Y.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| |
Collapse
|
25
|
Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-Wide Characterization of the C-repeat Binding Factor (CBF) Gene Family Involved in the Response to Abiotic Stresses in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:921. [PMID: 32849669 PMCID: PMC7396485 DOI: 10.3389/fpls.2020.00921] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 05/18/2023]
Abstract
C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.
Collapse
|
26
|
Moser M, Asquini E, Miolli GV, Weigl K, Hanke MV, Flachowsky H, Si-Ammour A. The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2020; 11:1003. [PMID: 32733512 PMCID: PMC7358357 DOI: 10.3389/fpls.2020.01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/19/2020] [Indexed: 05/14/2023]
Abstract
Apple trees require a long exposure to chilling temperature during winter to acquire competency to flower and grow in the following spring. Climate change or adverse meteorological conditions can impair release of dormancy and delay bud break, hence jeopardizing fruit production and causing substantial economic losses. In order to characterize the molecular mechanisms controlling bud dormancy in apple we focused our work on the MADS-box transcription factor gene MdDAM1. We show that MdDAM1 silencing is required for the release of dormancy and bud break in spring. MdDAM1 transcript levels are drastically reduced in the low-chill varieties 'Anna' and 'Dorsett Golden' compared to 'Golden Delicious' corroborating its role as a key genetic factor controlling the release of bud dormancy in Malus species. The functional characterization of MdDAM1 using RNA silencing resulted in trees unable to cease growth in winter and that displayed an evergrowing, or evergreen, phenotype several years after transgenesis. These trees lost their capacity to enter in dormancy and produced leaves and shoots regardless of the season. A transcriptome study revealed that apple evergrowing lines are a genocopy of 'Golden Delicious' trees at the onset of the bud break with the significant gene repression of the related MADS-box gene MdDAM4 as a major feature. We provide the first functional evidence that MADS-box transcriptional factors are key regulators of bud dormancy in pome fruit trees and demonstrate that their silencing results in a defect of growth cessation in autumn. Our findings will help producing low-chill apple variants from the elite commercial cultivars that will withstand climate change.
Collapse
Affiliation(s)
- Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Elisa Asquini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Giulia Valentina Miolli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Kathleen Weigl
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Azeddine Si-Ammour
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
- *Correspondence: Azeddine Si-Ammour,
| |
Collapse
|
27
|
Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2341-2355. [PMID: 31077628 PMCID: PMC6835124 DOI: 10.1111/pbi.13151] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 05/02/2023]
Abstract
To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple. In transgenic Arabidopsis and apple, MdMYB46 promoted the biosynthesis of secondary cell wall and deposition of lignin by directly binding to the promoter of lignin biosynthesis-related genes. To explore whether MdMYB46 could coordinate stress signal transduction pathways to cooperate with the formation of secondary walls to enhance the stress tolerance of plants, MdABRE1A, MdDREB2A and dehydration-responsive genes MdRD22 and MdRD29A were screened out for their positive correlation with osmotic stress, salt stress and the transcriptional level of MdMYB46. The further verification test demonstrated that MdMYB46 could activate their transcription by directly binding to the promoters of these genes. The above results indicate that MdMYB46 could enhance the salt and osmotic stress tolerance in apple not only by activating secondary cell wall biosynthesis pathways, but also by directly activating stress-responsive signals.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hao Xue
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
28
|
Jin X, Yin X, Ndayambaza B, Zhang Z, Min X, Lin X, Wang Y, Liu W. Genome-Wide Identification and Expression Profiling of the ERF Gene Family in Medicago sativa L. Under Various Abiotic Stresses. DNA Cell Biol 2019; 38:1056-1068. [PMID: 31403329 DOI: 10.1089/dna.2019.4881] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR) transcription factor represents one of the largest plant-specific transcriptional regulators in plants. ERF plays important roles in the regulation of various developmental processes and acts as a mediator in plant external stress responses. However, the research of the ERF gene family is still limited in alfalfa (Medicago sativa L.), one of the most important forage legume species in the world. In the present study, a total of 159 ERF genes were identified, and the phylogenetic reconstruction, classification, conserved motifs, signal peptide prediction, and expression patterns under salt, drought, and low-temperature stresses of these ERF genes were comprehensively analyzed. The ERF genes family in alfalfa could be classified into 10 groups and predicted to be strongly homologous. Based on the structure and functions relationships, the III and IV subfamilies were more likely to play functions in abiotic stresses and 18 MsERF genes were selected for further quantitative real-time PCR validation in different stresses treatment. The results showed that all these MsERF genes were upregulated under three stresses except MsERF008. This study identified the possibility of abiotic tolerance candidate genes playing various roles in stress resistance at the whole-genome level, which would provide primary understanding for exploring ERF-mediated tolerance in alfalfa.
