1
|
Wang B, Wen R, Mao X, Chen J, Hao X. Unveiling the co-expression network and molecular targets behind rotenone resistance in the Bursaphelenchus xylophilus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117293. [PMID: 39541702 DOI: 10.1016/j.ecoenv.2024.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Bursaphelenchus xylophilus is a pathogenic nematode responsible for pine wilt disease, which can cause the demise of pine trees and discoloration of trunks. As rotenone is an important botanical pesticide, its impact on B. xylophilus was investigated through RNA-seq to understand the response mechanism of nematode. The bioassay results yielded the 12-h LC30 (1.35 mg L-1) and LC50 (2.60 mg L-1) values for rotenone. Differential gene expression analysis identified 172 and 614 differentially expressed genes (DEGs) in B. xylophilus exposed to two different concentrations of rotenone (1.35 and 2.60 mg L-1). To validate these findings, the expression patterns of 10 DEGs were confirmed through RT-qPCR. Additionally, all DEGs were categorized into eight gene expression profiles using STEM. Notably, the gene ontology (GO) processes of "single-organism process," "metabolic process," and "catalytic activity" were prominently enriched in rotenone-treated samples, suggesting a role for metabolic and catalytic pathways in the nematode's response to rotenone stress. KEGG pathways related to "carbon metabolism," "drug metabolism-cytochrome P450," and "metabolism of xenobiotics by cytochrome P450" were similarly enriched, indicating potential mechanisms for detoxification resistance and oxidative stress resistance. The analysis pointed to the pivotal roles of detoxification- and oxidoreduction-related genes, as well as signal transduction-related genes, in enabling B. xylophilus to adapt to rotenone exposure. These insights could markedly enhance our understanding of nematode resistance mechanisms and potentially inform the development of more effective rotenone-based strategies for controlling B. xylophilus.
Collapse
Affiliation(s)
- Buyong Wang
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Rongrong Wen
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Xuenan Mao
- Wageningen University & Research, Wageningen 6700 HB, the Netherlands
| | - Jie Chen
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| | - Xin Hao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
3
|
Yang Z, Zhang H, Jiang Z, Zhang X, Wei S, Wu Y, Gan X, Wang Y, Xie X. Two strains Neocosmosporastercicola (Sordariomycetes, Nectriaceae) with high nematicidal activity, isolated from the cysts of Globodera sp. (Heteroderidae) in China. Biodivers Data J 2023; 11:e100684. [PMID: 38327293 PMCID: PMC10848335 DOI: 10.3897/bdj.11.e100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 02/09/2024] Open
Abstract
Plant-parasitic nematodes (PPNs) are significant pests that result in considerable economic losses in global crop production. Due to the high toxicity of chemical nematicides, there is a need to develop new strategies for nematode control. In this context, nematophagous fungi may offer a viable option for biological control. Two fungal strains (GUCC2212 and GUCC2232) were isolated from cysts of Globodera sp., identified as Neocosmosporastercicola. The fungal filtrates of the strains were evaluated for their nematicidal activity against three species of PPNs: Aphelenchoidesbesseyi, Bursaphelenchusxylophilus and Ditylenchusdestructor. The fermentation filtrates of two strains exhibited substantial toxicity towards the evaluated nematodes, with mortality rates reaching up to 100% within 72 h. Concurrently, N.stercicola also demonstrated predatory and parasitic behavior. The eggs of Globodera sp. were parasitized by the two strains. N.stercicola represents a newly recorded species in China and a novel nematophagous species. In conclusion, the two strains of N.stercicola show promise as biocontrol agents for PPNs management.
