1
|
Lai S, Huang Y, Liu Y, Han F, Zhuang M, Cui X, Li Z. Clubroot resistant in cruciferous crops: recent advances in genes and QTLs identification and utilization. HORTICULTURE RESEARCH 2025; 12:uhaf105. [PMID: 40406504 PMCID: PMC12096309 DOI: 10.1093/hr/uhaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, poses a serious threat to cruciferous crop production worldwide. Breeding resistant varieties remains the most cost-effective strategy to mitigate yield losses, yet achieving durable, stable, and broad-spectrum resistance continues to be a formidable challenge. Recent advances in genetic and genomic technologies have improved the understanding of complex host-pathogen interactions, leading to the identification of key resistance loci, including dominant resistance genes such as CRa and Crr1, as well as quantitative trait loci. This review discusses the genetic mechanisms governing clubroot resistance and highlights applications in breeding, such as marker-assisted selection and CRISPR/Cas9-based genome editing, which are accelerating the development of resistant germplasm. Furthermore, integrated management strategies, encompassing resistant cultivars, crop rotation, biocontrol agents, and soil amendments, are emphasized as critical components for sustainable disease management. This review summarizes the major resistance genes against clubroot and discusses potential strategies to address the persistent threat posed by the disease.
Collapse
Affiliation(s)
- Shangxiang Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
2
|
Zhang N, Zhu M, Qiu Y, Fang Z, Zhuang M, Zhang Y, Lv H, Ji J, Hou X, Yang L, Wang Y. Rapid introgression of the clubroot resistance gene CRa into cabbage skeleton inbred lines through marker assisted selection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:19. [PMID: 39866858 PMCID: PMC11754771 DOI: 10.1007/s11032-024-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the CRa gene, crucial for CR. The fertility of this variety can be restored through crossing with an Ogura cytoplasmic male sterile (CMS) restore line. In the current investigation, offspring from fertile hybrids were utilized as donor parents in backcrossing with five cabbage inbred lines, with the goal of introducing the CRa gene into elite cabbage cultivars possessing superior agronomic traits. Following five years of continuous field selection combined with molecular marker-assisted selection (MAS), we successfully developed BC4 individuals exhibiting excellent agronomic traits and diverse genetic backgrounds. Whole-genome resequencing revealed a mere 54,213 SNP differences between the genetic makeup of BC4 individuals and their recurrent parents. The results of inoculation identification demonstrated a high degree of co-segregation between the CRa-specific marker KBrH129J18 and resistance to Plasmodiophora brassicae in both inoculated resistant seedlings and cabbage plants harboring CRa across three distinct regions of China. Additionally, results from Semi-Quantitative RT-PCR experiments revealed minimal to no expression of CRa in the majority of susceptible individuals, underscoring the pivotal role of CRa in conferring CR. Moreover, BC3 individuals resulting from the cross between "SK308" and "18CR3", which carried CRa, exhibited resistance to clubroot under the natural conditions of disease-prone fields in Wulong, China. In summary, through a combination of traditional breeding methods and MAS, we successfully bred five cabbage inbred lines carrying the CRa gene from diverse genetic backgrounds, thereby establishing a robust foundation for their integration into breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01532-2.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Yuting Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 P.R. China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
3
|
Li K, Wang K, Shi Y, Liang F, Li X, Bao S, Yesmagul BM, Fatima M, Yu C, Xu A, Zhang X, Fu S, Shi X, Dun X, Zhou Z, Huang Z. BjuA03.BNT1 plays a positive role in resistance to clubroot disease in resynthesized Brassica juncea L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112268. [PMID: 39313004 DOI: 10.1016/j.plantsci.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Clubroot has become a major obstacle in rapeseed production. Breeding varieties resistant to clubroot is the most effective method for disease management. However, the clubroot-resistant germplasm of rapeseed remains limited. To tackle this challenge, we synthesized the clubroot-resistant mustard, CT19, via distant hybridization, and subsequently an F2 segregating population was created by intercrossing CT19 with a clubroot-susceptible germplasm CS15. A major-effect clubroot resistance QTL qCRa3-1 on chromosome A03 was identified through QTL scanning. Transcriptome analyses of CT19 and CS15 revealed that the mechanisms conferring resistance to Plasmodiophora brassica likely involved the regulation of flavonoid metabolism, fatty acid metabolism, and sulfur metabolism. By combining the results from transcriptome, QTL mapping, and gene sequencing, a candidate gene BjuA03.BNT1, encoding NLR (nucleotide-binding domain leucine-rich repeat-containing receptors) protein, was obtained. Intriguingly, comparing with CT19, a base T insertion was discovered in the BjuA03.BNT1 gene's coding sequence in CS15, resulting an alteration within the LRR conserved domain. Overexpression of BjuA03.BNT1 from CT19 notably enhanced the resistance to clubroot in Arabidopsis. Our investigations revealed that BjuA03.BNT1 regulated the resistance to clubroot by modulating fatty acid synthesis and the structure of cell wall. These results are highly relevant for molecular breeding to improve clubroot resistance in rapeseed.
Collapse
Affiliation(s)
- Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fenghao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shunjun Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Balziya Maratkyzy Yesmagul
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maliha Fatima
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaoyong Zhou
- Information Management Office, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Botero-Ramirez A, Kirk B, Strelkov SE. Optimizing Clubroot Management and the Role of Canola Cultivar Mixtures. Pathogens 2024; 13:640. [PMID: 39204241 PMCID: PMC11357626 DOI: 10.3390/pathogens13080640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The sustainable cultivation of canola is under threat from clubroot disease (Plasmodiophora brassicae). The pathogen's resting spores can survive in the soil for extended periods, complicating disease management. Therefore, effective clubroot control requires a combination of tactics that provide multiple layers of protection. Management strategies have focused on pathogen avoidance and reducing disease levels in infested fields. The sanitation of machinery and field equipment remains the most effective method for preventing the pathogen's introduction into non-infested fields. For disease reduction, crop rotation, liming, chemical control, and host resistance are commonly employed, with the use of clubroot-resistant cultivars being the most effective to date. However, resistance breakdown has been observed within four years of the introduction of new cultivars, jeopardizing the long-term effectiveness of this approach. A promising yet underexplored strategy is the use of cultivar mixtures. This approach leverages mechanisms such as the dilution effect, the barrier effect, induced resistance, disruptive selection, and the compensatory effect to control the disease. Cultivar mixtures have the potential to reduce the impact of clubroot on canola production while preserving pathogen population structure, thereby minimizing the likelihood of resistance breakdown. Given its potential, further research into cultivar mixtures as a management strategy for clubroot disease is warranted.
Collapse
Affiliation(s)
- Andrea Botero-Ramirez
- Department of Biological Sciences, Faculty of Arts and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Brennon Kirk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| |
Collapse
|
5
|
Zhou X, Zhong T, Wu M, Li Q, Yu W, Gan L, Xiang X, Zhang Y, Shi Y, Zhou Y, Chen P, Zhang C. Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism. FRONTIERS IN PLANT SCIENCE 2024; 15:1396602. [PMID: 38845850 PMCID: PMC11153729 DOI: 10.3389/fpls.2024.1396602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.