Collapse
Affiliation(s)
- Xiaoyu Jin
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xiaofan Yin
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xiaoshan Lin
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
29
|
Cao B, Shu L, Li A. Functional characterization of LkERF- B2 for improved salt tolerance ability in Arabidopsis thaliana. 3 Biotech 2019; 9:263. [PMID: 31192088 PMCID: PMC6560127 DOI: 10.1007/s13205-019-1793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
The ethylene response factors have been reported to play critical roles in developmental and environmental responses in plants. In the present study, an ERF transcription factor gene was aimed to be identified from Larix kaempferi. Molecular characteristics and function of this gene were further explored. The result showed that a 1344 bp ERF transcription factor gene containing initiation and termination codon was obtained by RT-PCR and named LkERF-B2. LkERF-B2 gene encoded 447 amino acids containing a typical AP2/ERF domain. Alignment of predicted amino acid sequence of LkERF-B2 in various plant species showed that this ERF transcription factor was highly homologous (79.0%) with that of Picea sitchensi. To elucidate the function of LkERF-B2, LkERF-B2 overexpression vector was successfully constructed and transformed to Arabidopsis thaliana via dip flower. Compared with control plant, LkERF-B2 overexpressed transgenic A. thaliana showed a significantly higher survival rate under cold, heat, NaCl and drought stresses. NaCl stress analysis revealed that control and transgenic Arabidopsis were both flowering earlier under 100 and 150 mM/L NaCl treatment. While under 200-300 mM/L NaCl treatment, the growth of control plant was significantly inhibited compared with transgenic A. thaliana. Salt injury rate and salt injury index of transgenic Arabidopsis were lower than those of the control. Further investigation showed that transgenic Arabidopsis exhibited much higher content of chloroplast pigments under different NaCl concentration. Meanwhile, the activity of SOD and POD was also enhanced in transgenic A. thaliana. These results suggested that LkERF-B2 was a key transcription factor and could lead to enhanced salt stress tolerance.
Collapse
Affiliation(s)
- Beibei Cao
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| | - Lixiang Shu
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| | - Ai Li
- College of Horticulture and Landscape Architecture (Key Laboratory of Fruit Science), Tianjin Agricultural University, Tianjin, 300000 China
| |
Collapse
|
30
|
DREB Genes from Common Bean ( Phaseolus vulgaris L.) Show Broad to Specific Abiotic Stress Responses and Distinct Levels of Nucleotide Diversity. Int J Genomics 2019; 2019:9520642. [PMID: 31249842 PMCID: PMC6525893 DOI: 10.1155/2019/9520642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
We analyzed the nucleotide variability and the expression profile of DREB genes from common bean, a crop of high economic and nutritional value throughout the world but constantly affected by abiotic stresses in cultivation areas. As DREB genes have been constantly associated with abiotic stress tolerance, we systematically categorized 54 putative PvDREB genes distributed in the common bean genome. It involved from AP2 domain location and amino acid conservation analysis (valine at the 14th position) to the identification of conserved motifs within peptide sequences representing six subgroups (A-1 to A-6) of PvDREB proteins. Four genes (PvDREB1F, PvDREB2A, PvDREB5A, and PvDREB6B) were cloned and analyzed for their expression profiles under abiotic stresses and their nucleotide and amino acid diversity in genotypes of Andean and Mesoamerican origin, showing distinct patterns of expression and nucleotide variability. PvDREB1F and PvDREB5A showed high relative inducibilities when genotypes of common bean were submitted to stresses by drought, salt, cold, and ABA. PvDREB2A inducibility was predominantly localized to the stem under drought. PvDREB6B was previously described as an A-2 (DREB2) gene, but a detailed phylogenetic analysis and its expression profile clearly indicated it belongs to group A-6. PvDREB6B was found as a cold- and dehydration-responsive gene, mainly in leaves. Interestingly, PvDREB6B also showed a high nucleotide and amino acid diversity within its coding region, in comparison to the others, implicating in several nonsynonymous amino acid substitutions between Andean and Mesoamerican genotypes. The expression patterns and nucleotide diversity of each DREB found in this study revealed fundamental characteristics for further research aimed at understanding the molecular mechanisms associated with drought, salt, and cold tolerance in common bean, which could be performed based on association mapping and functional analyses.