Collapse
Affiliation(s)
- Zaifu Yang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, ChinaInstitute of Vegetable Industry Technology Research, Guizhou UniversityGuiyangChina
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Hui Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Zhaochun Jiang
- Guizhou Station of Plant Protection and Quarantine, Guiyang, ChinaGuizhou Station of Plant Protection and QuarantineGuiyangChina
| | - Xinyue Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Shan Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Yan Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiuhai Gan
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, ChinaCenter for Research and Development of Fine Chemicals, Guizhou UniversityGuiyangChina
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Nan J, Qi J, Yang Y, Zhao M, Liang C, He H, Wei C. Population Density and Host Preference of the Japanese Pine Sawyer ( Monochamus alternatus) in the Qinling-Daba Mountains of China. INSECTS 2023; 14:insects14020181. [PMID: 36835750 PMCID: PMC9967673 DOI: 10.3390/insects14020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 05/05/2023]
Abstract
Monochamus alternatus is a serious trunk-boring pest and is the most important and effective vector of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. The pine wilt disease poses a serious threat to forest vegetation and ecological security in the Qinling-Daba Mountains and their surrounding areas. In order to clarify whether the population density of M. alternatus larvae is related to the host preference of M. alternatus adults, we investigated the population density of M. alternatus overwintering larvae and explored the host preference of M. alternatus adults on Pinus tabuliformis, P. armandii, and P. massoniana. The results show that the population density of M. alternatus larvae was significantly higher on P. armandii than those on P. massoniana and P. tabuliformis. The development of M. alternatus larvae was continuous according to the measurements of the head capsule width and the pronotum width. Adults of M. alternatus preferred to oviposit on P. armandii rather than on P. massoniana and P. tabuliformis. Our results indicate that the difference in the population density of M. alternatus larvae between different host plants was due to the oviposition preference of M. alternatus adults. In addition, the instars of M. alternatus larvae could not be accurately determined, because Dyar's law is not suitable for continuously developing individuals. This study could provide theoretical basis for the comprehensive prevention and control of the pine wilt disease in this region and adjacent areas.
Collapse
Affiliation(s)
- Junke Nan
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jingyu Qi
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yuexiang Yang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Mengqin Zhao
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling 712100, China
| | | | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling 712100, China
- Correspondence: (H.H.); (C.W.)
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Correspondence: (H.H.); (C.W.)
| |
Collapse
|
5
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
6
|
Kirino H, Konagaya KI, Shinya R. Novel Functional Analysis for Pathogenic Proteins of Bursaphelenchus xylophilus in Pine Seed Embryos Using a Virus Vector. FRONTIERS IN PLANT SCIENCE 2022; 13:872076. [PMID: 35548316 PMCID: PMC9083003 DOI: 10.3389/fpls.2022.872076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 05/17/2023]
Abstract
Pine wilt disease (PWD), which is caused by the pine wood nematode Bursaphelenchus xylophilus, is among the most serious tree diseases worldwide. PWD is thought to be initiated by sequential excessive hypersensitive responses to B. xylophilus. Previous studies have reported candidate pathogenic molecules inducing hypersensitive responses in pine trees susceptible to B. xylophilus. The functions of some of these molecules have been analyzed in model plants using transient overexpression; however, whether they can induce hypersensitive responses in natural host pines remains unclear due to the lack of a suitable functional analysis method. In this study, we established a novel functional analysis method for susceptible black pine (Pinus thunbergii) seed embryos using transient overexpression by the Apple latent spherical virus vector and investigated five secreted proteins of B. xylophilus causing cell death in tobacco to determine whether they induce hypersensitive responses in pine. We found that three of five molecules induced significantly higher expression in pathogenesis-related genes ( p < 0.05), indicating hypersensitive response in pine seed embryos compared with mock and green fluorescence protein controls. This result suggests that tobacco-based screening may detect false positives. This study is the first to analyze the function of pathogenic candidate molecules of B. xylophilus in natural host pines using exogenous gene expression, which is anticipated to be a powerful tool for investigating the PWD mechanism.
