1
|
Huang X, Chen X, Vergish S, Ding X, Liang X, Chen S, Koch K, Song WY. Over-expression of XA21 binding protein 3 enhances rice survival under water-deficit stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112454. [PMID: 40024611 DOI: 10.1016/j.plantsci.2025.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
E3 ubiquitin ligases have been positively or negatively implicated in the response to water-deficit stress. Here we demonstrate that rice XA21 binding protein 3 (XB3), the founder member of an E3 ubiquitin ligase gene family, is induced by drought stress and, when over-expressed, enhances survival of rice plants under water deficit. Down-regulation of XB3 increases rice sensitivity to drought. The E3 ubiquitin ligase is localized to both the plasma membrane and the nucleus. XB3 interacts with OsDIS1, a nuclear-localized rice ubiquitin ligase playing a negative role in responding to water-deficit stress. Co-expression of XB3 and OsDIS1 in Nicotiana benthamiana leads to a reduced accumulation of OsDIS1. Our data, together with the discoveries made by others, indicate that some members of the XB3 ubiquitin ligase family are positively involved in regulating the response to water deficit possibly through directly or indirectly destabilizing their substrates (e.g., OsDIS1) in the nucleus. Genes in this family could be used for engineering drought tolerance in major food crops.
Collapse
Affiliation(s)
- Xiaoen Huang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiuhua Chen
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiaodong Ding
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiaofei Liang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Ole Miss, MS 38677, USA
| | - Karen Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Wen-Yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
3
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
4
|
Panda SK, Gupta D, Patel M, Vyver CVD, Koyama H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2071. [PMID: 39124190 PMCID: PMC11313751 DOI: 10.3390/plants13152071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Agriculture and changing environmental conditions are closely related, as weather changes could adversely affect living organisms or regions of crop cultivation. Changing environmental conditions trigger different abiotic stresses, which ultimately cause the accumulation of reactive oxygen species (ROS) in plants. Common ROS production sites are the chloroplast, endoplasmic reticulum, plasma membrane, mitochondria, peroxisomes, etc. The imbalance in ROS production and ROS detoxification in plant cells leads to oxidative damage to biomolecules such as lipids, nucleic acids, and proteins. At low concentrations, ROS initiates signaling events related to development and adaptations to abiotic stress in plants by inducing signal transduction pathways. In plants, a stress signal is perceived by various receptors that induce a signal transduction pathway that activates numerous signaling networks, which disrupt gene expression, impair the diversity of kinase/phosphatase signaling cascades that manage the stress response in the plant, and result in changes in physiological responses under various stresses. ROS production also regulates ABA-dependent and ABA-independent pathways to mitigate drought stress. This review focuses on the common subcellular location of manufacturing, complex signaling mechanisms, and networks of ROS, with an emphasis on cellular effects and enzymatic and non-enzymatic antioxidant scavenging mechanisms of ROS in Poaceae crops against drought stress and how the manipulation of ROS regulates stress tolerance in plants. Understanding ROS systems in plants could help to create innovative strategies to evolve paths of cell protection against the negative effects of excessive ROS in attempts to improve crop productivity in adverse environments.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Mayur Patel
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Christell Van Der Vyver
- Institute of Plant Biotechnology, Stellenbosch University, Private Bag X1, Stellenbosch 7601, South Africa;
| | - Hiroyuki Koyama
- Faculty of Applied Biology, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
6
|
Wang J, Han M, Huang Y, Zhao J, Liu C, Ma Y. Flooding Tolerance of Rice: Regulatory Pathways and Adaptive Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1178. [PMID: 38732393 PMCID: PMC11085783 DOI: 10.3390/plants13091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Rice is a major food crop for more than half of the world's population, while its production is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to oxygen deficiency, which is a major problem for submerged plants. Over the past three decades, significant progress has been made in understanding rice adaptation and molecular regulatory mechanisms in response to flooding. At the seed germination and seedling establishment stages, the CIPK15-SnRK1A-MYBS1 signaling cascade plays a central role in determining rice submergence tolerance. However, from seedlings to mature plants for harvesting, SUB1A- and SK1/SK2-regulated pathways represent two principal and opposite regulatory mechanisms in rice. In addition, phytohormones, especially gibberellins, induce adaptive responses to flooding throughout the rice growth period. This review summarizes the significant adaptive traits observed in flooded rice varieties and updates the molecular genetics and mechanisms of submergence tolerance in rice.