Collapse
|
31
|
Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape ( Vitis vinifera L.). 3 Biotech 2019; 9:199. [PMID: 31065499 DOI: 10.1007/s13205-019-1728-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Metal tolerance proteins (MTPs) play an important role in the transport of metals at the cellular, tissue and whole plant levels. In the present study, 11 MTP genes were identified and these clustered in three major sub-families Fe/Zn-MTP, Zn-MTP, and Mn-MTP, and seven groups, which are similar to the grouping of MTP genes in both Arabidopsis and rice. Vitis vinifera metal tolerance proteins (VvMTP) ranged from 366 to 1092 amino acids, were predicted to be located in the cell vacuole, and had four to six putative TMDs, except for VvtMTP12 and VvMTP1. The VvMTPs had putative cation diffusion facilitator (CDF) domains and the putative Mn-MTPs also had zinc transporter dimerization domains (ZD-domains). V. vinifera Mn-MTPs had gene structures and motif distributions similar to those of the Fe/Zn-MTP and Zn-MTP sub-families. The upstream regions of VvMTP genes had variable frequencies of cis-regulatory elements that could indicate regulation at different developmental stages and/or differential regulation in response to stress. Comparison of the VvMTP coding sequences with known miRNAs found in various plant species indicated the presence of 13 putative miRNAs, with 7 of these associated with VvMTPs. Temporal and spatial expression profiling indicates a potential role for VvMTP genes during growth and development in grape plants, as well as the involvement of these genes in plant responses to environmental stress, especially osmotic stress. The data generated from this study provides a basis for further investigation of the roles of MTP genes in grapes.
Collapse
|
32
|
Li R, Ge H, Dai Y, Yuan L, Liu X, Sun Q, Wang X. Genomewide analysis of homeobox gene family in apple (Malus domestica Borkh.) and their response to abiotic stress. J Genet 2019. [DOI: 10.1007/s12041-018-1049-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Zhang CL, Mao K, Zhou LJ, Wang GL, Zhang YL, Li YY, Hao YJ. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:320-332. [PMID: 30248518 DOI: 10.1016/j.plaphy.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
Long-chain acyl-CoA synthetases (LACSs) are members of the acyl-activating enzyme superfamily that have important roles in lipid synthesis and storage, fatty acid catabolism, vectorial acylation, and synthesis of cutin and wax. Here, 11 apple MdLACS genes were identified based on the Malus × domestica reference genome, clustered into six groups and mapped to ten chromosomes. Multiple sequence alignment and conserved motifs analyses showed that the sequences of the AtLACS and MdLACS proteins were highly conserved. A cis-element analysis in the promoter regions of the MdLACS genes revealed various elements related to stress responsiveness and plant hormones. Subsequently, expression analysis demonstrated that the MdLACS genes had different expression profiles in different tissues in response to various abiotic stresses. To further study the function of MdLACS genes in apple, MdLACS1 was isolated to identify its basic function, which the function of MdLACS1 in response to apple abiotic stress resistance was determined by the transgenic method. The results showed the MdLACS1 enhanced tolerance to polyethylene glycol, salt, and abscisic acid in the apple callus, suggesting that MdLACS1 is an important regulator in response to abiotic stresses. Finally, the functional interoperability network among the MdLACS proteins was predicted and analyzed, which could the understanding of the possible interactions among proteins and genes regulatory networks concerned with wax biosynthesis and regulatory mechanisms in response to abiotic stresses in apple.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
34
|
