1
|
Amato P, Mikhalchenko A, Mitalipov S. The case for germline gene correction: state of the science. Fertil Steril 2025:S0015-0282(25)00253-5. [PMID: 40334730 DOI: 10.1016/j.fertnstert.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Germline gene editing refers to altering the DNA in the reproductive cells (gametes or embryos). Germline gene editing experiments in human embryos have primarily focused on correcting genetic mutations linked to inherited diseases. This technology has the potential to prevent genetic disease before birth and in future generations. Advances in CRISPR-Cas9 and other gene-editing tools have accelerated scientific progress, raising both promise and safety and ethical concerns. A translational pathway for human heritable genome editing will require an approach that integrates scientific validation, ethical oversight, regulatory frameworks, and public engagement.
Collapse
Affiliation(s)
- Paula Amato
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon; Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon.
| | - Aleksei Mikhalchenko
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Shoukhrat Mitalipov
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
2
|
Raza A, Fatima P, Yasmeen B, Rana ZA, Ellakwa DES. From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2259-2273. [PMID: 39404843 DOI: 10.1007/s00210-024-03509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 03/19/2025]
Abstract
The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control.
Collapse
Affiliation(s)
- Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Pakiza Fatima
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bushra Yasmeen
- Department of Wildlife & Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zulqarnain Amjad Rana
- Faculty of Veterinary Science, Khan Bahadar Choudhry Mushtaq Ahmed College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
3
|
Dederer HG. Human health and genetic technology. Trends Biotechnol 2025; 43:522-532. [PMID: 40015249 DOI: 10.1016/j.tibtech.2024.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
The 1975 Asilomar conference contributed to the misperception that recombinant DNA (rDNA) technology is inherently risky to human health and the environment. It thus paved the way toward process-based regulation of genetically modified organisms (GMOs), such as in the EU. Initially, this regulatory approach obstructed technological uses of rDNA related to human health. However, regulators gradually softened the rules applicable to laboratories or industrial facilities. This encouraged R&D and production of pharmaceuticals derived from GMOs. Nevertheless, administering pharmaceuticals containing GMOs to patients may still be confronted with burdensome process-based GMO law on the deliberate release of GMOs into the environment. On the other hand, pharmaceutical law may need to be updated regarding, for example, novel gene therapies or xenotransplantation.
Collapse
|
4
|
Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol 2024; 66:3092-3116. [PMID: 38012525 DOI: 10.1007/s12033-023-00932-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Hazrat-e Rasool General Hospital, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Niyayesh St, Sattar Khan St, Tehran, 1445613131, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Dey A, Mudunuri S, Kiran M. MAGICAL: A multi-class classifier to predict synthetic lethal and viable interactions using protein-protein interaction network. PLoS Comput Biol 2024; 20:e1012336. [PMID: 39186799 DOI: 10.1371/journal.pcbi.1012336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/06/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Synthetic lethality (SL) and synthetic viability (SV) are commonly studied genetic interactions in the targeted therapy approach in cancer. In SL, inhibiting either of the genes does not affect the cancer cell survival, but inhibiting both leads to a lethal phenotype. In SV, inhibiting the vulnerable gene makes the cancer cell sick; inhibiting the partner gene rescues and promotes cell viability. Many low and high-throughput experimental approaches have been employed to identify SLs and SVs, but they are time-consuming and expensive. The computational tools for SL prediction involve statistical and machine-learning approaches. Almost all machine learning tools are binary classifiers and involve only identifying SL pairs. Most importantly, there are limited properties known that best describe and discriminate SL from SV. We developed MAGICAL (Multi-class Approach for Genetic Interaction in Cancer via Algorithm Learning), a multi-class random forest based machine learning model for genetic interaction prediction. Network properties of protein derived from physical protein-protein interactions are used as features to classify SL and SV. The model results in an accuracy of ~80% for the training dataset (CGIdb, BioGRID, and SynLethDB) and performs well on DepMap and other experimentally derived reported datasets. Amongst all the network properties, the shortest path, average neighbor2, average betweenness, average triangle, and adhesion have significant discriminatory power. MAGICAL is the first multi-class model to identify discriminatory features of synthetic lethal and viable interactions. MAGICAL can predict SL and SV interactions with better accuracy and precision than any existing binary classifier.
Collapse
Affiliation(s)
- Anubha Dey
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Mudunuri
- Centre for Bioinformatics Research, SRKR Engineering College, Andhra Pradesh, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
Manero A, Rivera V, Fu Q, Schwartzman JD, Prock-Gibbs H, Shah N, Gandhi D, White E, Crawford KE, Coathup MJ. Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation. Bioengineering (Basel) 2024; 11:695. [PMID: 39061777 PMCID: PMC11274085 DOI: 10.3390/bioengineering11070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
| | - Viviana Rivera
- Limbitless Solutions, University of Central Florida, 12703 Research Parkway, Suite 100, Orlando, FL 32826, USA (V.R.)
| | - Qiushi Fu
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Jonathan D. Schwartzman
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Hannah Prock-Gibbs
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Neel Shah
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Deep Gandhi
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Evan White
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| | - Kaitlyn E. Crawford
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (Q.F.); (K.E.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.D.S.); (H.P.-G.); (N.S.); (D.G.); (E.W.)
