1
|
Jiang B, Yao Y, Li J, Zhang J, Sun Y, He S. Structures and genetic information of control region in mitogenomes of Odonata. Mitochondrial DNA B Resour 2024; 9:1081-1092. [PMID: 39161787 PMCID: PMC11332297 DOI: 10.1080/23802359.2024.2389920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
Mitogenome data of Odonata is accumulating and widely used in phylogenetic analysis. However, noncoding regions, especially control region, were usually omitted from the phylogenetic reconstruction. In an effort to uncover the phylogenetic insights offered by the control region, we have amassed 65 Odonata mitogenomes and conducted an examination of their control regions. Our analysis discovered that species belonging to Anisoptera and Anisozygoptera exhibited a stem-loop structure, which was formed by a conserved polyC-polyG stretch located near the rrns gene (encoding 12S rRNA). Conversely, the polyC-polyG region was not a conserved fragment in Zygoptera. The length and number of repetitions within the control region were identified as the primary determinants of its overall length. Further, sibling species within Odonata, particularly those in the genus Euphaea, displayed similar patterns of repetition in their control region. Collectively, our research delineates the structural variations within the control region of Odonata and suggests the potential utility of this region in elucidating phylogenetic relationships among closely related species.
Collapse
Affiliation(s)
- Bin Jiang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu Yao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jia Li
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi’an, China
| | - Jiang Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shulin He
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Slyusarev GS, Skalon EK, Starunov VV. Evolution of Orthonectida body plan. Evol Dev 2024; 26:e12462. [PMID: 37889073 DOI: 10.1111/ede.12462] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in Rhopalura ophiocomae to 4-6 in Intoshia variabili. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.
Collapse
Affiliation(s)
- George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
| | - Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
| | - Victor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, St-Petersburg, Russia
- Zoological Institute RAS, St-Petersburg, Russia
| |
Collapse
|
3
|
Skalon EK, Starunov VV, Slyusarev GS. RNA-seq analysis of parasitism by Intoshia linei (Orthonectida) reveals protein effectors of defence, communication, feeding and growth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:398-405. [PMID: 38369898 DOI: 10.1002/jez.b.23247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Orthonectida is a group of multicellular endoparasites of a wide range of marine invertebrates. Their parasitic stage is a multinuclear shapeless plasmodium infiltrating host tissues. The development of the following worm-like sexual generation takes place within the cytoplasm of the plasmodium. The existence of the plasmodial stage and the development of a sexual stage within the plasmodium are unique features to Bilateria. However, the molecular mechanisms that maintain this peculiar organism, and hence enable parasitism in orthonectids, are unknown. Here, we present the first-ever RNA-seq analysis of the plasmodium, aimed at the identification and characterization of the plasmodium-specific protein-coding genes and corresponding hypothetical proteins that distinguish the parasitic plasmodium stage from the sexual stage of the orthonectid Intoshia linei Giard, 1877, parasite of nemertean Lineus ruber Müller, 1774. We discovered 119 plasmodium-specific proteins, 82 of which have inferred functions based on known domains. Thirty-five of the detected proteins are orphans, at least part of which may reflect the unique evolutionary adaptations of orthonectids to parasitism. Some of the identified proteins are known effector molecules of other endoparasites suggesting convergence. Our data indicate that the plasmodium-specific proteins might be involved in the plasmodium defense against the host, host-parasite communication, feeding and nutrient uptake, growth within the host, and support of the sexual stage development. These molecular processes in orthonectids have not been described before, and the particular protein effectors remained unknown until now.
Collapse
Affiliation(s)
- Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg University, St. Petersburg, Russia
| |
Collapse
|
4
|
Liao IJY, Lu TM, Chen ME, Luo YJ. Spiralian genomics and the evolution of animal genome architecture. Brief Funct Genomics 2023; 22:498-508. [PMID: 37507111 DOI: 10.1093/bfgp/elad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Recent developments in sequencing technologies have greatly improved our knowledge of phylogenetic relationships and genomic architectures throughout the tree of life. Spiralia, a diverse clade within Protostomia, is essential for understanding the evolutionary history of parasitism, gene conversion, nervous systems and animal body plans. In this review, we focus on the current hypotheses of spiralian phylogeny and investigate the impact of long-read sequencing on the quality of genome assemblies. We examine chromosome-level assemblies to highlight key genomic features that have driven spiralian evolution, including karyotype, synteny and the Hox gene organization. In addition, we show how chromosome rearrangement has influenced spiralian genomic structures. Although spiralian genomes have undergone substantial changes, they exhibit both conserved and lineage-specific features. We recommend increasing sequencing efforts and expanding functional genomics research to deepen insights into spiralian biology.