Dong Q, Mao K, Duan D, Zhao S, Wang Y, Wang Q, Huang D, Li C, Liu C, Gong X, Ma F. Genome-wide analyses of genes encoding FK506-binding proteins reveal their involvement in abiotic stress responses in apple. BMC Genomics 2018; 19:707. [PMID: 30253753 PMCID: PMC6156878 DOI: 10.1186/s12864-018-5097-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Background The FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses. However, the FKBP gene family in the important fruit crop apple (Malus × domestica Borkh.) has not been studied as thoroughly as in other species. Our research objective was to investigate the mechanisms by which apple FKBPs enable apple plants to tolerate the effects of abiotic stresses. Results Using bioinformatics-based methods, RT-PCR, and qRT-PCR technologies, we identified 38 FKBP genes and cloned 16 of them in the apple genome. The phylogenetic analysis revealed three major groups within that family. The results from sequence alignments, 3-D structures, phylogenetics, and analyses of conserved domains indicated that apple FKBPs are highly and structurally conserved. Furthermore, genomics structure analysis showed that those genes are also highly and structurally conserved in several other species. Comprehensive qRT-PCR analysis found various expression patterns for MdFKBPs in different tissues and in plant responses to water-deficit and salt stresses. Based on the results from interaction network and co-expression analyses, we determined that the pairing in the MdFKBP62a/MdFKBP65a/b-mediated network is involved in water-deficit and salt-stress signaling, both of which are uniformly up-regulated through interactions with heat shock proteins in apple. Conclusions These results provide new insight for further study of FKBP genes and their functions in abiotic stress response and multiple metabolic and physiological processes in apple. Electronic supplementary material The online version of this article (10.1186/s12864-018-5097-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
35
|
Genome-Wide Identification and Analysis of Apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family (NPF) Genes Reveals MdNPF6.5 Confers High Capacity for Nitrogen Uptake under Low-Nitrogen Conditions. Int J Mol Sci 2018; 19:ijms19092761. [PMID: 30223432 PMCID: PMC6164405 DOI: 10.3390/ijms19092761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins play important roles in moving substrates such as nitrate, peptides, amino acids, dicarboxylates, malate, glucosinolates, indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid. Although a unified nomenclature of NPF members in plants has been reported, this gene family has not been studied as thoroughly in apple (Malus × domestica Borkh.) as it has in other species. Our objective was to provide general information about apple MdNPFs and analyze the transcriptional responses of some members to different levels of nitrate supplies. We identified 73 of these genes from the apple genome and used phylogenetic analysis to organize them into eight major groups. These apple NPFs are structurally conserved, based on alignment of amino acid sequences and analyses of phylogenetics and conserved domains. Examination of their genomic structures indicated that these genes are highly conserved among other species. We monitored 14 cloned MdNPFs that showed varied expression patterns under different nitrate concentrations and in different tissues. Among them, NPF6.5 was significantly induced by both low and high levels of nitrate. When compared with the wild type, 35S:MdNPF6.5 transgenic apple calli were more tolerant to low-N stress, which demonstrated that this gene confers greater capacity for nitrogen uptake under those conditions. We also analyzed the expression patterns of those 73 genes in various tissues. Our findings benefit future research on this family of genes.
Collapse
|
36
|
Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092478. [PMID: 30134640 PMCID: PMC6164895 DOI: 10.3390/ijms19092478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.