Collapse
Affiliation(s)
- Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Zhong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meixiu Wu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenlin Yu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaru Shi
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Rice and Oil Research Institute, Yichang Academy of Agricultural Science, Yichang, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Wei X, Xiao S, Zhao Y, Zhang L, Nath UK, Yang S, Su H, Zhang W, Wang Z, Tian B, Wei F, Yuan Y, Zhang X. Fine mapping and candidate gene analysis of CRA8.1.6, which confers clubroot resistance in turnip ( Brassica rapa ssp. rapa). FRONTIERS IN PLANT SCIENCE 2024; 15:1355090. [PMID: 38828217 PMCID: PMC11140098 DOI: 10.3389/fpls.2024.1355090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
Clubroot disease poses a significant threat to Brassica crops, necessitating ongoing updates on resistance gene sources. In F2 segregants of the clubroot-resistant inbred line BrT18-6-4-3 and susceptible DH line Y510, the genetic analysis identified a single dominant gene responsible for clubroot resistance. Through bulk segregant sequencing analysis and kompetitive allele-specific polymerase chain reaction assays, CRA8.1.6 was mapped within 110 kb (12,255-12,365 Mb) between markers L-CR11 and L-CR12 on chromosome A08. We identified B raA08g015220.3.5C as the candidate gene of CRA8.1.6. Upon comparison with the sequence of disease-resistant material BrT18-6-4-3, we found 249 single-nucleotide polymorphisms, seven insertions, six deletions, and a long terminal repeat (LTR) retrotransposon (5,310 bp) at 909 bp of the first intron. However, the LTR retrotransposon was absent in the coding sequence of the susceptible DH line Y510. Given the presence of a non-functional LTR insertion in other materials, it showed that the LTR insertion might not be associated with susceptibility. Sequence alignment analysis revealed that the fourth exon of the susceptible line harbored two deletions and an insertion, resulting in a frameshift mutation at 8,551 bp, leading to translation termination at the leucine-rich repeat domain's C-terminal in susceptible material. Sequence alignment of the CDS revealed a 99.4% similarity to Crr1a, which indicate that CRA8.1.6 is likely an allele of the Crr1a gene. Two functional markers, CRA08-InDel and CRA08-KASP1, have been developed for marker-assisted selection in CR turnip cultivars. Our findings could facilitate the development of clubroot-resistance turnip cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shixiong Xiao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyong Wang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Adhikary D, Mehta D, Kisiala A, Basu U, Uhrig RG, Emery RN, Rahman H, Kav NNV. Proteome- and metabolome-level changes during early stages of clubroot infection in Brassica napus canola. Mol Omics 2024; 20:265-282. [PMID: 38334713 DOI: 10.1039/d3mo00210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rj Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Hu H, Zhang Y, Yu F. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1347-1363. [PMID: 37991105 PMCID: PMC10901203 DOI: 10.1093/jxb/erad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Collapse
Affiliation(s)
- Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
9
|
Zhang X, Han F, Li Z, Wen Z, Cheng W, Shan X, Sun D, Liu Y. Map-based cloning and functional analysis of a major quantitative trait locus, BolC.Pb9.1, controlling clubroot resistance in a wild Brassica relative (Brassica macrocarpa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:41. [PMID: 38305900 DOI: 10.1007/s00122-024-04543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE A causal gene BoUGT76C2, conferring clubroot resistance in wild Brassica oleracea, was identified and functionally characterized. Clubroot is a devastating soil-borne disease caused by the obligate biotrophic pathogen Plasmodiophora brassica (P. brassicae), which poses a great threat to Brassica oleracea (B. oleracea) production. Although several QTLs associated with clubroot resistance (CR) have been mapped in cultivated B. oleracea, none have been cloned in B. oleracea. Previously, we found that the wild B. oleracea B2013 showed high resistance to clubroot. In this study, we constructed populations using B2013 and broccoli line 90196. CR in B2013 is quantitatively inherited, and a major QTL, BolC.Pb9.1, was identified on C09 using QTL-seq and linkage analysis. The BolC.Pb9.1 was finely mapped to a 56 kb genomic region using F2:3 populations. From the target region, the candidate BoUGT76C2 showed nucleotide variations between the parents, and was inducible in response to P. brassicae infection. We generated BoUGT76C2 overexpression lines in the 90196 background, which showed significantly enhanced resistance to P. brassicae compared to the WT line, suggesting that BoUGT76C2 corresponds to the resistance gene BolC.Pb.9.1. This is the first report on the CR gene map-based cloning and functional analysis from wild relatives, which provides a theoretical basis to the understanding of the molecular mechanism of CR, and lays a foundation to improve the CR of cultivated B. oleracea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhenghua Wen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Xiaozheng Shan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| |
Collapse
|
10
|
Karim MM, Yu F. Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:249. [PMID: 37982891 PMCID: PMC10661809 DOI: 10.1007/s00122-023-04483-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Two major quantitative trait loci (QTLs) and five minor QTLs for 10 pathotypes were identified on chromosomes C01, C03, C04 and C08 through genotyping-by-sequencing from Brassica oleracea. Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants. A total of 4769 high-quality polymorphic SNP loci were obtained and distributed on 9 chromosomes of B. oleracea. Evaluation of 124 BC1S1 lines for resistance to 10 pathotypes: 3A, 2B, 5C, 3D, 5G, 3H, 8J, 5K, 5L and 3O of P. brassicae, was carried out. Seven QTLs, 5 originating from ECD11 and 2 from T010000DH3, were detected. One major QTL designated as Rcr_C03-1 on C03 contributed 16.0-65.6% of phenotypic variation explained (PVE) for 8 pathotypes: 2B, 5C, 5G, 3H, 8J, 5K, 5L and 3O. Another major QTL designated as Rcr_C08-1 on C08 contributed 8.3 and 23.5% PVE for resistance to 8J and 5K, respectively. Five minor QTLs designated as Rcr_C01-1, Rcr_C03-2, Rcr_C03-3, Rcr_C04-1 and Rcr_C08-2 were detected on chromosomes C01, C03, C04 and C08 that contributed 8.3-23.5% PVE for 5 pathotypes each of 3A, 2B, 3D, 8J and 5K. There were 1, 10 and 4 genes encoding TIR-NBS-LRR/CC-NBS-LRR class disease resistance proteins in the Rcr_C01-1, Rcr_C03-1 and Rcr_C08-1 flanking regions. The syntenic regions of the two major QTLs Rcr_C03-1 and Rcr_C08-1 in the B. rapa genome 'Chiifu' were searched.
Collapse
Affiliation(s)
- Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
11
|
Wang W, Qin L, Zhang W, Tang L, Zhang C, Dong X, Miao P, Shen M, Du H, Cheng H, Wang K, Zhang X, Su M, Lu H, Li C, Gao Q, Zhang X, Huang Y, Liang C, Zhou JM, Chen YH. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 2023; 186:2656-2671.e18. [PMID: 37295403 DOI: 10.1016/j.cell.2023.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Li Qin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Linghui Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Huang
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
12
|
Amas JC, Thomas WJW, Zhang Y, Edwards D, Batley J. Key Advances in the New Era of Genomics-Assisted Disease Resistance Improvement of Brassica Species. PHYTOPATHOLOGY 2023:PHYTO08220289FI. [PMID: 36324059 DOI: 10.1094/phyto-08-22-0289-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.
Collapse
Affiliation(s)
- Junrey C Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - William J W Thomas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Yueqi Zhang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| |
Collapse
|
13
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
14
|
Javed MA, Schwelm A, Zamani‐Noor N, Salih R, Silvestre Vañó M, Wu J, González García M, Heick TM, Luo C, Prakash P, Pérez‐López E. The clubroot pathogen Plasmodiophora brassicae: A profile update. MOLECULAR PLANT PATHOLOGY 2023; 24:89-106. [PMID: 36448235 PMCID: PMC9831288 DOI: 10.1111/mpp.13283] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION PLADBR: EPPO A2 list; Annex designation 9E.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Arne Schwelm
- Department of Plant ScienceWageningen University and ResearchWageningenNetherlands
- Teagasc, Crops Research CentreCarlowIreland
| | - Nazanin Zamani‐Noor
- Julius Kühn‐Institute, Institute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
| | - Rasha Salih
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Jiaxu Wu
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Melaine González García
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | | | - Chaoyu Luo
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Priyavashini Prakash
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- K. S. Rangasamy College of TechnologyNamakkalIndia
| | - Edel Pérez‐López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
15
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Pang W, Zhang X, Ma Y, Wang Y, Zhan Z, Piao Z. Fine mapping and candidate gene analysis of CRA3.7 conferring clubroot resistance in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4541-4548. [PMID: 36243892 DOI: 10.1007/s00122-022-04237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, we fine-mapped a clubroot resistance gene CRA3.7 in Chinese cabbage and developed its closely linked marker syau-InDel3008 for marker-assisted selection in CR cultivars breeding. Chinese cabbage is an important leafy vegetable rich in many nutrients widely grown in China. Clubroot disease caused by an obligate biotrophic pathogen Plasmodiophora brassicae was rapidly spread and challenged to Chinese cabbage production. A clubroot resistance (CR) gene, CRA3.7, was mapped on chromosome A03 of Brassica rapa. A Chinese cabbage line 'CR510', which harbor homozygous resistance locus CRA3.7 was selected from a BC4F3 family. 'CR510' was crossed with a clubroot susceptible Chinese cabbage inbred line '59-1'. Total 51 recombinant plants were identified from an F2 population including 3000 individuals. These recombinants were selfed and the clubroot resistance of F2/3 families was evaluated. Finally, a clubroot resistance gene CRA3.7 was fine-mapped to an interval of approximately 386 kb between marker syau-InDel3024 and syau-InDel3008. According to the reference genome, total 54 genes including five encoding the TIR-NBS-LRR proteins was annotated in the fine-mapped region. Further, nine candidate's gene expression in parental lines at 7, 14 and 21 days after inoculation of P. brassicae were evaluated. Bra019376, Bra019401, Bra019403 and Bra019410 are highly expressed in 'CR510' than '59-1'. Gene sequence of Bra019410 from 'CR510' was cloned and identified different from CRa. Therefore, Bra019376, Bra019401, Bra019403 and Bra019410 are the most likely candidates for CRA3.7. Our research provides a valuable germplasm resource against P. brassicae Pb3 and CRA3.7 closely linked marker for marker-assisted selection in CR cultivars breeding.