Collapse
|
5
|
Skalon EK, Starunov VV, Bondarenko NI, Slyusarev GS. Plasmodium structure of Intoshia linei (Orthonectida). J Morphol 2023; 284:e21602. [PMID: 37313769 DOI: 10.1002/jmor.21602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Orthonectids are enigmatic parasitic bilaterians whose exact position on the phylogenetic tree is still uncertain. Despite ongoing debate about their phylogenetic position, the parasitic stage of orthonectids known as "plasmodium" remains underexplored. There is still no consensus on the origin of the plasmodium: whether it is an altered host cell or a parasitic organism that develops in the host extracellular environment. To determine the origin of the orthonectid parasitic stage, we studied in detail the fine structure of the Intoshia linei orthonectid plasmodium using a variety of morphological methods. The orthonectid plasmodium is a shapeless multinucleated organism separated from host tissues by a double membrane envelope. Besides numerous nuclei, its cytoplasm contains organelles typical for other bilaterians, reproductive cells, and maturing sexual specimens. Reproductive cells, as well as developing orthonectid males and females, are covered by an additional membrane. The plasmodium forms protrusions directed to the surface of the host body and used by mature individuals for egress from the host. The obtained results indicate that the orthonectid plasmodium is an extracellular parasite. A possible mechanism for its formation might involve spreading parasitic larva cells across the host tissues with subsequent generation of a cell-within-cell complex. The cytoplasm of the plasmodium originates from the outer cell, which undergoes multiple nuclear divisions without cytokinesis, while the inner cell divides, giving rise to reproductive cells and embryos. The term "plasmodium" should be avoided and the term "orthonectid plasmodium" could be temporarily used instead.
Collapse
Affiliation(s)
- Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| |
Collapse
|
6
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
7
|
Drábková M, Kocot KM, Halanych KM, Oakley TH, Moroz LL, Cannon JT, Kuris A, Garcia-Vedrenne AE, Pankey MS, Ellis EA, Varney R, Štefka J, Zrzavý J. Different phylogenomic methods support monophyly of enigmatic 'Mesozoa' (Dicyemida + Orthonectida, Lophotrochozoa). Proc Biol Sci 2022; 289:20220683. [PMID: 35858055 PMCID: PMC9257288 DOI: 10.1098/rspb.2022.0683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids (Dicyema, Dicyemennea) and two transcriptomes from orthonectids (Rhopalura). Using these and published data, we assembled and analysed contamination-filtered datasets with up to 987 genes. Our results recover Mesozoa monophyletic and as a close relative of Platyhelminthes or Gnathifera. Because of the tendency of the long-branch mesozoans to group with other long-branch taxa in our analyses, we explored the impact of approaches purported to help alleviate long-branch attraction (e.g. taxon removal, coalescent inference, gene targeting). None of these were able to break the association of Orthonectida with Dicyemida in the maximum-likelihood trees. Contrastingly, the Bayesian analysis and site-specific frequency model in maximum-likelihood did not recover a monophyletic Mesozoa (but only when using a specific 50 gene matrix). The classic hypothesis on monophyletic Mesozoa is possibly reborn and should be further tested.
Collapse
Affiliation(s)
- Marie Drábková
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Kevin M. Kocot
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA
| | - Kenneth M. Halanych
- The Centre for Marine Science, University of North Carolina, Wilmington, 57000 Marvin K. Moss Lane, Wilmington, NC 28409, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Leonid L. Moroz
- Department of Neuroscience, and the Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | - Johanna T. Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armand Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ana Elisa Garcia-Vedrenne
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - M. Sabrina Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Emily A. Ellis
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rebecca Varney
- Department of Biological Sciences, The University of Alabama, Campus Box 870344, Tuscaloosa, AL 35487, USA,Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jan Štefka
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic,Laboratory of Molecular Ecology and Evolution, Institute of Parasitology, Biology Centre CAS, České Budějovice 37005, Czech Republic
| | - Jan Zrzavý
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| |
Collapse
|
8
|
Yu J, Liu J, Li C, Wu W, Feng F, Wang Q, Ying X, Qi D, Qi G. Characterization of the complete mitochondrial genome of Otus lettia: exploring the mitochondrial evolution and phylogeny of owls (Strigiformes). Mitochondrial DNA B Resour 2021; 6:3443-3451. [PMID: 34805524 PMCID: PMC8604474 DOI: 10.1080/23802359.2021.1995517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large-scale molecular phylogenetic studies of the avian order Strigiformes have been performed, and numerous mitochondrial genomes have been determined. However, their intergeneric relationships are still controversial, and few comprehensive comparative analyses of mitochondrial genomes have been conducted on Strigiformes. In this study, the mitochondrial genome of Otus lettia was determined and compared with other Strigiformes. The O. lettia mitochondrial genome was 16,951 bp in size. For Strigiformes, atp8 can be used as a suitable molecular marker for population genetic diversity, while cox1 is a candidate barcoding marker for species identification. All protein-coding genes may be under strong purifying