Collapse
Affiliation(s)
- Jing Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Mingzhen Han
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
7
|
Zhu XG, Hutang GR, Gao LZ. Ancient Duplication and Lineage-Specific Transposition Determine Evolutionary Trajectory of ERF Subfamily across Angiosperms. Int J Mol Sci 2024; 25:3941. [PMID: 38612750 PMCID: PMC11011629 DOI: 10.3390/ijms25073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.
Collapse
Affiliation(s)
- Xun-Ge Zhu
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Ran Hutang
- Institute of Forest Industry, Yunnan Academy of Forestry and Grassland Science, Kunming 650201, China;
| | - Li-Zhi Gao
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Das D, Chowdhury N, Sharma M, Suma R, Saikia B, Velmurugan N, Chikkaputtaiah C. Screening for brown-spot disease and drought stress response and identification of dual-stress responsive genes in rice cultivars of Northeast India. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:647-663. [PMID: 38737323 PMCID: PMC11087401 DOI: 10.1007/s12298-024-01447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Rice cultivation in Northeast India (NEI) primarily relies on rainfed conditions, making it susceptible to severe drought spells that promote the onset of brown spot disease (BSD) caused by Bipolaris oryzae. This study investigates the response of prevalent rice cultivars of NEI to the combined stress of drought and B. oryzae infection. Morphological, physiological, biochemical, and molecular changes were recorded post-stress imposition. Qualitative assessment of reactive oxygen species through DAB (3,3-diaminobenzidine) assay confirmed the elicitation of plant defense responses. Based on drought scoring system and biochemical analyses, the cultivars were categorized into susceptible (Shasharang and Bahadur), moderately susceptible (Gitesh and Ranjit), and moderately tolerant (Kapilee and Mahsuri) groups. Antioxidant enzyme accumulation (catalase, guaiacol peroxidase) and osmolyte (proline) levels increased in all stressed plants, with drought-tolerant cultivars exhibiting higher enzyme activities, indicating stress mitigation efforts. Nevertheless, electrolyte leakage and lipid peroxidation rates increased in all stressed conditions, though variations were observed among stress types. Based on findings from a previous transcriptomic study, a total of nine genes were chosen for quantitative real-time PCR analysis. Among these, OsEBP89 appeared as a potential negative regulatory gene, demonstrating substantial upregulation in the susceptible cultivars at both 48 and 72 h post-treatment (hpt). This finding suggests that OsEBP89 may play a role in conferring drought-induced susceptibility to BSD in the rice cultivars being investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01447-4.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Remya Suma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
9
|
Yuan H, Zheng Z, Bao Y, Zhao X, Lv J, Tang C, Wang N, Liang Z, Li H, Xiang J, Qian Y, Shi Y. Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. Int J Mol Sci 2024; 25:2177. [PMID: 38396854 PMCID: PMC10889564 DOI: 10.3390/ijms25042177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In direct seeding, hypoxia is a major stress faced by rice plants. Therefore, dissecting the response mechanism of rice to hypoxia stress and the molecular regulatory network is critical to the development of hypoxia-tolerant rice varieties and direct seeding of rice. This review summarizes the morphological, physiological, and ecological changes in rice under hypoxia stress, the discovery of hypoxia-tolerant and germination-related genes/QTLs, and the latest research on candidate genes, and explores the linkage of hypoxia tolerance genes and their distribution in indica and japonica rice through population variance analysis and haplotype network analysis. Among the candidate genes, OsMAP1 is a typical gene located on the MAPK cascade reaction for indica-japonica divergence; MHZ6 is involved in both the MAPK signaling and phytohormone transduction pathway. MHZ6 has three major haplotypes and one rare haplotype, with Hap3 being dominated by indica rice varieties, and promotes internode elongation in deep-water rice by activating the SD1 gene. OsAmy3D and Adh1 have similar indica-japonica varietal differentiation, and are mainly present in indica varieties. There are three high-frequency haplotypes of OsTPP7, namely Hap1 (n = 1109), Hap2 (n = 1349), and Hap3 (n = 217); Hap2 is more frequent in japonica, and the genetic background of OsTPP7 was derived from the japonica rice subpopulation. Further artificial selection, natural domestication, and other means to identify more resistance mechanisms of this gene may facilitate future research to breed superior rice cultivars. Finally, this study discusses the application of rice hypoxia-tolerant germplasm in future breeding research.