| |
Collapse
|
7
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
8
|
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024; 25:129. [PMID: 38844700 DOI: 10.1208/s12249-024-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
9
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
10
|
Bekaert B, Boel A, Rybouchkin A, Cosemans G, Declercq S, Chuva de Sousa Lopes SM, Parrington J, Stoop D, Coucke P, Menten B, Heindryckx B. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. J Assist Reprod Genet 2024; 41:1605-1617. [PMID: 38557805 PMCID: PMC11224219 DOI: 10.1007/s10815-024-03095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Unpredictable genetic modifications and chromosomal aberrations following CRISPR/Cas9 administration hamper the efficacy of germline editing. Repair events triggered by double-strand DNA breaks (DSBs) besides non-homologous end joining and repair template-driven homology-directed repair have been insufficiently investigated in mouse. In this work, we are the first to investigate the precise repair mechanisms triggered by parental-specific DSB induction in mouse for paternal mutational correction in the context of an infertility-related mutation. METHODS We aimed to correct a paternal 22-nucleotide deletion in Plcz1, associated with lack of fertilisation in vitro, by administrating CRISPR/Cas9 components during intracytoplasmic injection of Plcz1-null sperm in wild-type oocytes combined with assisted oocyte activation. Through targeted next-generation sequencing, 77 injected embryos and 26 blastomeres from seven injected embryos were investigated. In addition, low-pass whole genome sequencing was successfully performed on 17 injected embryo samples. RESULTS Repair mechanisms induced by two different CRISPR/Cas9 guide RNA (gRNA) designs were investigated. In 13.73% (7/51; gRNA 1) and 19.05% (4/21; gRNA 2) of the targeted embryos, only the wild-type allele was observed, of which the majority (85.71%; 6/7) showed integrity of the targeted chromosome. Remarkably, for both designs, only in one of these embryos (1/7; gRNA 1 and 1/4; gRNA2) could repair template use be detected. This suggests that alternative repair events have occurred. Next, various genetic events within the same embryo were detected after single-cell analysis of four embryos. CONCLUSION Our results suggest the occurrence of mosaicism and complex repair events after CRISPR/Cas9 DSB induction where chromosomal integrity is predominantly contained.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Rybouchkin
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S Declercq
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - J Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - D Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - P Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Li Z, You L, Hermann A, Bier E. Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier. Nat Commun 2024; 15:2629. [PMID: 38521791 PMCID: PMC10960810 DOI: 10.1038/s41467-024-46479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by a hierarchically regulated network of pathways. Factors influencing the choice of particular repair pathways, however remain poorly characterized. Here we develop an Integrated Classification Pipeline (ICP) to decompose and categorize CRISPR/Cas9 generated mutations on genomic target sites in complex multicellular insects. The ICP outputs graphic rank ordered classifications of mutant alleles to visualize discriminating DSB repair fingerprints generated from different target sites and alternative inheritance patterns of CRISPR components. We uncover highly reproducible lineage-specific mutation fingerprints in individual organisms and a developmental progression wherein Microhomology-Mediated End-Joining (MMEJ) or Insertion events predominate during early rapid mitotic cell cycles, switching to distinct subsets of Non-Homologous End-Joining (NHEJ) alleles, and then to Homology-Directed Repair (HDR)-based gene conversion. These repair signatures enable marker-free tracking of specific mutations in dynamic populations, including NHEJ and HDR events within the same samples, for in-depth analysis of diverse gene editing events.
Collapse
Affiliation(s)
- Zhiqian Li
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lang You
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anita Hermann
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Allemailem KS. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Int J Nanomedicine 2024; 19:1125-1143. [PMID: 38344439 PMCID: PMC10859101 DOI: 10.2147/ijn.s453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and blaKPC that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| |
Collapse
|
13
|
Zhang YR, Yin TL, Zhou LQ. CRISPR/Cas9 technology: applications in oocytes and early embryos. J Transl Med 2023; 21:746. [PMID: 37875936 PMCID: PMC10594749 DOI: 10.1186/s12967-023-04610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Kubikova N, Keefe DL, Wells D, Oktay KH, Feinberg EC. Should we use CRISPR gene editing in human embryos? Fertil Steril 2023; 120:737-744. [PMID: 37656090 DOI: 10.1016/j.fertnstert.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Nada Kubikova
- Jesus College, University of Oxford, Oxford, United Kingdom; Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - David L Keefe
- NYU Grossman School of Medicine, New York, New York; NYU Langone Fertility Center, New York, New York
| | - Dagan Wells
- John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| | - Kutluk H Oktay
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut; Innovation Institute for Fertility Preservation, New York, New York; Innovation Institute for Fertility Preservation, New Haven, Connecticut
| | - Eve C Feinberg
- Division of Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
15
|
Ryu J, Adashi EY, Hennebold JD. The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertil Steril 2023; 120:528-538. [PMID: 36878350 PMCID: PMC10477338 DOI: 10.1016/j.fertnstert.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The advent of directed gene-editing technologies now over 10 years ago ushered in a new era of precision medicine wherein specific disease-causing mutations can be corrected. In parallel with developing new gene-editing platforms, optimizing their efficiency and delivery has been remarkable. With their development, there has been interest in using gene-editing systems for correcting disease mutations in differentiated somatic cells ex vivo or in vivo or for germline gene editing in gametes or 1-cell embryos to potentially limit genetic diseases in the offspring and in future generations. This review details the development and history of the current gene-editing systems and the advantages and challenges in their use for somatic cell and germline gene editing.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Eli Y Adashi
- Department of Medical Science, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
16
|
Bekaert B, Boel A, De Witte L, Vandenberghe W, Popovic M, Stamatiadis P, Cosemans G, Tordeurs L, De Loore AM, Chuva de Sousa Lopes SM, De Sutter P, Stoop D, Coucke P, Menten B, Heindryckx B. Retained chromosomal integrity following CRISPR-Cas9-based mutational correction in human embryos. Mol Ther 2023; 31:2326-2341. [PMID: 37376733 PMCID: PMC10422011 DOI: 10.1016/j.ymthe.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.