Collapse
Affiliation(s)
- Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ken-ichi Konagaya
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
- *Correspondence: Ryoji Shinya,
| |
Collapse
|
7
|
Zhang X, Zhang H, Jiang Z, Bai Q, Wu S, Wang Y, Li C, Zeng X, Gan X, Xie X, Li Z, Yang Z. A new strain of Volutella citrinella with nematode predation and nematicidal activity, isolated from the cysts of potato cyst nematodes in China. BMC Microbiol 2021; 21:323. [PMID: 34809566 PMCID: PMC8607719 DOI: 10.1186/s12866-021-02385-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant parasitic nematodes (PPNs) are responsible for causing many plant diseases and are extremely difficult to control at present. Currently, due to the negative effects of chemical agents on the environment and human health, the development of new biological pesticides has become an important part of plant nematode control. Nematophagous fungi refers to a class of fungi that kill plant nematodes. Notably, a large number of nematophagous fungi resources remain to be studied. The objective of our study was to use in vitro screening to identify nematophagous fungi and select strains that were highly active against nematodes, providing a primary research for the development and utilization of new nematophagous fungi. RESULTS A new nematophagous fungal strain (GUCC2219) was isolated from cysts of possibly Globodera spp. and Heterodera spp., identified as Volutella citrinella. The hyphae of V. citrinella produced ring structures of variable size and exhibited predatory and nematicidal activity. The hyphal predation rates (in vitro) against three species of nematodes, Aphelenchoides besseyi, Bursaphelenchus xylophilus, and Ditylenchus destructor, averaged 59.45, 33.35, and 50.95%, respectively, while the fermentation broth produced by the fungus exhibited mortality rates of 100, 100, and 55.63%, respectively, after 72 h. CONCLUSION V. citrinella is a new strain with nematophagous properties, which are a novel discovery. At the same time, this is the first report of nematicidal and nematode predation activity in the genus Volutella.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Hui Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhaochun Jiang
- Guizhou Station of Plant Protection and Quarantine, Guiyang, Guizhou, China
| | - Qing Bai
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Shishi Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xiuhai Gan
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhong Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zaifu Yang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Hu LJ, Wu XQ, Ding XL, Ye JR. Comparative transcriptomic analysis of candidate effectors to explore the infection and survival strategy of Bursaphelenchus xylophilus during different interaction stages with pine trees. BMC PLANT BIOLOGY 2021; 21:224. [PMID: 34011295 PMCID: PMC8132355 DOI: 10.1186/s12870-021-02993-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a devastating pathogen of many Pinus species in China. The aim of this study was to understand the interactive molecular mechanism of PWN and its host by comparing differentially expressed genes and candidate effectors from three transcriptomes of B. xylophilus at different infection stages. RESULTS In total, 62, 69 and 46 candidate effectors were identified in three transcriptomes (2.5 h postinfection, 6, 12 and 24 h postinoculation and 6 and 15 d postinfection, respectively). In addition to uncharacterized pioneers, other candidate effectors were involved in the degradation of host tissues, suppression of host defenses, targeting plant signaling pathways, feeding and detoxification, which helped B. xylophilus survive successfully in the host. Seven candidate effectors were identified in both our study and the B. xylophilus transcriptome at 2.5 h postinfection, and one candidate effector was identified in all three transcriptomes. These common candidate effectors were upregulated at infection stages, and one of them suppressed pathogen-associated molecular pattern (PAMP) PsXEG1-triggered cell death in Nicotiana benthamiana. CONCLUSIONS The results indicated that B. xylophilus secreted various candidate effectors, and some of them continued to function throughout all infection stages. These various candidate effectors were important to B. xylophilus infection and survival, and they functioned in different ways (such as breaking down host cell walls, suppressing host defenses, promoting feeding efficiency, promoting detoxification and playing virulence functions). The present results provide valuable resources for in-depth research on the pathogenesis of B. xylophilus from the perspective of effectors.
Collapse
Affiliation(s)
- Long-Jiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiao-Lei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Cardoso JMS, Anjo SI, Manadas B, Silva H, Abrantes I, Nakamura K, Fonseca L. Virulence Biomarkers of Bursaphelenchus xylophilus: A Proteomic Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:822289. [PMID: 35211137 PMCID: PMC8861294 DOI: 10.3389/fpls.2021.822289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 05/19/2023]
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, one of the most serious forest pests worldwide, is considered the causal agent of the pine wilt disease (PWD). The main host species belong to the genus Pinus, and a variation in the susceptibility of several pine species to PWN infection is well-known. It is also recognized that there is variation in the virulence among B. xylophilus isolates. In the present study, we applied a quantitative mass spectrometry-based proteomics approach to perform a deep characterization of proteomic changes across two B. xylophilus isolates with different virulence from different hosts and geographical origins. A total of 1,456 proteins were quantified and compared in the two isolates secretomes, and a total of 2,741 proteins were quantified and compared in the nematode proteomes in pine tree extract and fungus stimuli conditions. From the proteomic analyses, a group of proteins was selected and identified as potential virulence biomarkers and shed light on putative most pathogenic proteins of this plant-parasitic nematode. Proteomic data are available via ProteomeXchange with identifier PXD029377.