Collapse
Affiliation(s)
- Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xue Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinbo Ma
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yingjun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
17
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
18
|
Improvement of Resistance to Clubroot Disease in the Ogura CMS Restorer Line R2163 of Brassica napus. PLANTS 2022; 11:plants11182413. [PMID: 36145814 PMCID: PMC9504965 DOI: 10.3390/plants11182413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Oilseed rape (Brassica napus) has significant heterosis and Ogura CMS is a major way to use it. Ogura CMS has the advantages of complete and stable male sterility and easy-to-breed maintainers. Therefore, to breed better restorers has become an important goal for this system. Incidentally, clubroot is a soil-borne disease that is difficult to control by fungicidal chemicals, and it has been the main disease of oilseed rape in recent years in China, severely restricting the development of the oilseed rape industry. At present, the most effective method for controlling clubroot disease is to cultivate resistant varieties. One Ogura CMS restorer line (R2163) has shown much better combining ability, but lacks the clubroot disease resistance. This study was carried out to improve R2163 through marker-assisted backcross breeding (MABB). The resistant locus PbBa8.1 was introduced into the restorer R2163, and we then selected R2163R with clubroot disease resistance. Using the new restorer R2163R as the male parent and the sterile lines 116A and Z11A as the female parent, the improved, new resistant hybrids Kenyouza 741R and Huayouza 706R performed well, providing strong resistance and good agronomic traits. This work advances the utilization of heterosis and breeding for clubroot disease resistance in B. napus.
Collapse
|
19
|
Zhu M, Yang L, Zhang Y, Zhuang M, Ji J, Hou X, Li Z, Han F, Fang Z, Lv H, Wang Y. Introgression of clubroot resistant gene into Brassica oleracea L. from Brassica rapa based on homoeologous exchange. HORTICULTURE RESEARCH 2022; 9:uhac195. [PMID: 37180031 PMCID: PMC10167419 DOI: 10.1093/hr/uhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/26/2022] [Indexed: 05/15/2023]
Abstract
Clubroot is a soil-borne disease in cabbage (Brassica oleracea L. var. capitata L.) caused by Plasmodiophora brassicae, which poses a great threat to cabbage production. However, clubroot resistance (CR) genes in Brassica rapa could be introduced into the cabbage via breeding to make it clubroot resistant. In this study, CR genes from B. rapa were introduced into the cabbage genome and the mechanism of gene introgression was explored. Two methods were used to create CR materials: (i) The fertility of CR Ogura CMS cabbage germplasms containing CRa was restored by using an Ogura CMS restorer. After cytoplasmic replacement and microspore culture, CRa-positive microspore individuals were obtained. (ii) Distant hybridization was performed between cabbage and B. rapa, which contained three CR genes (CRa, CRb, and Pb8.1). Finally, BC2 individuals containing all three CR genes were obtained. Inoculation results showed that both CRa-positive microspore individuals and BC2 individuals containing three CR genes were resistant to race 4 of P. brassicae. Sequencing results from CRa-positive microspore individuals with specific molecular markers and genome-wide association study (GWAS) showed penetration at the homologous position of the cabbage genome by a 3.42 Mb CRa containing a fragment from B. rapa; indicating homoeologous exchange (HE) as the theoretical basis for the introgression of CR resistance. The successful introduction of CR into the cabbage genome in the present study can provide useful clues for creating introgression lines within other species of interest.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Vegetable Science, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
21
|
Yang Z, Jiang Y, Gong J, Li Q, Dun B, Liu D, Yin F, Yuan L, Zhou X, Wang H, Wang J, Zhan Z, Shah N, Nwafor CC, Zhou Y, Chen P, Zhu L, Li S, Wang B, Xiang J, Zhou Y, Li Z, Piao Z, Yang Q, Zhang C. R gene triplication confers European fodder turnip with improved clubroot resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1502-1517. [PMID: 35445530 PMCID: PMC9342621 DOI: 10.1111/pbi.13827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 05/08/2023]
Abstract
Clubroot is one of the most important diseases for many important cruciferous vegetables and oilseed crops worldwide. Different clubroot resistance (CR) loci have been identified from only limited species in Brassica, making it difficult to compare and utilize these loci. European fodder turnip ECD04 is considered one of the most valuable resources for CR breeding. To explore the genetic and evolutionary basis of CR in ECD04, we sequenced the genome of ECD04 using de novo assembly and identified 978 candidate R genes. Subsequently, the 28 published CR loci were physically mapped to 15 loci in the ECD04 genome, including 62 candidate CR genes. Among them, two CR genes, CRA3.7.1 and CRA8.2.4, were functionally validated. Phylogenetic analysis revealed that CRA3.7.1 and CRA8.2.4 originated from a common ancestor before the whole-genome triplication (WGT) event. In clubroot susceptible Brassica species, CR-gene homologues were affected by transposable element (TE) insertion, resulting in the loss of CR function. It can be concluded that the current functional CR genes in Brassica rapa and non-functional CR genes in other Brassica species were derived from a common ancestral gene before WGT. Finally, a hypothesis for CR gene evolution is proposed for further discussion.
Collapse
Affiliation(s)
- Zhiquan Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yingfen Jiang
- Institute of Crop ScienceAnhui Academy of Agricultural ScienceHefeiChina
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jianfang Gong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Bicheng Dun
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Yangtze River Rare Plant Research InstituteChina Three Gorges CorporationYichangChina
| | - Dongxu Liu
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Feifan Yin
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Lei Yuan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huiying Wang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Wang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Zongxiang Zhan
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Nadil Shah
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chinedu Charles Nwafor
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanwei Zhou
- Yichang Academy of Agricultural ScienceYichangChina
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Li Zhu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture ResourceHuanggang Normal UniversityHuanggangChina
| | - Shisheng Li
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture ResourceHuanggang Normal UniversityHuanggangChina
| | - Bingrui Wang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Xiang
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture ResourceHuanggang Normal UniversityHuanggangChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhongyun Piao
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
Guo Y, Li B, Li M, Zhu H, Yang Q, Liu X, Qu L, Fan L, Wang T. Efficient marker-assisted breeding for clubroot resistance in elite Pol-CMS rapeseed varieties by updating the PbBa8.1 locus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:41. [PMID: 37313506 PMCID: PMC10248692 DOI: 10.1007/s11032-022-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Clubroot disease poses a severe threat to rapeseed (Brassica napus) production worldwide and has recently been spreading across China at an unprecedented pace. Breeding and cultivation of resistant varieties constitute a promising and environment-friendly approach to mitigating this threat. In this study, the clubroot resistance locus PbBa8.1 was successfully transferred into SC4, a shared paternal line of three elite varieties in five generations by marker-assisted backcross breeding. Kompetitive allele specific PCR (KASP) markers of clubroot resistance gene PbBa8.1 and its linked high erucic acid gene (FAE1) were designed and applied for foreground selection, and 1,000 single-nucleotide polymorphisms (SNPs) were selected and used for the background selection. This breeding strategy produced recombinants with the highest recovery ratio of the recurrent parent genome (> 95%) at BC2F2 while breaking the linkage with FAE1 during the selection. An updated version of the paternal line (SC4R) was generated at BC2F3, showing significantly improved clubroot resistance at the seedling stage via artificial inoculation, and was comparable to that of the donor parent. Field trials of the three elite varieties and their updated versions in five environments indicated similar agronomic appearance and final yield. The introduced breeding strategy precisely pyramids the PbBa8.1 and FAE1 loci with the assistance of technical markers in a shorter period and could be applied to other desirable traits for directional improvement in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01305-9.