Collapse
Affiliation(s)
- Bieke Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lisa De Witte
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Winter Vandenberghe
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Panagiotis Stamatiadis
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Gwenny Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lise Tordeurs
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Athina-Maria De Loore
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Susana Marina Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
18
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|
19
|
Maity S, Mukherjee R, Banerjee S. Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Mol Biotechnol 2023; 65:206-226. [PMID: 35999480 DOI: 10.1007/s12033-022-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
CRISPR genome editing technique has the potential to target cancer cells in a precise manner. The latest advancements have helped to address one of the prominent concerns about this strategy which is the off-target integrations observed with dsDNA and have resulted in more studies being carried out for potentially safer and more targeted gene therapy, so as to make it available for the clinical trials in order to effectively treat cancer. CRISPR screens offer great potential for the high throughput investigation of the gene functionality in various tumors. It extends its capability to identify the tumor growth essential genes, therapeutic resistant genes, and immunotherapeutic responses. CRISPR screens are mostly performed in in vitro models, but latest advancements focus on developing in vivo models to view cancer progression in animal models. It also allows the detection of factors responsible for tumorigenesis. In CRISPR screens key parameters are optimized in order to meet proficient gene targeting efficiencies. It also detects various molecular effectors required for gene regulation in different cancers, essential pathways which modulate cytotoxicity to immunotherapy in cancer cells, important genes which contribute to cancer cell survival in hypoxic states and modulate cancer long non-coding RNAs. The current review focuses on the recent developments in the therapeutic application of CRISPR technology for cancer therapy. Furthermore, the associated challenges and safety concerns along with the various strategies that can be implemented to overcome these drawbacks has been discussed.
Collapse
Affiliation(s)
- Shreyasi Maity
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Rishyani Mukherjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
20
|
Bhattacharya S, Satpati P. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:1817-1837. [PMID: 36687047 PMCID: PMC9850488 DOI: 10.1021/acsomega.2c05583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The CRISPR/Cas9 system is a popular genome-editing tool with immense therapeutic potential. It is a simple two-component system (Cas9 protein and RNA) that recognizes the DNA sequence on the basis of RNA:DNA complementarity, and the Cas9 protein catalyzes the double-stranded break in the DNA. In the past decade, near-atomic resolution structures at various stages of the CRISPR/Cas9 DNA editing pathway have been reported along with numerous experimental and computational studies. Such studies have boosted knowledge of the genome-editing mechanism. Despite such advancements, the application of CRISPR/Cas9 in therapeutics is still limited, primarily due to off-target effects. Several studies aim at engineering high-fidelity Cas9 to minimize the off-target effects. Molecular Dynamics (MD) simulations have been an excellent complement to the experimental studies for investigating the mechanism of CRISPR/Cas9 editing in terms of structure, thermodynamics, and kinetics. MD-based studies have uncovered several important molecular aspects of Cas9, such as nucleotide binding, catalytic mechanism, and off-target effects. In this Review, the contribution of MD simulation to understand the CRISPR/Cas9 mechanism has been discussed, preceded by an overview of the history, mechanism, and structural aspects of the CRISPR/Cas9 system. These studies are important for the rational design of highly specific Cas9 and will also be extremely promising for achieving more accurate genome editing in the future.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
21
|
Madhi ZS, Shallan MA, Almaamuri AM, Alhussainy AA, AL- Salih SSS, Raheem AK, Alwan HJ, Jalil AT. Lipids and lipid derivatives for delivery of the CRISPR/Cas9 system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Huang C, Li Q, Li J. Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:471-500. [PMID: 37724161 PMCID: PMC10388762 DOI: 10.1515/mr-2022-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
Advancements in genome editing enable permanent changes of DNA sequences in a site-specific manner, providing promising approaches for treating human genetic disorders caused by gene mutations. Recently, genome editing has been applied and achieved significant progress in treating inherited genetic disorders that remain incurable by conventional therapy. Here, we present a review of various programmable genome editing systems with their principles, advantages, and limitations. We introduce their recent applications for treating inherited diseases in the clinic, including sickle cell disease (SCD), β-thalassemia, Leber congenital amaurosis (LCA), heterozygous familial hypercholesterolemia (HeFH), etc. We also discuss the paradigm of ex vivo and in vivo editing and highlight the promise of somatic editing and the challenge of germline editing. Finally, we propose future directions in delivery, cutting, and repairing to improve the scope of clinical applications.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Sparrow R. Human Germline Genome Editing: On the Nature of Our Reasons to Genome Edit. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:4-15. [PMID: 33871321 DOI: 10.1080/15265161.2021.1907480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ever since the publication of Derek Parfit's Reasons and Persons, bioethicists have tended to distinguish between two different ways in which reproductive technologies may have implications for the welfare of future persons. Some interventions harm or benefit particular individuals: they are "person affecting." Other interventions determine which individual, of a number of possible individuals, comes into existence: they are "identity affecting" and raise the famous "non-identity problem." For the past several decades, bioethical debate has, for the most part, proceeded on the assumption that direct genetic modification of human embryos would be person affecting. In this paper, I argue that that genome editing is highly unlikely to be person affecting for the foreseeable future and, as a result, will neither benefit nor harm edited individuals.