Collapse
Affiliation(s)
- Hongyan Yuan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhenzhen Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaling Bao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jiaqi Lv
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Chenghang Tang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Nansheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhaojie Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Hua Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jun Xiang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| |
Collapse
|
10
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
11
|
Cai X, Chen Y, Wang Y, Shen Y, Yang J, Jia B, Sun X, Sun M. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. PLANT CELL REPORTS 2023; 42:2011-2022. [PMID: 37812280 DOI: 10.1007/s00299-023-03079-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE OsERF096 negatively regulates rice cold tolerance and mediates IAA biosynthesis and signaling under cold stress. The APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors play important roles in regulating plant tolerance to abiotic stress. OsERF096 was previously identified as a direct target of miR1320, and was suggested to negatively regulate rice cold tolerance. In this study, we performed RNA-sequencing and targeted metabolomics assays to reveal the regulatory roles of OsERF096 in cold stress response. GO and KEGG analysis of differentially expressed genes showed that the starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly enriched. Quantification analysis confirmed a significant difference in sugar contents among WT and OsERF096 transgenic lines under cold treatment. Targeted metabolomics analysis uncovered that IAA accumulation and signaling were modified by OsERF096 in response to cold stress. Expectedly, qRT-PCR assays confirmed significant OsIAAs and OsARFs expression changes in OsERF096 transgenic lines. Finally, we identified three targets of OsERF096 based on RNA-seq, qRT-PCR, and dual-LUC assays. In summary, these results revealed the multiple regulatory roles of OsERF096 in cold stress response.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
12
|
Rajonandraina T, Ueda Y, Wissuwa M, Kirk GJD, Rakotoson T, Manwaring H, Andriamananjara A, Razafimbelo T. Magnesium supply alleviates iron toxicity-induced leaf bronzing in rice through exclusion and tissue-tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1213456. [PMID: 37546266 PMCID: PMC10403268 DOI: 10.3389/fpls.2023.1213456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Introduction Iron (Fe) toxicity is a widespread nutritional disorder in lowland rice causing growth retardation and leaf symptoms referred to as leaf bronzing. It is partly caused by an imbalance of nutrients other than Fe and supply of these is known to mitigate the toxicity. But the physiological and molecular mechanisms involved are unknown. Methods We investigated the effect of magnesium (Mg) on Fe toxicity tolerance in a field study in the Central Highlands of Madagascar and in hydroponic experiments with excess Fe (300 mg Fe L-1). An RNA-seq analysis was conducted in a hydroponic experiment to elucidate possible mechanisms underlying Mg effects. Results and discussion Addition of Mg consistently decreased leaf bronzing under both field and hydroponic conditions, whereas potassium (K) addition caused minor effects. Plants treated with Mg tended to have smaller shoot Fe concentrations in the field, suggesting enhanced exclusion at the whole-plant level. However, analysis of multiple genotypes showed that Fe toxicity symptoms were also mitigated without a concomitant decrease of Fe concentration, suggesting that increased Mg supply confers tolerance at the tissue level. The hydroponic experiments also suggested that Mg mitigated leaf bronzing without significantly decreasing Fe concentration or oxidative stress as assessed by the content of malondialdehyde, a biomarker for oxidative stress. An RNA-seq analysis revealed that Mg induced more changes in leaves than roots. Subsequent cis-element analysis suggested that NAC transcription factor binding sites were enriched in genes induced by Fe toxicity in leaves. Addition of Mg caused non-significant enrichment of the same binding sites, suggesting that NAC family proteins may mediate the effect of Mg. This study provides clues for mitigating Fe toxicity-induced leaf bronzing in rice.