Collapse
|
37
|
Genome-Wide Identification and Characterization of CIPK Family and Analysis Responses to Various Stresses in Apple ( Malus domestica). Int J Mol Sci 2018; 19:ijms19072131. [PMID: 30037137 PMCID: PMC6073193 DOI: 10.3390/ijms19072131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
In the CIPK family, the CBL-interacting protein kinases have shown crucial roles in hormone signaling transduction, and response to abiotic stress in plant developmental processes. The CIPK family is characterized by conserved NAF/FISL (Asn-Ala-Phe) and PPI (protein-phosphatase interaction) domains in the C-terminus. However, little data has been reported about the CIPK family in apple. A total of 34 MdCIPK genes were identified from the apple genome in this study and were later divided into two groups according to the CIPK domains, characterized by gene structure and chromosomal distribution, and then mapped onto 17 chromosomes. All MdCIPK genes were expressed in the four apple tissues (leaf, root, flower, and fruit). In addition, the MdCIPK gene expression profile showed that five members among them revealed enhanced expression during the pollen tube growth stages. The MdCIPK4 was the most expressive during the entire fruit development stages. Under stress conditions 21 MdCIPK genes transcript levels were up-regulated in response to fungal and salt treatments. This suggested the possible features of these genes’ response to stresses in apples. Our findings provide a new insight about the roles of CIPK genes in apples, which could contribute to the cloning and functional analysis of CIPK genes in the future.
Collapse
|
38
|
Song J, Li J, Sun J, Hu T, Wu A, Liu S, Wang W, Ma D, Zhao M. Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice ( Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:875. [PMID: 30013584 PMCID: PMC6036282 DOI: 10.3389/fpls.2018.00875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/05/2018] [Indexed: 05/02/2023]
Abstract
Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Ting's rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 × 10-7) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection.
Collapse
Affiliation(s)
- Jiayu Song
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jinqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Tao Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Aiting Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Sitong Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenjia Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
39
|
Wang MR, Chen L, Teixeira da Silva JA, Volk GM, Wang QC. Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. PLANT CELL REPORTS 2018; 37:689-709. [PMID: 29327217 DOI: 10.1007/s00299-018-2249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/02/2018] [Indexed: 05/03/2023]
Abstract
Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.
Collapse
Affiliation(s)
- Min-Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Region, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Long Chen
- State Key Laboratory of Crop Stress Biology in Arid Region, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | - Gayle M Volk
- National Laboratory for Genetic Resources Preservation, 1111 S. Mason St, Fort Collins, CO, 80521, USA.
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology in Arid Region, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
40
|
Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LSP. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genomics 2017; 18:483-497. [PMID: 29204078 PMCID: PMC5684650 DOI: 10.2174/1389202918666170227150057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
In agricultural production, abiotic stresses are known as the main disturbance leading to negative impacts on crop performance. Research on elucidating plant defense mechanisms against the stresses at molecular level has been addressed for years in order to identify the major contributors in boosting the plant tolerance ability. From literature, numerous genes from different species, and from both functional and regulatory gene categories, have been suggested to be on the list of potential candidates for genetic engineering. Noticeably, enhancement of plant stress tolerance by manipulating expression of Transcription Factors (TFs) encoding genes has emerged as a popular approach since most of them are early stress-responsive genes and control the expression of a set of downstream target genes. Consequently, there is a higher chance to generate novel cultivars with better tolerance to either single or multiple stresses. Perhaps, the difficult task when deploying this approach is selecting appropriate gene(s) for manipulation. In this review, on the basis of the current findings from molecular and post-genomic studies, our interest is to highlight the current understanding of the roles of TFs in signal transduction and mediating plant responses towards abiotic stressors. Furthermore, interactions among TFs within the stress-responsive network will be discussed. The last section will be reserved for discussing the potential applications of TFs for stress tolerance improvement in plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Du Ngoc Hai Nhi
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
41
|
Liu X, Li R, Dai Y, Chen X, Wang X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Mol Genet Genomics 2017; 293:303-315. [PMID: 29063961 DOI: 10.1007/s00438-017-1386-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023]
Abstract
The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Rong Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Yaqing Dai
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong Taian, 271018, People's Republic of China.