Collapse
|
24
|
Huang YY, Zhang XY, Zhu P, Ji L. Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications. World J Clin Cases 2022; 10:5934-5945. [PMID: 35949837 PMCID: PMC9254185 DOI: 10.12998/wjcc.v10.i18.5934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins constitute the innate adaptive immune system in several bacteria and archaea. This immune system helps them in resisting the invasion of phages and foreign DNA by providing sequence-specific acquired immunity. Owing to the numerous advantages such as ease of use, low cost, high efficiency, good accuracy, and a diverse range of applications, the CRISPR-Cas system has become the most widely used genome editing technology. Hence, the advent of the CRISPR/Cas technology highlights a tremendous potential in clinical diagnosis and could become a powerful asset for modern medicine. This study reviews the recently reported application platforms for screening, diagnosis, and treatment of different diseases based on CRISPR/Cas systems. The limitations, current challenges, and future prospectus are summarized; this article would be a valuable reference for future genome-editing practices.
Collapse
Affiliation(s)
- Yue-Ying Huang
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Xiao-Yu Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Ping Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
25
|
Ryu J, Statz JP, Chan W, Burch FC, Brigande JV, Kempton B, Porsov EV, Renner L, McGill T, Burwitz BJ, Hanna CB, Neuringer M, Hennebold JD. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque embryos to generate a primate model of Usher syndrome type 1B. Sci Rep 2022; 12:10036. [PMID: 35710827 PMCID: PMC9203743 DOI: 10.1038/s41598-022-13689-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Mutations in the MYO7A gene lead to Usher syndrome type 1B (USH1B), a disease characterized by congenital deafness, vision loss, and balance impairment. To create a nonhuman primate (NHP) USH1B model, CRISPR/Cas9 was used to disrupt MYO7A in rhesus macaque zygotes. The targeting efficiency of Cas9 mRNA and hybridized crRNA-tracrRNA (hyb-gRNA) was compared to Cas9 nuclease (Nuc) protein and synthetic single guide (sg)RNAs. Nuc/sgRNA injection led to higher editing efficiencies relative to mRNA/hyb-gRNAs. Mutations were assessed by preimplantation genetic testing (PGT) and those with the desired mutations were transferred into surrogates. A pregnancy was established from an embryo where 92.1% of the PGT sequencing reads possessed a single G insertion that leads to a premature stop codon. Analysis of single peripheral blood leukocytes from the infant revealed that half the cells possessed the homozygous single base insertion and the remaining cells had the wild-type MYO7A sequence. The infant showed sensitive auditory thresholds beginning at 3 months. Although further optimization is needed, our studies demonstrate that it is feasible to use CRISPR technologies for creating NHP models of human diseases.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - John P Statz
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - William Chan
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Fernanda C Burch
- Assisted Reproductive Technologies Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - John V Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Beth Kempton
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Edward V Porsov
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Trevor McGill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Assisted Reproductive Technologies Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
26
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
27
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
28
|
Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci 2022; 295:120409. [PMID: 35182556 DOI: 10.1016/j.lfs.2022.120409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Various DNA breaks created via programmable CRISPR/Cas9 nuclease activity results in different intracellular DNA break repair pathways. Based on the cellular repair pathways, CRISPR-based gene knock-in methods can be categorized into two major strategies: 1) Homology-independent strategies which are targeted insertion events based on non-homologous end joining, and 2) Homology-dependent strategies which are targeted insertion events based on the homology-directed repair. This review elaborates on various gene knock-in methods in mammalian cells using the CRISPR/Cas9 system and in sync with DNA-break repair pathways. Gene knock-in methods are applied in functional genomics and gene therapy. To compensate or correct genetic defects, different CRISPR-based gene knock-in strategies can be used. Thus, researchers need to make a conscious decision about the most suitable knock-in method. For a successful gene-targeted insertion, some determinant factors should be considered like cell cycle, dominant DNA repair pathway, size of insertions, and donor properties. In this review, different aspects of each gene knock-in strategy are discussed to provide a framework for choosing the most appropriate gene knock-in method in different applications.