Collapse
Affiliation(s)
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- PhenoRob Cluster & Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Guy J. D. Kirk
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Tovohery Rakotoson
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| | - Hanna Manwaring
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Andry Andriamananjara
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| | - Tantely Razafimbelo
- Laboratoire des RadioIsotopes (LRI), Université d’Antananarivo, Antananarivo, Madagascar
| |
Collapse
|
13
|
Naithani S, Mohanty B, Elser J, D’Eustachio P, Jaiswal P. Biocuration of a Transcription Factors Network Involved in Submergence Tolerance during Seed Germination and Coleoptile Elongation in Rice ( Oryza sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:2146. [PMID: 37299125 PMCID: PMC10255735 DOI: 10.3390/plants12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| |
Collapse
|
14
|
Mukhtar H, Wunderlich RF, Muzaffar A, Ansari A, Shipin OV, Cao TND, Lin YP. Soil microbiome feedback to climate change and options for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163412. [PMID: 37059149 DOI: 10.1016/j.scitotenv.2023.163412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Microbes are a critical component of soil ecosystems, performing crucial functions in biogeochemical cycling, carbon sequestration, and plant health. However, it remains uncertain how their community structure, functioning, and resultant nutrient cycling, including net GHG fluxes, would respond to climate change at different scales. Here, we review global and regional climate change effects on soil microbial community structure and functioning, as well as the climate-microbe feedback and plant-microbe interactions. We also synthesize recent studies on climate change impacts on terrestrial nutrient cycles and GHG fluxes across different climate-sensitive ecosystems. It is generally assumed that climate change factors (e.g., elevated CO2 and temperature) will have varying impacts on the microbial community structure (e.g., fungi-to-bacteria ratio) and their contribution toward nutrient turnover, with potential interactions that may either enhance or mitigate each other's effects. Such climate change responses, however, are difficult to generalize, even within an ecosystem, since they are subjected to not only a strong regional influence of current ambient environmental and edaphic conditions, historical exposure to fluctuations, and time horizon but also to methodological choices (e.g., network construction). Finally, the potential of chemical intrusions and emerging tools, such as genetically engineered plants and microbes, as mitigation strategies against global change impacts, particularly for agroecosystems, is presented. In a rapidly evolving field, this review identifies the knowledge gaps complicating assessments and predictions of microbial climate responses and hindering the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | | | | | - Andrianto Ansari
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | - Oleg V Shipin
- School of Environmental Engineering and Management, Asian Institute of Technology, Thailand
| | - Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan.
| |
Collapse
|
15
|
Shi X, Xiong Y, Zhang K, Zhang Y, Zhang J, Zhang L, Xiao Y, Wang GL, Liu W. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. MOLECULAR PLANT 2023; 16:739-755. [PMID: 36872602 DOI: 10.1016/j.molp.2023.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 06/09/2023]
Abstract
During effector-triggered immunity (ETI) against the devastating rice blast pathogen Magnaporthe oryzae, Pi9 functions as an intracellular resistance protein sensing the pathogen-secreted effector AvrPi9 in rice. Importantly, the underlying recognition mechanism(s) between Pi9 and AvrPi9 remains elusive. In this study, we identified a rice ubiquitin-like domain-containing protein (UDP), AVRPI9-INTERACTING PROTEIN 1 (ANIP1), which is directly targeted by AvrPi9 and also binds to Pi9 in plants. Phenotypic analysis of anip1 mutants and plants overexpressing ANIP1 revealed that ANIP1 negatively modulates rice basal defense against M. oryzae. ANIP1 undergoes 26S proteasome-mediated degradation, which can be blocked by both AvrPi9 and Pi9. Moreover, ANIP1 physically associates with the rice WRKY transcription factor OsWRKY62, which also interacts with AvrPi9 and Pi9 in plants. In the absence of Pi9, ANIP1 negatively regulates OsWRKY62 abundance, which can be promoted by AvrPi9. Accordingly, knocking out of OsWRKY62 in a non-Pi9 background decreased immunity against M. oryzae. However, we also observed that OsWRKY62 plays negative roles in defense against a compatible M. oryzae strain in Pi9-harboring rice. Pi9 binds to ANIP1 and OsWRKY62 to form a complex, which may help to keep Pi9 in an inactive state and weaken rice immunity. Furthermore, using competitive binding assays, we showed that AvrPi9 promotes Pi9 dissociation from ANIP1, which could be an important step toward ETI activation. Taken together, our results reveal an immune strategy whereby a UDP-WRKY module, targeted by a fungal effector, modulates rice immunity in distinct ways in the presence or absence of the corresponding resistance protein.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yehui Xiong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yinshan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Chen F, Zhang H, Li H, Lian L, Wei Y, Lin Y, Wang L, He W, Cai Q, Xie H, Zhang H, Zhang J. IPA1 improves drought tolerance by activating SNAC1 in rice. BMC PLANT BIOLOGY 2023; 23:55. [PMID: 36698063 PMCID: PMC9875436 DOI: 10.1186/s12870-023-04062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 05/27/2023]
Abstract
Drought is a major abiotic stress to rice (Oryza sativa) during growth. Ideal Plant Architecture (IPA1), the first cloned gene controlling the ideal plant type in rice, has been reported to function in both ideal rice plant architecture and biotic resistance. Here, we report that the IPA1/OsSPL14, encoding a transcriptional factor, positively regulates drought tolerance in rice. The IPA1 is constitutively expressed and regulated by H2O2, abscisic acid, NaCl and polyethylene glycol 6000 treatments in rice. Furthermore, the IPA1-knockout plants showed much greater accumulation of H2O2 as measured by 3,3'-diaminobenzidine staining in leaves compared with WT plants. Yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays indicated that the IPA1 directly activates the promoter of SNAC1. Expression of SNAC1 is significantly down-regulated in IPA1 knockout plants. Further investigation indicated that the IPA1 plays a positive role in drought-stress tolerance by inducing reactive oxygen species scavenging in rice. Together, these findings indicated that the IPA1 played important roles in drought tolerance by regulating SNAC1, thus activating the antioxidant system in rice.