selection pressure, and one extra cytosine insertion located in nad3 is common to all owls except Tyto longimembris, T. alba, and Athene noctua. Four different mitochondrial gene arrangement types were found among the Strigiformes mitogenomes, and their evolutionary relationship between each other can be perfectly explained by the tandem duplication and random loss model. The phylogenetic topologies using the mitochondrial genomes showed that target species O. lettia had a closer relationship with O. scops + O. sunia than O. bakkamoena, the genus Glaucidium was paraphyletic, and the Ninox clade was located at the basal position of Strigidae lineage. Our phylogenetic trees also supported the previous recommendations that Sceloglaux albifacies, Ciccaba nigrolineata, and Ketupa flavipes should be transferred to Ninox, Strix, and Bubo, respectively. These findings will be helpful in further unraveling the mitochondrial evolution and phylogeny of Strigiformes.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Jiabin Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Cheng Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Wei Wu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Feifei Feng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Qizhi Wang
- Sichuan Nanshan Forestry Judicial Appraisal Center, Chengdu, China
| | - Xiaofeng Ying
- Sichuan Nanshan Forestry Judicial Appraisal Center, Chengdu, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| |
Collapse
|
9
|
Slyusarev GS, Bondarenko NI, Skalon EK, Rappoport AK, Radchenko D, Starunov VV. The structure of the muscular and nervous systems of the orthonectid Rhopalura litoralis (Orthonectida) or what parasitism can do to an annelid. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Ren L, Zhang X, Li Y, Shang Y, Chen S, Wang S, Qu Y, Cai J, Guo Y. Comparative analysis of mitochondrial genomes among the subfamily Sarcophaginae (Diptera: Sarcophagidae) and phylogenetic implications. Int J Biol Macromol 2020; 161:214-222. [PMID: 32526299 DOI: 10.1016/j.ijbiomac.2020.06.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
The subfamily Sarcophaginae is extremely diverse in morphology, habit and geographical distribution, and usually considered to be of significant ecological, medical, and forensic significance. In the present study, 18 mitochondrial genomes (mitogenomes) of sarcophagid flies were first obtained. The rearrangement and orientation of genes were identical with that of ancestral insects. The degrees of compositional heterogeneity in the datasets were extremely low. Furthermore, 13 protein-coding genes were evolving under purifying selection. The phylogenic relationship of the genus-group taxa Boettcheria + (Sarcophaga + (Peckia + (Ravinia + Oxysarcodexia))) was strongly supported. Four subgenera were recovered as monophyletic (Liopygia, Liosarcophaga, Pierretia, Heteronychia) in addition to Parasarcophaga as polyphyletic. The sister-relationships between S. dux and S. aegyptiaca, S. pingi and S. kawayuensis were recovered, respectively. Moreover, the molecular phylogenetic relationships among the subgenera Helicophagella, Kozlovea, Kramerea, Pandelleisca, Phallocheira, Pseudothyrsocnema, Sinonipponia and Seniorwhitea were rarely put forward prior to this study. This study provides insight into the population genetics, molecular biology, and phylogeny for the subfamily Sarcophaginae, especially for the subgeneric classification of Sarcophaga. However, compared with the enormous species diversity of flesh flies, the available mitogenomes are still limited for recovering the phylogeny of Sarcophaginae.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shan Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yihong Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Giribet G. Genomes: Miniaturization Taken to Extremes. Curr Biol 2020; 30:R314-R316. [DOI: 10.1016/j.cub.2020.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Slyusarev GS, Starunov VV, Bondarenko AS, Zorina NA, Bondarenko NI. Extreme Genome and Nervous System Streamlining in the Invertebrate Parasite Intoshia variabili. Curr Biol 2020; 30:1292-1298.e3. [PMID: 32084405 DOI: 10.1016/j.cub.2020.01.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022]
Abstract
Orthonectida is a small, rare, and in many aspects enigmatic group of organisms with a unique life cycle and a highly simplified adult free-living stage parasitizing various marine invertebrates [1, 2]. Phylogenetic relationships of Orthonectida have remained controversial for a long time. According to recent data, they are close to Annelida, specifically to Clitellata [3-5]. Several studies have shown that parasitism can not only lead to a dramatic reduction of the body plan and morphological structures but also affect organisms at the genomic level [6, 7]. Comparative studies of parasites and closely related non-parasitic species could clarify the genome reduction degree and evolution of parasitism. Here, we report on the morphology, genome structure, and content of the smallest known Orthonectida species Intoshia variabili, inhabiting the flatworm Graffiellus croceus. This orthonectid with an extremely simplified nervous system demonstrates the smallest known genome (15.3 Mbp) and one of the lowest reported so far gene numbers (5,120 protein-coding genes) among metazoans. The genome is extremely compact, due to a significant reduction of gene number, intergenic regions, intron length, and repetitive elements. The small genome size is probably a result of extreme genome reduction due to their parasitic lifestyle, as well as of simplification and miniaturization of the free-living stages. Our data could provide further insights into the evolution of parasitism and could help to define a minimal bilaterian gene set.