Collapse
Affiliation(s)
- Mahere Rezazade Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
29
|
Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022; 181:114087. [PMID: 34942274 PMCID: PMC8844242 DOI: 10.1016/j.addr.2021.114087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, US
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| |
Collapse
|
30
|
Newton MD, Taylor BJ, Cuomo ME, Rueda DS. CRISPR/Cas9 On- and Off-Target Activity Using Correlative Force and Fluorescence Single-Molecule Microscopy. Methods Mol Biol 2022; 2478:349-378. [PMID: 36063327 DOI: 10.1007/978-1-0716-2229-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of CRISPR/Cas9 as an easily programmable endonuclease heralds a new era of genetic manipulation. With this comes the prospect of novel gene therapy approaches, and the potential to cure previously untreatable genetic diseases. However, reports of spurious off-target editing by CRISPR/Cas9 pose a significant hurdle to realizing this potential. A deeper understanding of the factors that affect Cas9 specificity is vital for development of safe and efficient therapeutics. Here, we describe methods for the use of optical tweezers combined with confocal fluorescence microscopy and microfluidics for the analysis of on- and off-target activity of Cas9 activity.
Collapse
Affiliation(s)
- Matthew D Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | | | | | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.
| |
Collapse
|
31
|
Liscum M, Garcia ML. You can't keep a bad idea down: Dark history, death, and potential rebirth of eugenics. Anat Rec (Hoboken) 2021; 305:902-937. [PMID: 34919789 DOI: 10.1002/ar.24849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
"Be careful what you wish for": This adage guides both how this project came to life, and how the topic covered in this review continues to unfold. What began as talks between two friends on shared interests in military history led to a 4-year discussion about how our science curriculum does little to introduce our students to societal and ethical impacts of the science they are taught. What emerged was a curricular idea centered on how "good intentions" of some were developed and twisted by others to result in disastrous consequences of state-sanctioned eugenics. In this article, we take the reader (as we did our students) through the long and soiled history of eugenic thought, from its genesis to the present. Though our focus is on European and American eugenics, we will show how the interfaces and interactions between science and society have evolved over time but have remained ever constant. Four critical 'case studies' will also be employed here for deep, thoughtful exploration on a particular eugenic issue. The goal of the review, as it is with our course, is not to paint humanity with a single evil brush. Instead, our ambition is to introduce our students/readers to the potential for harm through the misapplication and misappropriation of science and scientific technology, and to provide them with the tools to ask the appropriate questions of their scientists, physicians, and politicians.
Collapse
Affiliation(s)
- Mannie Liscum
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
32
|
Liu X, Zhou X, Li G, Huang S, Sun W, Sun Q, Li L, Huang X, Liu J, Wang L. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR J 2021; 4:710-727. [PMID: 34661426 DOI: 10.1089/crispr.2021.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA base editors, comprising nucleotide deaminases and catalytically impaired Cas9 nickase, have been widely used in various organisms for the efficient creation of point mutations, providing researchers with powerful tools in precise genome editing. However, they have been limited by the scope of the editing. The discovery and engineering of various CRISPR-Cas systems, especially SpCas9 variants xCas9, Cas9-NG, and Cas9-SpRY, have diversified the range of targetable DNA sequences and expanded the targeting scope of genomic base editing. To understand the editing properties comprehensively, we conducted an analysis of the editing properties of adenine base editors and cytosine base editors with xCas9, Cas9-NG, and Cas9-SpRY at endogenous sites with NGN protospacer adjacent motifs (PAM). Then, human genetic disease-associated DNA point mutations were installed at a single site or at dual sites with NGH PAM using base editors with SpCas9-NG (ABEmax-NG and Anc-BE4max-NG [BEs-NG]) in cultured human cell lines. Finally, the editing properties of BEs-NG in discarded human tripronuclear embryos were characterized. This study investigated the editing properties of DNA base editors with a relaxed PAM requirement and demonstrated the potential of BEs-NG in human genetic disease-related research and treatment.
Collapse
Affiliation(s)
- Xinyi Liu
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P.R. China; Shanghai, P.R. China.,Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, P.R. China; Shanghai, P.R. China
| | - Xueliang Zhou
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China; Shanghai, P.R. China
| | - Guanglei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China; and Shanghai, P.R. China
| | - Shisheng Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China; and Shanghai, P.R. China
| | - Wenjun Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China; and Shanghai, P.R. China
| | - Qinhu Sun
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, P.R. China
| | - Lei Li
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China; Shanghai, P.R. China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China; and Shanghai, P.R. China
| | - Jianqiao Liu
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China; Shanghai, P.R. China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, P.R. China; Shanghai, P.R. China
| |
Collapse
|
33
|
Howland D, Ellederova Z, Aronin N, Fernau D, Gallagher J, Taylor A, Hennebold J, Weiss AR, Gray-Edwards H, McBride J. Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next. J Huntingtons Dis 2021; 9:201-216. [PMID: 32925082 PMCID: PMC7597371 DOI: 10.3233/jhd-200425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically modified rodent models of Huntington’s disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
Collapse
Affiliation(s)
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Neil Aronin
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Deborah Fernau
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jill Gallagher
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Amanda Taylor
- Diplomate, MedVet, American College of Veterinary Internal Medicine - Neurology, Columbus, OH, USA
| | - Jon Hennebold
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Alison R Weiss
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Heather Gray-Edwards
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jodi McBride
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
34
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
35
|
Abuhammad S, Khabour OF, Alzoubi KH. Researchers views about perceived harms and benefits of gene editing: A study from the MENA region. Heliyon 2021; 7:e06860. [PMID: 33997394 PMCID: PMC8095113 DOI: 10.1016/j.heliyon.2021.e06860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The development of gene editing technologies is very promising for the treatment of genetic diseases. However, gene editing can be also used to enhance the characteristics of healthy individuals. This study aims to determine ethical challenges that may face the constitution of gene editing in the Middle East and North Africa (MENA) region. METHODS An online discussion forum about the ethical challenges of applying gene editing technologies was held. The participants were a group of researchers (n = 28) from the MENA region. RESULTS Most of the participants agreed on the importance of gene editing for the treatment of genetic diseases. However, participants had concerns regarding the use of gene editing to enhance the characteristics of healthy individuals such as athletic abilities and intelligence. Among ethical issues that were raised are justice, harm, beneficence, discrimination, conflict with religion and culture, and lack of regulations. CONCLUSION Several ethical issues were raised for using gene editing technologies based on the perception of biomedical researchers from the MENA region. Therefore, the scientific community and other interested bioethical, social, legal, and governmental parties should be provided with a detailed guide from the scientists in this area for future uses of this technology.