Collapse
Affiliation(s)
- Feihe Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Haomin Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hong Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hua Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
17
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumar A, Pandey SS, Kumar D, Tripathi BN. Genetic manipulation of photosynthesis to enhance crop productivity under changing environmental conditions. PHOTOSYNTHESIS RESEARCH 2023; 155:1-21. [PMID: 36319887 DOI: 10.1007/s11120-022-00977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Current global agricultural production needs to be increased to feed the unconstrained growing population. The changing climatic condition due to anthropogenic activities also makes the conditions more challenging to meet the required crop productivity in the future. The increase in crop productivity in the post green revolution era most likely became stagnant, or no major enhancement in crop productivity observed. In this review article, we discuss the emerging approaches for the enhancement of crop production along with dealing to the future climate changes like rise in temperature, increase in precipitation and decrease in snow and ice level, etc. At first, we discuss the efforts made for the genetic manipulation of chlorophyll metabolism, antenna engineering, electron transport chain, carbon fixation, and photorespiratory processes to enhance the photosynthesis of plants and to develop tolerance in plants to cope with changing environmental conditions. The application of CRISPR to enhance the crop productivity and develop abiotic stress-tolerant plants to face the current changing climatic conditions is also discussed.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Dhananjay Kumar
- Laboratory of Algal Biotechnology, Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India.
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484886, India
| |
Collapse
|
19
|
Singh J, Sharma D, Brar GS, Sandhu KS, Wani SH, Kashyap R, Kour A, Singh S. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Mol Biol Rep 2022; 49:11443-11467. [PMID: 36002653 DOI: 10.1007/s11033-022-07741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, 110012, New Delhi, India.,Guru Angad Dev Veterinary and Animal Science University, KVK, Barnala, India
| | - Dimple Sharma
- Department of Food Science and Human Nutrition, Michigan State University, 48824, East Lansing, MI, USA
| | - Gagandeep Singh Brar
- Department of Biological Sciences, North Dakota State University, 58102, Fargo, ND, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu, Kashmir, India
| | - Ruchika Kashyap
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, 57007, Brookings, SD, USA
| | - Amardeep Kour
- Regional Research Station, Punjab Agricultural University, 151001, Bathinda, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, 151203, Faridkot, Punjab, India.
| |
Collapse
|
20
|
Molecular Aspects of MicroRNAs and Phytohormonal Signaling in Response to Drought Stress: A Review. Curr Issues Mol Biol 2022; 44:3695-3710. [PMID: 36005149 PMCID: PMC9406886 DOI: 10.3390/cimb44080253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.
Collapse
|
21
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
22
|
Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol 2022; 43:559-574. [PMID: 35606905 DOI: 10.1080/07388551.2022.2042481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In basic and applied sciences, genome editing has become an indispensable tool, especially the versatile and adaptable CRISPR/Cas9 system. Using CRISPR/Cas9 in plants has enabled modifications of many valuable traits, including environmental stress tolerance, an essential aspect when it comes to ensuring food security under climate change pressure. The CRISPR toolbox enables faster and more precise plant breeding by facilitating: multiplex gene editing, gene pyramiding, and de novo domestication. In this paper, we discuss the most recent advances in CRISPR/Cas9 and alternative CRISPR-based systems, along with the technical challenges that remain to be overcome. A revision of the latest proof-of-concept and functional characterization studies has indeed provided more insight into the quantitative traits affecting crop yield and stress tolerance. Additionally, we focus on the applications of CRISPR/Cas9 technology in regard to extremophile plants, due to their significance on: industrial, ecological and economic levels. These still unexplored genetic resources could provide the means to harden our crops against the threat of climate change, thus ensuring food security over the next century.