Collapse
Affiliation(s)
- Joana M. S. Cardoso
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- *Correspondence: Joana M. S. Cardoso,
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hugo Silva
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Katsunori Nakamura
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Japan
| | - Luís Fonseca
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Shinya R, Kirino H, Morisaka H, Takeuchi-Kaneko Y, Futai K, Ueda M. Comparative Secretome and Functional Analyses Reveal Glycoside Hydrolase Family 30 and Cysteine Peptidase as Virulence Determinants in the Pinewood Nematode Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2021; 12:640459. [PMID: 33763098 PMCID: PMC7982738 DOI: 10.3389/fpls.2021.640459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is one of the world's most serious tree diseases. Although the B. xylophilus whole-genome sequence and comprehensive secretome profile have been determined over the past decade, it remains unclear what molecules are critical in pine wilt disease and govern B. xylophilus virulence in host pine trees. Here, a comparative secretome analysis among four isolates of B. xylophilus with distinct virulence levels was performed to identify virulence determinants. The four candidate virulence determinants of B. xylophilus highly secreted in virulent isolates included lipase (Bx-lip1), glycoside hydrolase family 30 (Bx-GH30), and two C1A family cysteine peptidases (Bx-CAT1 and Bx-CAT2). To validate the quantitative differences in the four potential virulence determinants among virulence groups at the protein level, we used real-time reverse-transcription polymerase chain reaction analysis to investigate these determinants at the transcript level at three time points: pre-inoculation, 3 days after inoculation (dai), and 7 dai into pine seedlings. The transcript levels of Bx-CAT1, Bx-CAT2, and Bx-GH30 were significantly higher in virulent isolates than in avirulent isolates at pre-inoculation and 3 dai. A subsequent leaf-disk assay based on transient overexpression in Nicotiana benthamiana revealed that the GH30 candidate virulent factor caused cell death in the plant. Furthermore, we demonstrated that Bx-CAT2 was involved in nutrient uptake for fungal feeding via soaking-mediated RNA interference. These findings indicate that the secreted proteins Bx-GH30 and Bx-CAT2 contribute to B. xylophilus virulence in host pine trees and may be involved in pine wilt disease.
Collapse
Affiliation(s)
- Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
- *Correspondence: Ryoji Shinya,
| | - Haru Kirino
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | | | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Wielkopolan B, Jakubowska M, Obrępalska-Stęplowska A. Beetles as Plant Pathogen Vectors. FRONTIERS IN PLANT SCIENCE 2021; 12:748093. [PMID: 34721475 PMCID: PMC8549695 DOI: 10.3389/fpls.2021.748093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 05/16/2023]
Abstract
Herbivorous insects, likewise, other organisms, are exposed to diverse communities of microbes from the surrounding environment. Insects and microorganisms associated with them share a range of relationships, including symbiotic and pathogenic. Insects damage plants by feeding on them and delivering plant pathogens to wounded places, from where pathogens spread over the plant. Thus insects can be considered as both pests and reservoirs or vectors of plant pathogens. Although beetles are not mentioned in the first place as plant pathogen vectors, their transmission of pathogens also takes place and affects the ecosystem. Here we present an overview of beetles as vectors of plant pathogens, including viruses, bacteria, fungi, nematodes, and Oomycota, which are responsible for developing plant diseases that can have a significant impact on crop yield and quality.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Monitoring and Signaling of Agrophages, Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Magdalena Jakubowska
- Department of Monitoring and Signaling of Agrophages, Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland
- *Correspondence: Aleksandra Obrępalska-Stęplowska,
| |
Collapse
|