Collapse
Affiliation(s)
- Sawsan Abuhammad
- Dept. of Maternal and Child Health, Jordan University of Science and Technology, Irbid 22110, Jordan,Corresponding author.
| | - Omar F. Khabour
- Dept. of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H. Alzoubi
- Dept. of Clinical Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
36
|
Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc Natl Acad Sci U S A 2021; 118:2004832117. [PMID: 34050011 DOI: 10.1073/pnas.2004832117] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CRISPR-Cas9 genome editing is a promising technique for clinical applications, such as the correction of disease-associated alleles in somatic cells. The use of this approach has also been discussed in the context of heritable editing of the human germ line. However, studies assessing gene correction in early human embryos report low efficiency of mutation repair, high rates of mosaicism, and the possibility of unintended editing outcomes that may have pathologic consequences. We developed computational pipelines to assess single-cell genomics and transcriptomics datasets from OCT4 (POU5F1) CRISPR-Cas9-targeted and control human preimplantation embryos. This allowed us to evaluate on-target mutations that would be missed by more conventional genotyping techniques. We observed loss of heterozygosity in edited cells that spanned regions beyond the POU5F1 on-target locus, as well as segmental loss and gain of chromosome 6, on which the POU5F1 gene is located. Unintended genome editing outcomes were present in ∼16% of the human embryo cells analyzed and spanned 4-20 kb. Our observations are consistent with recent findings indicating complexity at on-target sites following CRISPR-Cas9 genome editing. Our work underscores the importance of further basic research to assess the safety of genome editing techniques in human embryos, which will inform debates about the potential clinical use of this technology.
Collapse
|
37
|
Turocy J, Adashi EY, Egli D. Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell 2021; 184:1561-1574. [PMID: 33740453 DOI: 10.1016/j.cell.2021.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Our genome at conception determines much of our health as an adult. Most human diseases have a heritable component and thus may be preventable through heritable genome editing. Preventing disease from the beginning of life before irreversible damage has occurred is an admirable goal, but the path to fruition remains unclear. Here, we review the significant scientific contributions to the field of human heritable genome editing, the unique ethical challenges that cannot be overlooked, and the hurdles that must be overcome prior to translating these technologies into clinical practice.
Collapse
Affiliation(s)
- Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Eli Y Adashi
- Professor of Medical Science, Brown University, Providence, RI, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| |
Collapse
|
38
|
Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various Aspects of a Gene Editing System-CRISPR-Cas9. Int J Mol Sci 2020; 21:E9604. [PMID: 33339441 PMCID: PMC7767219 DOI: 10.3390/ijms21249604] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR-Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR-Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR-Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR-Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR-Cas9.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Lukasz Krzowski
- Biodefense Laboratory, Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
39
|
Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones. Genes (Basel) 2020; 11:genes11121501. [PMID: 33322084 PMCID: PMC7762975 DOI: 10.3390/genes11121501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.
Collapse
|
40
|
Preimplantation genome editing: CCR5 in China. Emerg Top Life Sci 2020; 3:695-700. [PMID: 32915222 DOI: 10.1042/etls20190114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
Part of the criticism of the one reported case of human preimplantation genome editing (PGE) turned on the inadequacy of the purpose for which it was undertaken (inherent immunity to HIV) and its target (the CCR5 gene). The discussion of CCR5 in this context reveals the different values that inform the idea of acceptable uses of PGE and of the conditions of responsible biomedical innovation among the scientist responsible and his critics. While the use of PGE for any indication remains unacceptable (or, at the very least, premature), neither position offers a satisfactory response to this prospective biotechnology.
Collapse
|
41
|
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: Hypertrophic cardiomyopathy. Pharmacol Res 2020; 160:105176. [DOI: 10.1016/j.phrs.2020.105176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
|
42
|
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. NANO TODAY 2020; 34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Schleidgen S, Dederer HG, Sgodda S, Cravcisin S, Lüneburg L, Cantz T, Heinemann T. Human germline editing in the era of CRISPR-Cas: risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med Ethics 2020; 21:87. [PMID: 32912206 PMCID: PMC7488432 DOI: 10.1186/s12910-020-00487-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) technology may allow for efficient and highly targeted gene editing in single-cell embryos. This possibility brings human germline editing into the focus of ethical and legal debates again. MAIN BODY Against this background, we explore essential ethical and legal questions of interventions into the human germline by means of CRISPR-Cas: How should issues of risk and uncertainty be handled? What responsibilities arise regarding future generations? Under which conditions can germline editing measures be therapeutically legitimized? For this purpose, we refer to a scenario anticipating potential further development in CRISPR-Cas technology implying improved accuracy and exclusion of germline transmission to future generations. We show that, if certain concepts regarding germline editing are clarified, under such conditions a categorical prohibition of one-generation germline editing of single-cell embryos appears not to be ethically or legally justifiable. CONCLUSION These findings are important prerequisites for the international debate on the ethical and legal justification of germline interventions in the human embryo as well as for the harmonization of international legal standards.