Collapse
Affiliation(s)
- George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; Zoological Institute RAS, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Anton S Bondarenko
- Faculty of Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Natalia A Zorina
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| |
Collapse
|
13
|
|
14
|
Gąsiorowski L, Furu A, Hejnol A. Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males. Front Zool 2019; 16:33. [PMID: 31406495 PMCID: PMC6686465 DOI: 10.1186/s12983-019-0334-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background Monogononta is a large clade of rotifers comprised of diverse morphological forms found in a wide range of ecological habitats. Most monogonont species display cyclical parthenogenesis, where generations of asexually reproducing females are interspaced by mixis events when sexual reproduction occurs between mictic females and dwarf, haploid males. The morphology of monogonont feeding females is relatively well described, however data on male anatomy are very limited. Thus far, male musculature of only two species has been described with confocal laser scanning microscopy (CLSM) and it remains unknown how dwarfism influences the neuroanatomy of males on detailed level. Results Here, we provide a CLSM-based description of the nervous system of both sexes of Epiphanes senta, a freshwater monogonont rotifer. The general nervous system architecture is similar between males and females and shows a similar level of complexity. However, the nervous system in males is more compact and lacks a stomatogastric part. Conclusion Comparison of the neuroanatomy between male and normal-sized feeding females provides a better understanding of the nature of male dwarfism in Monogononta. We propose that dwarfism of monogonont non-feeding males is the result of a specific case of heterochrony, called “proportional dwarfism” as they, due to their inability to feed, retain a juvenile body size, but still develop a complex neural architecture comparable to adult females. Reduction of the stomatogastric nervous system in the males correlates with the loss of the entire digestive tract and associated morphological structures. Electronic supplementary material The online version of this article (10.1186/s12983-019-0334-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Anlaug Furu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| |
Collapse
|
15
|
Zverkov OA, Mikhailov KV, Isaev SV, Rusin LY, Popova OV, Logacheva MD, Penin AA, Moroz LL, Panchin YV, Lyubetsky VA, Aleoshin VV. Dicyemida and Orthonectida: Two Stories of Body Plan Simplification. Front Genet 2019; 10:443. [PMID: 31178892 PMCID: PMC6543705 DOI: 10.3389/fgene.2019.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/29/2019] [Indexed: 01/22/2023] Open
Abstract
Two enigmatic groups of morphologically simple parasites of invertebrates, the Dicyemida (syn. Rhombozoa) and the Orthonectida, since the 19th century have been usually considered as two classes of the phylum Mesozoa. Early molecular evidence suggested their relationship within the Spiralia (=Lophotrochozoa), however, high rates of dicyemid and orthonectid sequence evolution led to contradicting phylogeny reconstructions. Genomic data for orthonectids revealed that they are highly simplified spiralians and possess a reduced set of genes involved in metazoan development and body patterning. Acquiring genomic data for dicyemids, however, remains a challenge due to complex genome rearrangements including chromatin diminution and generation of extrachromosomal circular DNAs, which are reported to occur during the development of somatic cells. We performed genomic sequencing of one species of Dicyema, and obtained transcriptomic data for two Dicyema spp. Homeodomain (homeobox) transcription factors, G-protein-coupled receptors, and many other protein families have undergone a massive reduction in dicyemids compared to other animals. There is also apparent reduction of the bilaterian gene complements encoding components of the neuromuscular systems. We constructed and analyzed a large dataset of predicted orthologous proteins from three species of Dicyema and a set of spiralian animals including the newly sequenced genome of the orthonectid Intoshia linei. Bayesian analyses recovered the orthonectid lineage within the Annelida. In contrast, dicyemids form a separate clade with weak affinity to the Rouphozoa (Platyhelminthes plus Gastrotricha) or (Entoprocta plus Cycliophora) suggesting that the historically proposed Mesozoa is a polyphyletic taxon. Thus, dramatic simplification of body plans in dicyemids and orthonectids, as well as their intricate life cycles that combine metagenesis and heterogony, evolved independently in these two lineages.
Collapse
Affiliation(s)
- Oleg A. Zverkov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V. Isaev
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Y. Rusin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V. Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey A. Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yuri V. Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vassily A. Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Aleoshin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|