| |
Collapse
|
42
|
Global Identification, Classification, and Expression Analysis of MAPKKK genes: Functional Characterization of MdRaf5 Reveals Evolution and Drought-Responsive Profile in Apple. Sci Rep 2017; 7:13511. [PMID: 29044159 PMCID: PMC5647345 DOI: 10.1038/s41598-017-13627-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/27/2017] [Indexed: 11/08/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAPKKKs) are pivotal components of Mitogen-activated protein kinase (MAPK) cascades, which play a significant role in many biological processes. Although genome-wide analysis of MAPKKKs has been conducted in many species, extant results in apple are scarce. In this study, a total of 72 putative MdMAPKKKs in Raf-like group, 11 in ZIK-like group and 37 in MEEK were identified in apple firstly. Predicted MdMAPKKKs were located in 17 chromosomes with diverse densities, and there was a high-level of conservation in and among the evolutionary groups. Encouragingly, transcripts of 12 selected MdMAPKKKs were expressed in at least one of the tested tissues, indicating that MdMAPKKKs might participate in various physiological and developmental processes in apple. Moreover, they were found to respond to drought stress in roots and leaves, which suggested a possible conserved response to drought stress in different species. Overexpression of MdRaf5 resulted in a hyposensitivity to drought stress, which was at least partially due to the regulation of stomatal closure and transpiration rates. To the best of our knowledge, this is the first genome-wide functional analysis of the MdMAPKKK genes in apple, and it provides valuable information for understanding MdMAPKKKs signals and their putative functions.
Collapse
|
43
|
Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One 2017; 12:e0184158. [PMID: 28877207 PMCID: PMC5587292 DOI: 10.1371/journal.pone.0184158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/19/2017] [Indexed: 12/01/2022] Open
Abstract
Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non-mycorrhizal plants.
Collapse
Affiliation(s)
- Veronica Fileccia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Paolo Ruisi
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Rosolino Ingraffia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Dario Giambalvo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Alfonso Salvatore Frenda
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
44
|
Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei XX. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:457-483. [PMID: 28226237 DOI: 10.1146/annurev-arplant-042916-041049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, California 95616;
| | | | - Amanda R De La Torre
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Sara Montanari
- Department of Plant Sciences, University of California, Davis, California 95616;
| | - Xiao-Xin Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
45
|
Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T. Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:510-526. [PMID: 27754576 DOI: 10.1111/tpj.13401] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/08/2023]
Abstract
Dehydration-responsive element binding factors (DREBs) play important roles in plant growth, development, and stress signaling pathways in model plants. However, little is known about the function of DREBs in apple (Malus × domestica), a widely cultivated crop that is frequently threatened by drought. We isolated a DREB gene from Malus sieversii (Ledeb.) Roem., MsDREB6.2, and investigated its functions using overexpression analysis and chimeric repressor gene-silencing technology (CRES-T). We identified possible target genes of the protein encoded by MsDREB6.2 using electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP). Overexpression of MsDREB6.2 increased the expression of a key cytokinin (CK) catabolism gene, MdCKX4a, which led to a significant reduction in endogenous CK levels, and caused a decrease in shoot:root ratio in transgenic apple plants. Overexpression of MsDREB6.2 resulted in a decrease in stomatal aperture and density and an increase in root hydraulic conductance (L0 ), and thereby enhanced drought tolerance in transgenic plants. Furthermore, manipulating the level of MsDREB6.2 expression altered the expression of two aquaporin (AQP) genes. The effect of the two AQP genes on L0 was further characterized using the AQP inhibitor HgCl2 . Based on these observations, we conclude that MsDREB6.2 enhances drought tolerance and that its function may be due, at least in part, to its influence on stomatal opening, root growth, and AQP expression. These results may have applications in apple rootstock breeding programs aimed at developing drought-resistant apple varieties.
Collapse
Affiliation(s)
- Xiong Liao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liping Yao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuang Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guojie Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
46
|
Mao K, Dong Q, Li C, Liu C, Ma F. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:480. [PMID: 28443104 PMCID: PMC5387082 DOI: 10.3389/fpls.2017.00480] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/20/2017] [Indexed: 05/19/2023]
Abstract
The bHLH (basic helix-loop-helix) transcription factor family is the second largest in plants. It occurs in all three eukaryotic kingdoms, and plays important roles in regulating growth and development. However, family members have not previously been studied in apple. Here, we identified 188 MdbHLH proteins in apple "Golden Delicious" (Malus × domestica Borkh.), which could be classified into 18 groups. We also investigated the gene structures and 12 conserved motifs in these MdbHLHs. Coupled with expression analysis and protein interaction network prediction, we identified several genes that might be responsible for abiotic stress responses. This study provides insight and rich resources for subsequent investigations of such proteins in apple.