Collapse
Affiliation(s)
- Sebastian Schleidgen
- Faculty of Humanities and Social Sciences, Institute of Philosophy, FernUniversität in Hagen, Universitätsstraße 33, 58097 Hagen, Germany
| | - Hans-Georg Dederer
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Susan Sgodda
- Translational Hepatology and Stem Cell Biology, REBIRTH Center for Translational Regenerative Medicine, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Stefan Cravcisin
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Luca Lüneburg
- Faculty of Law, University of Passau, Innstraße 39, 94032 Passau, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH Center for Translational Regenerative Medicine, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Thomas Heinemann
- Faculty of Nursing Science, University of Philosophy and Theology Vallendar, Pallottistraße 3, 56179 Vallendar, Germany
| |
Collapse
|
44
|
Smith CJ, Castanon O, Said K, Volf V, Khoshakhlagh P, Hornick A, Ferreira R, Wu CT, Güell M, Garg S, Ng AHM, Myllykallio H, Church GM. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res 2020; 48:5183-5195. [PMID: 32315033 PMCID: PMC7229841 DOI: 10.1093/nar/gkaa239] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
To extend the frontier of genome editing and enable editing of repetitive elements of mammalian genomes, we made use of a set of dead-Cas9 base editor (dBE) variants that allow editing at tens of thousands of loci per cell by overcoming the cell death associated with DNA double-strand breaks and single-strand breaks. We used a set of gRNAs targeting repetitive elements-ranging in target copy number from about 32 to 161 000 per cell. dBEs enabled survival after large-scale base editing, allowing targeted mutations at up to ∼13 200 and ∼12 200 loci in 293T and human induced pluripotent stem cells (hiPSCs), respectively, three orders of magnitude greater than previously recorded. These dBEs can overcome current on-target mutation and toxicity barriers that prevent cell survival after large-scale genome engineering.
Collapse
Affiliation(s)
- Cory J Smith
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Oscar Castanon
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA.,LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Verena Volf
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Amanda Hornick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Chun-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Marc Güell
- Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Shilpa Garg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA
| | - Alex H M Ng
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| |
Collapse
|
45
|
Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes (Basel) 2020; 11:E976. [PMID: 32842577 PMCID: PMC7565838 DOI: 10.3390/genes11090976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
The development of novel genome editing tools has unlocked new opportunities that were not previously possible in basic and biomedical research. During the last two decades, several new genome editing methods have been developed that can be customized to modify specific regions of the genome. However, in the past couple of years, many newer and more exciting genome editing techniques have been developed that are more efficient, precise, and easier to use. These genome editing tools have helped to improve our understanding of genetic disorders by modeling them in cells and animal models, in addition to correcting the disease-causing mutations. Among the genome editing tools, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has proven to be the most popular one due to its versatility and has been successfully used in a wide variety of laboratory animal models and plants. In this review, we summarize the customizable nucleases currently used for genome editing and their uses beyond the modification of genome. We also discuss the potential future applications of gene editing tools for both basic research and clinical purposes.
Collapse
Affiliation(s)
- Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Felipe Vilella
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), 46010 Valencia, Spain; (F.V.); (C.S.)
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA 02215, USA
| | | | - Carlos Simón
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), 46010 Valencia, Spain; (F.V.); (C.S.)