Collapse
Affiliation(s)
- Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Hongjian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128 China
| | - Qian Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Lianyi Fan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Changsha, 410125 China
| |
Collapse
|
23
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
24
|
Hatakeyama K, Yuzawa S, Tonosaki K, Takahata Y, Matsumoto S. Allelic variation of a clubroot resistance gene ( Crr1a) in Japanese cultivars of Chinese cabbage ( Brassica rapa L.). BREEDING SCIENCE 2022; 72:115-123. [PMID: 36275933 PMCID: PMC9522534 DOI: 10.1270/jsbbs.21040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 05/08/2023]
Abstract
Clubroot resistance (CR) is an important trait in Chinese cabbage breeding worldwide. Although Crr1a, the gene responsible for clubroot-resistance, has been cloned and shown to encode the NLR protein, its allelic variation and molecular function remain unknown. Here, we investigated the sequence variation and function of three Crr1a alleles cloned from six CR F1 cultivars of Chinese cabbage. Gain-of-function analysis revealed that Crr1aKinami90_a isolated from the cv. 'Kinami 90' conferred clubroot resistance as observed for Crr1aG004 . Because two susceptible alleles commonly lacked 172 amino acids in the C-terminal region, we investigated clubroot resistance in transgenic Arabidopsis harboring the chimeric Crr1a, in which 172 amino acids of the functional alleles were fused to the susceptible alleles. The fusion of the C-terminal region to the susceptible alleles restored resistance, indicating that their susceptibility was caused by the lack of the C-terminus. We developed DNA markers to detect the two functional Crr1a alleles, and demonstrated that the functional Crr1a alleles were frequently found in European fodder turnips, whereas they were rarely introduced into Japanese CR cultivars of Chinese cabbage. These results would contribute to CR breeding via marker-assisted selection and help our understanding of the molecular mechanisms underlying clubroot resistance.
Collapse
Affiliation(s)
- Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
- Corresponding author (e-mail: )
| | - Shota Yuzawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kaoru Tonosaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshihito Takahata
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Satoru Matsumoto
- Institute of Vegetable and Floriculture Science, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|
25
|
Lei T, Li N, Ma J, Hui M, Zhao L. Development of molecular markers based on CRa gene sequencing of different clubroot disease-resistant cultivars of Chinese cabbage. Mol Biol Rep 2022; 49:5953-5961. [PMID: 35325358 DOI: 10.1007/s11033-022-07379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND CRa is a key gene in Chinese cabbage (Brassica rapa ssp. pekinensis) that confers resistance to Plasmodiophora brassicae. In order to efficiently screen the clubroot resistance (CR) gene CRa in breeding, two functional codominant markers of the CRa gene were developed. METHODS AND RESULTS In this study, through comparing the CRa allele sequences in resistant and susceptible cultivars of Chinese cabbage, we found two insertion and deletion of sequence variations in the fourth exon between resistant and susceptible cultivars. Two functional codominant markers for CRa gene were obtained based on the variations, namely, CRaEX04-1 and CRaEX04-3. The lengths of the extended fragment of CRaEX04-1 marker were 321 bp and 186 bp in resistant and susceptible cultivars, respectively. In contrast, those of CRaEX04-3 were 704 bp and 413 bp, respectively. We verified the genetic stability between the developed markers and CRa gene using 57 Chinese cabbage cultivars with known resistance and two genetic populations. The results showed that the marker identification was completely consistent with the known phenotypes in 57 cultivars. The marker identification results followed the 3:1 of Mendel's first law in the F2 population, and the 1:1 of Mendel's first law in the BC1. CONCLUSIONS CRaEX04-1 and CRaEX04-3 can be used as a practical molecular marker for breeding and germplasm resource creation of clubroot disease-resistant Chinese cabbage.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ning Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jinjian Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Limin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
26
|
Liu X, Strelkov SE, Sun R, Hwang SF, Fredua-Agyeman R, Li F, Zhang S, Li G, Zhang S, Zhang H. Histopathology of the Plasmodiophora brassicae-Chinese Cabbage Interaction in Hosts Carrying Different Sources of Resistance. FRONTIERS IN PLANT SCIENCE 2022; 12:783550. [PMID: 35095958 PMCID: PMC8792839 DOI: 10.3389/fpls.2021.783550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 05/07/2023]
Abstract
Clubroot is a serious soil-borne disease of crucifers caused by the obligate parasite Plasmodiophora brassicae. The genetic basis and histopathology of clubroot resistance in two Chinese cabbage (Brassica rapa ssp. pekinensis) inbred lines Bap055 and Bap246, challenged with pathotype 4 of P. brassicae, was evaluated. The Chinese cabbage cultivar "Juxin" served as a susceptible check. The resistance in Bap055 was found to be controlled by the CRa gene, while resistance in Bap246 fit a model of control by unknown recessive gene. Infection of the roots by P. brassicae was examined by inverted microscopy. Despite their resistance, primary and secondary infection were observed to occur in Bap055 and Bap246. Primary infection was detected at 2 days post-inoculation (DPI) in "Juxin," at 4 DPI in Bap055, and at 6 DPI in Bap246. Infection occurred most quickly on "Juxin," with 60% of the root hairs infected at 10 DPI, followed by Bap055 (31% of the root hairs infected at 12 DPI) and Bap246 (20% of the root hairs infected at 14 DPI). Secondary infection of "Juxin" was first observed at 8 DPI, while in Bap055 and Bap246, secondary infection was first observed at 10 DPI. At 14 DPI, the percentage of cortical infection in "Juxin," Bap055 and Bap246 was 93.3, 20.0, and 11.1%, respectively. Although cortical infection was more widespread in Bap055 than in Bap246, secondary infection in both of these hosts was restricted relative to the susceptible check, and the vascular system remained intact. A large number of binucleate secondary plasmodia were observed in "Juxin" and the vascular system was disrupted at 16 DPI; in Bap055 and Bap246, only a few secondary plasmodia were visible, with no binucleate secondary plasmodia. The defense mechanisms and expression of resistance appears to differ between Chinese cabbage cultivars carrying different sources of resistance.