Collapse
|
47
|
Xu R, Liu C, Li N, Zhang S. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple. Mol Genet Genomics 2016; 291:2015-2030. [PMID: 27475441 DOI: 10.1007/s00438-016-1236-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
Abstract
Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.
Collapse
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong, 261061, China.
| | - Caiyun Liu
- Key Laboratory of Biology and Molecular Biology in University of Shandong, Weifang University, Weifang, Shandong, 261061, China
| | - Ning Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Technology, Shandong Agricultural University, 61# Daizong Street, Tai'an, Shandong, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Technology, Shandong Agricultural University, 61# Daizong Street, Tai'an, Shandong, 271018, China.
| |
Collapse
|
48
|
Genomics and expression analysis of DHHC-cysteine-rich domain S-acyl transferase protein family in apple. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Sebastián D, Sorianello E, Segalés J, Irazoki A, Ruiz-Bonilla V, Sala D, Planet E, Berenguer-Llergo A, Muñoz JP, Sánchez-Feutrie M, Plana N, Hernández-Álvarez MI, Serrano AL, Palacín M, Zorzano A. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 2016; 35:1677-93. [PMID: 27334614 DOI: 10.15252/embj.201593084] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, analysis of muscle Mfn2-deficient mice revealed that aging-induced Mfn2 decrease underlies the age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to an exacerbated age-related mitochondrial dysfunction. Interestingly, aging-induced Mfn2 deficiency triggers a ROS-dependent adaptive signaling pathway through induction of HIF1α transcription factor and BNIP3. This pathway compensates for the loss of mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that Mfn2 repression in muscle during aging is a determinant for the inhibition of mitophagy and accumulation of damaged mitochondria and triggers the induction of a mitochondrial quality control pathway.
Collapse
Affiliation(s)
- David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Eleonora Sorianello
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jessica Segalés
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Irazoki
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vanessa Ruiz-Bonilla
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF) CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - David Sala
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Evarist Planet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antoni Berenguer-Llergo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Pablo Muñoz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuela Sánchez-Feutrie
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Natàlia Plana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Álvarez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF) CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Xu JN, Xing SS, Zhang ZR, Chen XS, Wang XY. Genome-Wide Identification and Expression Analysis of the Tubby-Like Protein Family in the Malus domestica Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1693. [PMID: 27895653 PMCID: PMC5107566 DOI: 10.3389/fpls.2016.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 05/09/2023]
Abstract
Tubby-like proteins (TLPs), which have a highly conserved β barrel tubby domain, have been found to be associated with some animal-specific characteristics. In the plant kingdom, more than 10 TLP family members were identified in Arabidopsis, rice and maize, and they were found to be involved in responses to stress. The publication of the apple genome makes it feasible to systematically study the TLP family in apple. In this investigation, nine TLP encoding genes (TLPs for short) were identified. When combined with the TLPs from other plant species, the TLPs were divided into three groups (group A, B, and C). Most plant TLP members in group A contained an additional F-box domain at the N-terminus. However, no common domain was identified other than tubby domain either in group B or in group C. An analysis of the tubby domains of MdTLPs identified three types of conserved motifs. Motif 1 and 2, the signature motifs in the confirmed TLPs, were always present in MdTLPs, while motif 3 was absent from group B. Homology modeling indicated that the tubby domain of most MdTLPs had a closed β barrel, as in animal tubby domains. Expression profiling revealed that the MdTLP genes were expressed in multiple organs and were abundant in roots, stems, and leaves but low in flowers. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of MdTLPs. Expression profiling by qRT-PCR indicated that almost all MdTLPs were up-regulated at some extent under abiotic stress, exogenous ABA and H2O2 treatments in leaves and roots, though different MdTLP members exhibited differently in leaves and roots. The results and information above may provide a basis for further investigation of TLP function in plants.
Collapse
|