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA 02215, USA
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 2020; 474:73-81. [DOI: 10.1007/s11010-020-03834-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
47
|
Liu AC, Patel K, Vunikili RD, Johnson KW, Abdu F, Belman SK, Glicksberg BS, Tandale P, Fontanez R, Mathew OK, Kasarskis A, Mukherjee P, Subramanian L, Dudley JT, Shameer K. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform 2020; 21:1182-1195. [PMID: 31190075 PMCID: PMC8179509 DOI: 10.1093/bib/bbz059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Krishna Patel
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Ramya Dhatri Vunikili
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kipp W Johnson
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Fahad Abdu
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Stonybrook University, 100 Nicolls Rd, Stony Brook, NY, USA
| | - Shivani Kamath Belman
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Pratyush Tandale
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- School of Biotechnology and Bioinformatics, D Y Patil University, Navi Mumbai, India
| | - Roberto Fontanez
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
| | | | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
| | | | | | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Khader Shameer
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| |
Collapse
|
48
|
Current trends in gene recovery mediated by the CRISPR-Cas system. Exp Mol Med 2020; 52:1016-1027. [PMID: 32651459 PMCID: PMC8080666 DOI: 10.1038/s12276-020-0466-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas system has undoubtedly revolutionized the genome editing field, enabling targeted gene disruption, regulation, and recovery in a guide RNA-specific manner. In this review, we focus on currently available gene recovery strategies that use CRISPR nucleases, particularly for the treatment of genetic disorders. Through the action of DNA repair mechanisms, CRISPR-mediated DNA cleavage at a genomic target can shift the reading frame to correct abnormal frameshifts, whereas DNA cleavage at two sites, which can induce large deletions or inversions, can correct structural abnormalities in DNA. Homology-mediated or homology-independent gene recovery strategies that require donor DNAs have been developed and widely applied to precisely correct mutated sequences in genes of interest. In contrast to the DNA cleavage-mediated gene correction methods listed above, base-editing tools enable base conversion in the absence of donor DNAs. In addition, CRISPR-associated transposases have been harnessed to generate a targeted knockin, and prime editors have been developed to edit tens of nucleotides in cells. Here, we introduce currently developed gene recovery strategies and discuss the pros and cons of each. The CRISPR-Cas gene editing system, which relies on small RNA molecules to guide a gene-editing enzyme to specific locations on DNA, is being developed as an effective tool for correcting genetic disorders. Researchers in South Korea led by Sangsu Bae at Hanyang University in South Korea, review recent progress towards such “gene recovery” procedures. The possibilities range from correcting mutations at the level of a single base in the base sequence of DNA, to deleting, inverting or inserting large sections of DNA to correct major structural abnormalities. The authors discuss the pros and cons of different procedures, including CRISPR-Cas nucleases, base editors, and prime editors. They expect current laboratory animal investigations will lead to a new era in human genetic medicine, yielding treatments for genetic diseases that cannot currently be treated with drugs.
Collapse
|
49
|
Al-Balas QAE, Dajani R, Al-Delaimy WK. The Ethics of Gene Editing from an Islamic Perspective: A Focus on the Recent Gene Editing of the Chinese Twins. SCIENCE AND ENGINEERING ETHICS 2020; 26:1851-1860. [PMID: 32125604 DOI: 10.1007/s11948-020-00205-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
In light of the development of "CRISPR" technology, new promising advances in therapeutic and preventive approaches have become a reality. However, with it came many ethical challenges. The most recent worldwide condemnation of the first use of CRISPR to genetically modify a human embryo is the latest example of ethically questionable use of this new and emerging field. Monotheistic religions are very conservative about such changes to the human genome and can be considered an interference with God's creation. Moreover, these changes could cause perpetual changes to future generations. The Muslim scholars establish their decisions by addressing five foundations of Islamic law i.e. "maqāṣid al sharı̄`a"; the purposes of the law. These are dın̄ (religion), nafs (life), nasl (progeny), `aql (intellect) and māl (wealth). To achieve this, the five principles should all be met before approval of an experiment like the Chinese embryo modifications; Qaṣd (intention) which is achieved in this case as it aims to protect the embryo from HIV. Yaqın̄ (certainty) and Ḍarar (injury) were not satisfied as they require strong scientific certainty of the procedures, and evidence of safety. Ḍarūra (necessity) by which the alternatives being compared; in this case more established and proven safe alternatives to protect the HIV transmission from the father are available, so this principle is not met. The final principle is `Urf (custom), by which the social context of using any contemporary technology should be taken in consideration, and clearly this was not achieved. Collectively, germline changes are rejected from an Islamic perspective until the five principles are fulfilled. In the Chinese Twins gene editing case, there was clearly no justification or support for it according to the Muslim Jurisprudence laws. These laws and approaches can serve as an ethical checklist for such controversial research, especially in early stages of the research.
Collapse
Affiliation(s)
- Qosay A E Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Rana Dajani
- Biology Department, Hashemite University, Zarqa, 13115, Jordan
| | - Wael K Al-Delaimy
- University of California San Diego, 9500 Gilman Dr. MC 0628, La Jolla, CA, 92093 0628, USA
| |
Collapse
|
50
|
Zhou Q, Zhang Y, Zou Y, Yin T, Yang J. Human embryo gene editing: God's scalpel or Pandora's box? Brief Funct Genomics 2020; 19:154-163. [PMID: 32101273 DOI: 10.1093/bfgp/elz025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Gene editing refers to the site-specific modification of the genome, which mainly focuses on basic research, model organism construction and treatment and prevention of disease. Since the first application of CRISPR/Cas9 on the human embryo genome in 2015, the controversy over embryo gene editing (abbreviated as EGE in the following text) has never stopped. At present, the main contradictions focus on (1) ideal application prospects and immature technologies; (2) scientific progress and ethical supervision; and (3) definition of reasonable application scope. In fact, whether the EGE is 'God's scalpel' or 'Pandora's box' depends on the maturity of the technology and ethical supervision. This non-systematic review included English articles in NCBI, technical documents from the Human Fertilization and Embryology Authority as well as reports in the media, which performed from 1980 to 2018 with the following search terms: 'gene editing, human embryo, sequence-specific nuclease (SSN) (CRISPR/Cas, TALENT, ZFN), ethical consideration, gene therapy.' Based on the research status of EGE, this paper summarizes the technical defects and ethical controversies, enumerates the optimization measures and looks forward to the application prospect, aimed at providing some suggestions for the development trend. We should regard the research and development of EGE optimistically, improve and innovate the technology boldly and apply its clinical practice carefully.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhang
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Yujie Zou
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Tailang Yin
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Jing Yang
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|