Collapse
Affiliation(s)
- Xitong Liu
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rifei Sun
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Fei Li
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoliang Li
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Yu F, Zhang Y, Wang J, Chen Q, Karim MM, Gossen BD, Peng G. Identification of Two Major QTLs in Brassica napus Lines With Introgressed Clubroot Resistance From Turnip Cultivar ECD01. FRONTIERS IN PLANT SCIENCE 2022; 12:785989. [PMID: 35095960 PMCID: PMC8790046 DOI: 10.3389/fpls.2021.785989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 05/31/2023]
Abstract
Plasmodiophora brassicae causes clubroot disease in brassica crops worldwide. Brassica rapa, a progenitor of Brassica napus (canola), possesses important sources for resistance to clubroot. A doubled haploid (DH) population consisting of 84 DH lines were developed from a Backcross2 (BC2) plant through an interspecific cross of B. rapa turnip cv. ECD01 (resistant, R) with canola line DH16516 (susceptible, S) and then backcrossed with DH16516 as the recurrent parent. The DH lines and their parental lines were tested for resistance to four major pathotypes (3A, 3D, 3H, and 5X) of P. brassicae identified from canola. The R:S segregation ratio for pathotype 3A was 1:3, and 3:1 for pathotypes 3D, 3H, and 5X. From genotyping by sequencing (GBS), a total of 355.3 M short reads were obtained from the 84 DH lines, ranging from 0.81 to 11.67 M sequences per line. The short reads were aligned into the A-genome of B. napus "Darmor-bzh" version 4.1 with a total of 260 non-redundant single-nucleotide polymorphism (SNP) sites. Two quantitative trait loci (QTLs), Rcr10 ECD01 and Rcr9 ECD01 , were detected for the pathotypes in chromosomes A03 and A08, respectively. Rcr10 ECD01 and Rcr9 ECD01 were responsible for resistance to 3A, 3D, and 3H, while only one QTL, Rcr9 ECD01 , was responsible for resistance to pathotype 5X. The logarithm of the odds (LOD) values, phenotypic variation explained (PVE), additive (Add) values, and confidence interval (CI) from the estimated QTL position varied with QTL, with a range of 5.2-12.2 for LOD, 16.2-43.3% for PVE, 14.3-25.4 for Add, and 1.5-12.0 cM for CI. The presence of the QTLs on the chromosomes was confirmed through the identification of the percentage of polymorphic variants using bulked-segregant analysis. There was one gene encoding a disease resistance protein and 24 genes encoding proteins with function related to plant defense response in the Rcr10 ECD01 target region. In the Rcr9 ECD01 region, two genes encoded disease resistance proteins and 10 genes encoded with defense-related function. The target regions for Rcr10 ECD01 and Rcr9 ECD01 in B. napus were homologous to the 11.0-16.0 Mb interval of chromosome A03 and the 12.0-14.5 Mb interval of A08 in B. rapa "Chiifu" reference genome, respectively.
Collapse
|
28
|
Identification and Fine-Mapping of Clubroot (Plasmodiophora brassicae) Resistant QTL in Brassica rapa. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
European fodder turnips (Brassica rapa ssp. rapifera) were identified as sources of clubroot resistance (CR) and have been widely used in Brassica resistance breeding. An F2 population derived from a cross between a resistant turnip and a susceptible Chinese cabbage was used to determine the inheritance and locating the resistance Quantitative Trait Loci (QTLs). The parents showed to be very resistant/susceptible to the field isolates (pathotype 4) of clubroot from Henan in China. After inoculation, 27 very resistant or susceptible individuals were selected to construct bulks, respectively. Next-generation-sequencing-based Bulk Segregant Analysis Sequencing (BSA-Seq) was used and located resistance QTL on chromosome A03 (3.3–7.5 Mb) and A08 (0.01–6.5 Mb), named Bcr1 and Bcr2, respectively. Furthermore, an F3 population including 180 families derived from F2 individuals was phenotyped and used to verify and narrow candidate regions. Ten and seven Kompetitive Allele-Specific PCR (KASP) markers narrowed the target regions to 4.3–4.78 Mb (A03) and 0.02–0.79 Mb (A08), respectively. The phenotypic variation explained (PVE) of the two QTLs were 33.3% and 13.3% respectively. The two candidate regions contained 99 and 109 genes. In the A03 candidate region, there were three candidate R genes, namely Bra006630, Bra006631 and Bra006632. In the A08 candidate region, there were two candidate R genes, namely Bra030815 and Bra030846.
Collapse
|
29
|
Aigu Y, Daval S, Gazengel K, Marnet N, Lariagon C, Laperche A, Legeai F, Manzanares-Dauleux MJ, Gravot A. Multi-Omic Investigation of Low-Nitrogen Conditional Resistance to Clubroot Reveals Brassica napus Genes Involved in Nitrate Assimilation. FRONTIERS IN PLANT SCIENCE 2022; 13:790563. [PMID: 35222461 PMCID: PMC8874135 DOI: 10.3389/fpls.2022.790563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 05/10/2023]
Abstract
Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.
Collapse
Affiliation(s)
- Yoann Aigu
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | | | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
- *Correspondence: Gravot Antoine,
| |
Collapse
|
30
|
Li Q, Shah N, Zhou X, Wang H, Yu W, Luo J, Liu Y, Li G, Liu C, Zhang C, Chen P. Identification of Micro Ribonucleic Acids and Their Targets in Response to Plasmodiophora brassicae Infection in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:734419. [PMID: 34777417 PMCID: PMC8585624 DOI: 10.3389/fpls.2021.734419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Clubroot disease, which is caused by the soil-borne pathogen Plasmodiophora brassicae War (P. brassicae), is one of the oldest and most destructive diseases of Brassica and cruciferous crops in the world. Plant microRNAs [micro ribonucleic acids (miRNAs)] play important regulatory roles in several developmental processes. Although the role of plant miRNAs in plant-microbe interaction has been extensively studied, there are only few reports on the specific functions of miRNAs in response to P. brassicae. This study investigated the roles of miRNAs and their targets during P. brassicae infection in a pair of Brassica napus near-isogenic lines (NILs), namely clubroot-resistant line 409R and clubroot-susceptible line 409S. Small RNA sequencing (sRNA-seq) and degradome-seq were performed on root samples of 409R and 409S with or without P. brassicae inoculation. sRNA-seq identified a total of 48 conserved and 72 novel miRNAs, among which 18 had a significant differential expression in the root of 409R, while only one miRNA was differentially expressed in the root of 409S after P. brassicae inoculation. The degradome-seq analysis identified 938 miRNA target transcripts, which are transcription factors, enzymes, and proteins involved in multiple biological processes and most significantly enriched in the plant hormone signal transduction pathway. Between 409R and 409S, we found eight different degradation pathways in response to P. brassicae infection, such as those related to fatty acids. By combining published transcriptome data, we identified a total of six antagonistic miRNA-target pairs in 409R that are responsive to P. brassicae infection and involved in pathways associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis. Our results reveal that P. brassicae infection leads to great changes in miRNA pool and target transcripts. More interestingly, these changes are different between 409R and 409S. Clarification of the crosstalk between miRNAs and their targets may shed new light on the possible mechanisms underlying the pathogen resistance against P. brassicae.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiying Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajie Luo
- Agricultural Technology Extension Station of Linxiang, Lincang, China
| | - Yajun Liu
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Genze Li
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. Int J Mol Sci 2021; 22:ijms22179433. [PMID: 34502341 PMCID: PMC8430504 DOI: 10.3390/ijms22179433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.
Collapse
|
32
|
Yuan Y, Qin L, Su H, Yang S, Wei X, Wang Z, Zhao Y, Li L, Liu H, Tian B, Zhang X. Transcriptome and Coexpression Network Analyses Reveal Hub Genes in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis) During Different Stages of Plasmodiophora brassicae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:650252. [PMID: 34447397 PMCID: PMC8383047 DOI: 10.3389/fpls.2021.650252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 05/15/2023]
Abstract
Clubroot, caused by the soil-borne protist Plasmodiophora brassicae, is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete P. brassica resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (ARF2, EDR1, LOX4, NHL3, NHL13, NAC29, two AOP1, EARLI 1, and POD56). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Liuyue Qin
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Honglei Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Variation of Glucosinolate Contents in Clubroot-Resistant and -Susceptible Brassica napus Cultivars in Response to Virulence of Plasmodiophora brassicae. Pathogens 2021; 10:pathogens10050563. [PMID: 34066620 PMCID: PMC8148440 DOI: 10.3390/pathogens10050563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained.
Collapse
|
34
|
Kopec PM, Mikolajczyk K, Jajor E, Perek A, Nowakowska J, Obermeier C, Chawla HS, Korbas M, Bartkowiak-Broda I, Karlowski WM. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. FRONTIERS IN PLANT SCIENCE 2021; 12:639631. [PMID: 33936130 PMCID: PMC8082685 DOI: 10.3389/fpls.2021.639631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.