Collapse
Affiliation(s)
- Mohamed Kouhen
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia.,Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Almería, Spain
| | | | - Chedly Abdelly
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| |
Collapse
|
23
|
ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23020606. [PMID: 35054806 PMCID: PMC8775505 DOI: 10.3390/ijms23020606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.
Collapse
|
24
|
Park SI, Kwon HJ, Cho MH, Song JS, Kim BG, Baek J, Kim SL, Ji H, Kwon TR, Kim KH, Yoon IS. The OsERF115/AP2EREBP110 Transcription Factor Is Involved in the Multiple Stress Tolerance to Heat and Drought in Rice Plants. Int J Mol Sci 2021; 22:ijms22137181. [PMID: 34281241 PMCID: PMC8269390 DOI: 10.3390/ijms22137181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023] Open
Abstract
The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice ERF gene was isolated and functionally characterized. The OsERF115/AP2EREBP110 was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment. The OsERF115/AP2EREBP110 protein targeted to nuclei and suppressed the ABA-induced transcriptional activation of Rab16A promoter in rice protoplasts. Overexpression of OsERF115/AP2EREBP110 enhanced thermotolerance of seeds and vegetative growth stage plants. The OsERF115/AP2EREBP110 overexpressing (OE) plants exhibited higher proline level and increased expression of a proline biosynthesis P5CS1 gene. Phenotyping of water use dynamics of the individual plant indicates that the OsERF115/AP2EREBP110-OE plant exhibited better water saving traits under heat and drought combined stress. Our combined results suggest the potential use of OsERF115/AP2EREBP110 as a candidate gene for genetic engineering approaches to develop heat and drought stress-tolerant crops.
Collapse
Affiliation(s)
- Seong-Im Park
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Hyeok Jin Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Mi Hyeon Cho
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Ji Sun Song
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea;
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Song Lim Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - HyeonSo Ji
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Taek-Ryoun Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - Kyung-Hwan Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (S.-I.P.); (H.J.K.); (M.H.C.); (J.S.S.); (J.B.); (S.L.K.); (H.J.); (T.-R.K.); (K.-H.K.)
- Correspondence:
| |
Collapse
|
25
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
26
|
Rabara RC, Msanne J, Basu S, Ferrer MC, Roychoudhury A. Coping with inclement weather conditions due to high temperature and water deficit in rice: An insight from genetic and biochemical perspectives. PHYSIOLOGIA PLANTARUM 2021; 172:487-504. [PMID: 33179306 DOI: 10.1111/ppl.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Climatic fluctuations, temperature extremes, and water scarcity are becoming increasingly unpredictable with the passage of time. Such environmental atrocities have been the scourge of agriculture over the ages, bringing with them poor harvests and threat of famine. Rice production, owing to its high-water requirement for cultivation, is highly vulnerable to the threat of changing climate, particularly prolonged drought and high temperature, individually or in combination. Amidst all the abiotic stresses, heat and drought are considered as the most important concurrent stressors, largely affecting rice yield and productivity under the current scenario. Such threats heighten the need for new breeding and cultivation strategies in generating abiotic stress-resilient rice varieties with better yield potential. Responses of rice to these stresses can be categorized at the morphological, physiological and biochemical levels. This review examines the physiological and molecular mechanism, in the form of up regulation of several defense machineries of rice varieties to cope with drought stress (DS), high temperature stress (HTS), and their combination (DS-HTS). Genotypic differences among rice varieties in their tolerance ability have also been addressed. The review also appraises research studies conducted in rice regarding various phenotypic traits, genetic loci and response mechanisms to stress conditions to help craft new breeding strategies for improved tolerance to DS and HTS, singly or in combination. The review also encompasses the gene regulatory networks and transcription factors, and their cross-talks in mediating tolerance to such stresses. Understanding the epigenetic regulation, involving DNA methylation and histone modification during such hostile situations, will also play a crucial role in our comprehensive understanding of combinatorial stress responses. Taken together, this review consolidates current research and available information on promising rice cultivars with desirable traits as well as advocates synergistic and complementary approaches in molecular and systems biology to develop new rice breeds that favorably respond to DS-HTS-induced abiotic stress.
Collapse
Affiliation(s)
- Roel C Rabara
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Msanne
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Supratim Basu
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Marilyn C Ferrer
- Genetic Resources Division, Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija, Philippines
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|