Collapse
Affiliation(s)
- Piotr M. Kopec
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| | - Katarzyna Mikolajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Ewa Jajor
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Agnieszka Perek
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Christian Obermeier
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marek Korbas
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| |
Collapse
|
35
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
36
|
Zhang Y, Edwards D, Batley J. Comparison and evolutionary analysis of Brassica nucleotide binding site leucine rich repeat (NLR) genes and importance for disease resistance breeding. THE PLANT GENOME 2021; 14:e20060. [PMID: 33179454 DOI: 10.1002/tpg2.20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The Brassica genus contains many agriculturally significant oilseed and vegetable crops, however the crop yield is threatened by a range of fungal and bacterial pathogens. Nucleotide Binding Site Leucine Rich Repeat (NLR) genes play important roles in plant innate immunity. The evolution of NLR genes is influenced by genomic processes and pathogen selection. At the whole genome level, whole genome duplications (WGDs) generate abundant gene copies, most of which are lost during genome fractionation. At sub-genomic levels, some retained copies undergo duplication forming clusters which facilitate rapid evolution through recombination. The number, distribution and genetic variations of the NLR genes vary among Brassica species and within populations suggesting differential selection pressure exerted by pathogen populations throughout the evolutionary history. A study of the evolution of disease resistance genes in agriculturally important plants such as Brassicas helps gain insights into their function and inform the identification of resistance genes for breeding of resistant lines.
Collapse
Affiliation(s)
- Yueqi Zhang
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
37
|
Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, Strelkov SE, Manzanares-Dauleux MJ. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape ( Brassica napus) Are Controlled by Four Main QTLs. FRONTIERS IN PLANT SCIENCE 2020; 11:604527. [PMID: 33391316 PMCID: PMC7773761 DOI: 10.3389/fpls.2020.604527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 06/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.
Collapse
Affiliation(s)
- Andrea Botero-Ramírez
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Solenn Guichard
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Mélanie Jubault
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Antoine Gravot
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria J. Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
38
|
Karim MM, Dakouri A, Zhang Y, Chen Q, Peng G, Strelkov SE, Gossen BD, Yu F. Two Clubroot-Resistance Genes, Rcr3 and Rcr9wa, Mapped in Brassica rapa Using Bulk Segregant RNA Sequencing. Int J Mol Sci 2020; 21:ijms21145033. [PMID: 32708772 PMCID: PMC7404267 DOI: 10.3390/ijms21145033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Genetic resistance is widely used to manage clubroot (Plasmodiophora brassicae) in brassica crops, but new pathotypes have recently been identified on canola (Brassica napus) on the Canadian prairies. Resistance effective against both the most prevalent pathotype (3H, based on the Canadian Clubroot Differential system) and the new pathotypes is needed. BC1 plants of Brassica rapa from a cross of line 96-6990-2 (clubroot resistance originating from turnip cultivar ‘Waaslander’) and a susceptible doubled-haploid line, ACDC, exhibited a 1:1 segregation for resistance against pathotypes 3H and 5X. A resistance gene designated as Rcr3 was mapped initially based on the percentage of polymorphic variants using bulked segregant RNA sequencing (BSR-Seq) and further mapped using Kompetitive Allele Specific PCR. DNA variants were identified by assembling short reads against a reference genome of B. rapa. Rcr3 was mapped into chromosome A08. It was flanked by single nucleotide polymorphisms (SNP) markers (A90_A08_SNP_M12 and M16) between 10.00 and 10.23 Mb, in an interval of 231.6 Kb. There were 32 genes in the Rcr3 interval. Three genes (Bra020951, Bra020974, and Bra020979) were annotated with disease resistance mechanisms, which are potential candidates for Rcr3. Another resistance gene, designated as Rcr9wa, for resistance to pathotype 5X was mapped, with the flanking markers (A90_A08_SNP_M28 and M79) between 10.85 and 11.17 Mb using the SNP sites identified through BSR-Seq for Rcr3. There were 44 genes in the Rcr9wa interval, three of which (Bra020827, Bra020828, Bra020814) were annotated as immune-system-process related genes, which are potential candidates for Rcr9wa.
Collapse
Affiliation(s)
- Md. Masud Karim
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Abdulsalam Dakouri
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Qilin Chen
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Gary Peng
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Bruce D. Gossen
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N OX2, Canada; (M.M.K.); (A.D.); (Y.Z.); (Q.C.); (G.P.); (B.D.G.)
- Correspondence:
| |
Collapse
|
39
|
Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. PLANTS 2020; 9:plants9060726. [PMID: 32526827 PMCID: PMC7355935 DOI: 10.3390/plants9060726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
The genus Brassica contains important vegetable crops, which serve as a source of oil seed, condiments, and forages. However, their production is hampered by various diseases such as clubroot and Fusarium wilt, especially in Brassica vegetables. Soil-borne diseases are difficult to manage by traditional methods. Host resistance is an important tool for minimizing disease and many types of resistance (R) genes have been identified. More than 20 major clubroot (CR) disease-related loci have been identified in Brassica vegetables and several CR-resistant genes have been isolated by map-based cloning. Fusarium wilt resistant genes in Brassica vegetables have also been isolated. These isolated R genes encode the toll-interleukin-1 receptor/nucleotide-binding site/leucine-rice-repeat (TIR-NBS-LRR) protein. DNA markers that are linked with disease resistance allele have been successfully applied to improve disease resistance through marker-assisted selection (MAS). In this review, we focused on the recent status of identifying clubroot and Fusarium wilt R genes and the feasibility of using MAS for developing disease resistance cultivars in Brassica vegetables.
Collapse
|
40
|
Lv H, Fang Z, Yang L, Zhang Y, Wang Y. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. HORTICULTURE RESEARCH 2020; 7:34. [PMID: 32194970 PMCID: PMC7072071 DOI: 10.1038/s41438-020-0257-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 05/18/2023]
Abstract
Brassica species include many economically important crops that provide nutrition and health-promoting substances to humans worldwide. However, as with all crops, their production is constantly threatened by emerging viral, bacterial, and fungal diseases, whose incidence has increased in recent years. Traditional methods of control are often costly, present limited effectiveness, and cause environmental damage; instead, the ideal approach is to mine and utilize the resistance genes of the Brassica crop hosts themselves. Fortunately, the development of genomics, molecular genetics, and biological techniques enables us to rapidly discover and apply resistance (R) genes. Herein, the R genes identified in Brassica crops are summarized, including their mapping and cloning, possible molecular mechanisms, and application in resistance breeding. Future perspectives concerning how to accurately discover additional R gene resources and efficiently utilize these genes in the genomic era are also discussed.
Collapse
Affiliation(s)
- Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun South Street, Beijing, 100081 China
| |
Collapse
|
41
|
Li L, Long Y, Li H, Wu X. Comparative Transcriptome Analysis Reveals Key Pathways and Hub Genes in Rapeseed During the Early Stage of Plasmodiophora brassicae Infection. Front Genet 2020; 10:1275. [PMID: 32010176 PMCID: PMC6978740 DOI: 10.3389/fgene.2019.01275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 01/28/2023] Open
Abstract
Rapeseed (Brassica napus L., AACC, 2n = 38) is one of the most important oil crops around the world. With intensified rapeseed cultivation, the incidence and severity of clubroot infected by Plasmodiophora brassicae Wor. (P. brassicae) has increased very fast, which seriously impedes the development of rapeseed industry. Therefore, it is very important and timely to investigate the mechanisms and genes regulating clubroot resistance (CR) in rapeseed. In this study, comparative transcriptome analysis was carried out on two rapeseed accessions of R- (resistant) and S- (susceptible) line. Three thousand one hundred seventy-one and 714 differentially expressed genes (DEGs) were detected in the R- and S-line compared with the control groups, respectively. The results indicated that the CR difference between the R- and S-line had already shown during the early stage of P. brassicae infection and the change of gene expression pattern of R-line exhibited a more intense defensive response than that of S-line. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 2,163 relative-DEGs, identified between the R- and S-line, revealed that genes participated in plant hormone signal transduction, fatty acid metabolism, and glucosinolate biosynthesis were involved in regulation of CR. Further, 12 hub genes were identified from all relative-DEGs with the help of weighted gene co-expression network analysis. Haplotype analysis indicated that the natural variations in the coding regions of some hub genes also made contributed to CR. This study not only provides valuable information for CR molecular mechanisms, but also has applied implications for CR breeding in rapeseed.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China
| |
Collapse
|
42
|
Zhu H, Li X, Xi D, Zhai W, Zhang Z, Zhu Y. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS One 2019; 14:e0224927. [PMID: 31805057 PMCID: PMC6894877 DOI: 10.1371/journal.pone.0224927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
The biotrophic protist Plasmodiophora brassicae causes serious damage to Brassicaceae crops grown worldwide. However, the molecular mechanism of the Brassica rapa response remains has not been determined. Long noncoding RNA and mRNA expression profiles in response to Plasmodiophora brassicae infection were investigated using RNA-seq on the Chinese cabbage inbred line C22 infected with P. brassicae. Approximately 5,193 mRNAs were significantly differentially expressed, among which 1,345 were upregulated and 3,848 were downregulated. The GO enrichment analysis shows that most of these mRNAs are related to the defense response. Meanwhile, 114 significantly differentially expressed lncRNAs were identified, including 31 upregulated and 83 downregulated. Furthermore, a total of 2,344 interaction relationships were detected between 1,725 mRNAs and 103 lncRNAs with a correlation coefficient greater than 0.8. We also found 15 P. brassicaerelated mRNAs and 16 lncRNA interactions within the correlation network. The functional annotation showed that 15 mRNAs belong to defense response proteins (66.67%), protein phosphorylation (13.33%), root hair cell differentiation (13.33%) and regulation of salicylic acid biosynthetic process (6.67%). KEGG annotation showed that the vast majority of these genes are involved in the biosynthesis of secondary metabolism pathways and plant-pathogen interactions. These results provide a new perspective on lncRNA-mRNA network function and help to elucidate the molecular mechanism of P. brassicae infection.
Collapse
Affiliation(s)
- Hongfang Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Xiaofeng Li
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Dandan Xi
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Wen Zhai
- East China University of Technology, Nanchang, China
| | - Zhaohui Zhang
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
| | - Yuying Zhu
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
43
|
Chang A, Lamara M, Wei Y, Hu H, Parkin IAP, Gossen BD, Peng G, Yu F. Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC PLANT BIOLOGY 2019; 19:224. [PMID: 31142280 PMCID: PMC6542104 DOI: 10.1186/s12870-019-1844-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Clubroot, caused by Plasmodiophora brassicae Woronin, is a very important disease of Brassica species. Management of clubroot relies heavily on genetic resistance. In a cross of Brassica nigra lines PI 219576 (highly resistant, R) × CR2748 (highly susceptible, S) to clubroot, all F1 plants were resistant to clubroot. There was a 1:1 ratio of R:S in the BC1 and 3R:1S in the F2, which indicated that a single dominant gene controlled clubroot resistance in PI 219576. This gene was designated Rcr6. Mapping of Rcr6 was performed using genome sequencing information from A-genome of B. rapa and B-genome of B. nigra though bulked segregant RNA sequencing (BSR-Seq) and further mapping with Kompetitive Allele Specific PCR (KASP) analysis. RESULTS Reads of R and S bulks from BSR-Seq were initially aligned onto B. rapa (A-genome; B. nigra has the B-genome) where Rcr6 was associated with chromosome A08. KASP analysis showed that Rcr6 was flanked by SNP markers homologous to the region of 14.8-15.4 Mb of chromosome A08. There were 190 genes annotated in this region, with five genes (Bra010552, Bra010588, Bra010589, Bra010590 and Bra010663) identified as encoding the toll-interleukin-1 receptor / nucleotide-binding site / leucine-rich-repeat (TIR-NBS-LRR; TNL) class of proteins. The reads from BSR-Seq were then aligned into a draft B-genome of B. nigra, where Rcr6 was mapped on chromosome B3. KASP analysis indicated that Rcr6 was located on chromosome B3 in a 0.5 Mb region from 6.1-6.6 Mb. Only one TNL gene homologous to the B. rapa gene Bra010663 was identified in the target region. This gene is a likely candidate for Rcr6. Subsequent analysis of the Rcr6 equivalent region based on a published B. nigra genome was performed. This gene is located into chromosome B7 of the published B-genome, homologous to BniB015819. CONCLUSION Rcr6 was the first gene identified and mapped in the B-genome of Brassica species. It resides in a genomic region homologous to chromosome A08 of A-genome. Based on this finding, it could possibly integrate into A08 of B. napus using marker assisted selection with SNP markers tightly linked to Rcr6 developed in this study.
Collapse
Affiliation(s)
- Adrian Chang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Mebarek Lamara
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 Canada
| | - Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Isobel A. P. Parkin
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Bruce D. Gossen
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Gary Peng
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0X2 Canada
| |
Collapse
|
44
|
Li L, Long Y, Li H, Wu X. Comparative Transcriptome Analysis Reveals Key Pathways and Hub Genes in Rapeseed During the Early Stage of Plasmodiophora brassicae Infection. Front Genet 2019. [PMID: 32010176 DOI: 10.3389/fgene.2020.01275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Rapeseed (Brassica napus L., AACC, 2n = 38) is one of the most important oil crops around the world. With intensified rapeseed cultivation, the incidence and severity of clubroot infected by Plasmodiophora brassicae Wor. (P. brassicae) has increased very fast, which seriously impedes the development of rapeseed industry. Therefore, it is very important and timely to investigate the mechanisms and genes regulating clubroot resistance (CR) in rapeseed. In this study, comparative transcriptome analysis was carried out on two rapeseed accessions of R- (resistant) and S- (susceptible) line. Three thousand one hundred seventy-one and 714 differentially expressed genes (DEGs) were detected in the R- and S-line compared with the control groups, respectively. The results indicated that the CR difference between the R- and S-line had already shown during the early stage of P. brassicae infection and the change of gene expression pattern of R-line exhibited a more intense defensive response than that of S-line. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 2,163 relative-DEGs, identified between the R- and S-line, revealed that genes participated in plant hormone signal transduction, fatty acid metabolism, and glucosinolate biosynthesis were involved in regulation of CR. Further, 12 hub genes were identified from all relative-DEGs with the help of weighted gene co-expression network analysis. Haplotype analysis indicated that the natural variations in the coding regions of some hub genes also made contributed to CR. This study not only provides valuable information for CR molecular mechanisms, but also has applied implications for CR breeding in rapeseed.
Collapse
Affiliation(s)
- Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China
| | - Ying Long
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China
| |
Collapse
|
45
|
Dakouri A, Zhang X, Peng G, Falk KC, Gossen BD, Strelkov SE, Yu F. Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Sci Rep 2018; 8:17657. [PMID: 30518770 PMCID: PMC6281628 DOI: 10.1038/s41598-018-36187-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/10/2018] [Indexed: 12/22/2022] Open
Abstract
Two cabbage (Brassica oleracea) cultivars 'Tekila' and 'Kilaherb' were identified as resistant to several pathotypes of Plasmodiophora brassicae. In this study, we identified a clubroot resistance gene (Rcr7) in 'Tekila' for resistance to pathotype 3 of P. brassicae from a segregating population derived from 'Tekila' crossed with the susceptible line T010000DH3. Genetic mapping was performed by identifying the percentage of polymorphic variants (PPV), a new method proposed in this study, through bulked segregant RNA sequencing. Chromosome C7 carried the highest PPV (42%) compared to the 30-34% in the remaining chromosomes. A peak with PPV (56-73%) was found within the physical interval 41-44 Mb, which indicated that Rcr7 might be located in this region. Kompetitive Allele-Specific PCR was used to confirm the association of Rcr7 with SNPs in the region. Rcr7 was flanked by two SNP markers and co-segregated with three SNP markers in the segregating population of 465 plants. Seven genes encoding TIR-NBS-LRR disease resistance proteins were identified in the target region, but only two genes, Bo7g108760 and Bo7g109000, were expressed. Resistance to pathotype 5X was also mapped to the same region as Rcr7. B. oleracea lines including 'Kilaherb' were tested with five SNP markers for Rcr7 and for resistance to pathotype 3; 11 of 25 lines were resistant, but 'Kilaherb' was the only line that carried the SNP alleles associated with Rcr7. The presence of Rcr7 in 'Kilaherb' for resistance to both pathotypes 3 and 5X was confirmed through linkage analysis.
Collapse
Affiliation(s)
- Abdulsalam Dakouri
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Xingguo Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
- The college of Agronomy, Henan Agricultural University, Nanyang, China
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Kevin C Falk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada.
| |
Collapse
|
46
|
Hirani AH, Gao F, Liu J, Fu G, Wu C, McVetty PBE, Duncan RW, Li G. Combinations of Independent Dominant Loci Conferring Clubroot Resistance in All Four Turnip Accessions ( Brassica rapa) From the European Clubroot Differential Set. FRONTIERS IN PLANT SCIENCE 2018; 9:1628. [PMID: 30483286 DOI: 10.3389/fpls.2015.01628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
Clubroot disease is devastating to Brassica crop production when susceptible cultivars are planted in infected fields. European turnips are the most resistant sources and their resistance genes have been introduced into other crops such oilseed rape (Brassica napus L.), Chinese cabbage and other Brassica vegetables. The European clubroot differential (ECD) set contains four turnip accessions (ECD1-4). These ECD turnips exhibited high levels of resistance to clubroot when they were tested under controlled environmental conditions with Canadian field isolates. Gene mapping of the clubroot resistance genes in ECD1-4 were performed and three independent dominant resistance loci were identified. Two resistance loci were mapped on chromosome A03 and the third on chromosome A08. Each ECD turnip accession contained two of these three resistance loci. Some resistance loci were homozygous in ECD accessions while others showed heterozygosity based on the segregation of clubroot resistance in 20 BC1 families derived from ECD1 to 4. Molecular markers were developed linked to each clubroot resistance loci for the resistance gene introgression in different germplasm.
Collapse
Affiliation(s)
- Arvind H Hirani
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Feng Gao
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Liu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Guohua Fu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Chunren Wu
- Monsanto Canada Inc., Winnipeg MB, Canada
| | - Peter B E McVetty
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Genyi Li
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
47
|
Hasan MJ, Rahman H. Resynthesis of Brassica juncea for resistance to Plasmodiophora brassicae pathotype 3. BREEDING SCIENCE 2018; 68:385-391. [PMID: 30100807 PMCID: PMC6081302 DOI: 10.1270/jsbbs.18010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 05/12/2023]
Abstract
The oilseed crop Brassica juncea carries many desirable traits; however, resistance to clubroot disease, caused by Plasmodiophora brassicae, is not available in this species. We are the first to report the clubroot resistant resynthesized B. juncea lines, developed through interspecific crosses between a clubroot resistant B. rapa ssp. rapifera and two susceptible B. nigra lines, and the stability of the resistance in self-pollinated generations. The interspecific nature of the resynthesized B. juncea plants was confirmed by using A- and B-genome specific SSR markers, and flow cytometric analysis of nuclear DNA content. Self-pollinated progeny (S1 and S2) of the resynthesized B. juncea plants were evaluated for resistance to P. brassicae pathotype 3. The S1 and S2 progenies of one of the resynthesized B. juncea lines were resistant to this pathotype. However, resistance was lost in 6 to 13% plants of the S2 progenies derived from the second resynthesized B. juncea line; this apparently resulted from the loss of the genomic region carrying resistance due to meiotic anomalies.
Collapse
|
48
|
Pang W, Fu P, Li X, Zhan Z, Yu S, Piao Z. Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage ( Brassica rapa ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:653. [PMID: 29868100 DOI: 10.3389/fpls.2015.0653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 05/26/2023]
Abstract
The rapid spread of clubroot disease, which is caused by Plasmodiophora brassicae, threatens Brassicaceae crop production worldwide. Breeding plants that have broad-spectrum disease resistance is one of the best ways to prevent clubroot. In the present study, eight Chinese cabbage germplasms were screened using published clubroot-resistant (CR) loci-/gene-linked markers. A CR gene Crr3 potential carrier "85-74" was detected which linked to marker BRSTS61; however, "85-74" shows different responses to local pathogens "LAB-19," "LNND-2," and "LAB-10" from "CR-73" which harbors Crr3. We used a next-generation sequencing-based bulked segregant analysis approach combined with genetic mapping to detect CR genes in an F2 segregant population generated from a cross between the Chinese cabbage inbred lines "85-74" (CR) and "BJN3-1" (clubroot susceptible). The "85-74" line showed resistance to a local pathogen "LAB-19" which was identified as race 4; a genetic analysis revealed that the resistance was conferred by a single dominant gene. The CR gene which we named CRd was mapped to a 60 kb (1 cM) region between markers yau389 and yau376 on chromosome A03. CRd is located upstream of Crr3 which was confirmed based on the physical positions of Crr3 linked markers. The identification of CRd linked markers can be applied to marker-assisted selection in the breeding of new CR cultivars of Chinese cabbage and other Brassica crops.
Collapse
Affiliation(s)
- Wenxing Pang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengyu Fu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Sha Yu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
49
|
Pang W, Fu P, Li X, Zhan Z, Yu S, Piao Z. Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage ( Brassica rapa ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:653. [PMID: 29868100 PMCID: PMC5968122 DOI: 10.3389/fpls.2018.00653] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 05/23/2023]
Abstract
The rapid spread of clubroot disease, which is caused by Plasmodiophora brassicae, threatens Brassicaceae crop production worldwide. Breeding plants that have broad-spectrum disease resistance is one of the best ways to prevent clubroot. In the present study, eight Chinese cabbage germplasms were screened using published clubroot-resistant (CR) loci-/gene-linked markers. A CR gene Crr3 potential carrier "85-74" was detected which linked to marker BRSTS61; however, "85-74" shows different responses to local pathogens "LAB-19," "LNND-2," and "LAB-10" from "CR-73" which harbors Crr3. We used a next-generation sequencing-based bulked segregant analysis approach combined with genetic mapping to detect CR genes in an F2 segregant population generated from a cross between the Chinese cabbage inbred lines "85-74" (CR) and "BJN3-1" (clubroot susceptible). The "85-74" line showed resistance to a local pathogen "LAB-19" which was identified as race 4; a genetic analysis revealed that the resistance was conferred by a single dominant gene. The CR gene which we named CRd was mapped to a 60 kb (1 cM) region between markers yau389 and yau376 on chromosome A03. CRd is located upstream of Crr3 which was confirmed based on the physical positions of Crr3 linked markers. The identification of CRd linked markers can be applied to marker-assisted selection in the breeding of new CR cultivars of Chinese cabbage and other Brassica crops.
Collapse
|
50
|
Liu Y, Xu A, Liang F, Yao X, Wang Y, Liu X, Zhang Y, Dalelhan J, Zhang B, Qin M, Huang Z, Shaolin L. Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. BREEDING SCIENCE 2018; 68:258-267. [PMID: 29875610 PMCID: PMC5982190 DOI: 10.1270/jsbbs.17125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 05/21/2023]
Abstract
Clubroot is an economically important disease affecting plants in the family Cruciferae worldwide. In this study, a collection of 50 Cruciferae accessions was screened using Plasmodiophora brassicae pathotype 4 in China. Eight of these demonstrated resistance, including three Chinese cabbages, two cabbages, one radish, one kale, and one Brassica juncea. The three clubroot-resistant Chinese cabbages (1003, 1007 and 1008) were then used to transfer the clubroot resistance genes to B. napus by distant hybridization combined with embryo rescue. Three methods including morphological identification, cytology identification, and molecular marker-assisted selection were used to determine hybrid authenticity, and 0, 2, and 4 false hybrids were identified by these three methods, respectively. In total, 297 true hybrids were identified. Clubroot resistance markers and artificial inoculation were utilized to determine the source of clubroot resistance in the true hybrids. As a result, two simple sequence repeat (SSR) and two intron polymorphic (IP) markers linked to clubroot resistance genes were identified, the clubroot resistance genes of 1007 and 1008 were mapped to A03. At last, 159 clubroot-resistant hybrids were obtained by clubroot resistance markers and artificial inoculation. These intermediate varieties will be used as the 'bridge material' of clubroot resistance for further B. napus breeding.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Fenghao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Xueqin Yao
- Institute of Horticulture, Shanghai Academy of Agricultural Sciences,
Shanghai, 201106,
China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Xia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Jazira Dalelhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Bingbing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University,
Yangling, Shaanxi, 712100,
China
- Corresponding author (e-mail: )
| | - Lei Shaolin
- Guizhou Rapeseed Institute,
Guiyang, Guizhou, 550018,
China
| |
Collapse
|