1
|
Hong Y, Zhou S, Zhang J, Lv Y, Yao N, Liu X. CtMYB63 enhances the waterlogging tolerance of safflower through the JA signalling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109774. [PMID: 40112755 DOI: 10.1016/j.plaphy.2025.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/22/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
MeJA can help plants resist external stress, and waterlogging stress is the most serious stress for safflower. The mechanism by which MeJA (Methyl jasmonate) induction helps safflower resist waterlogging stress is unclear. Our results indicate that CtMYB63 responds to MeJA through the TGACG motif element, and MeJA induction can further increase the expression of CtMYB63. Under MeJA induction, CtMYB63 is expressed by regulating the transcriptional expression of CtDFR1, CtANS1 and CtANR1, thereby increasing the biomass and flavonoid content of safflower, but inhibiting plant elongation. Our waterlogging stress experiments further demonstrated that overexpression of CtMYB63 can enhance antioxidant enzyme activity to clear the accumulation of MDA (Malondialdehyde), H2O2, and O2-. We found that MeJA induction could further improve the waterlogging stress tolerance of overexpressed CtMYB63 and WT (wild-type) safflower. Still, the waterlogging tolerance of CtMYB63Δ was weakened due to the deletion of the TGACG motif element. Finally, we found through yeast one-hybrid (Y1H) and luciferase assays that CtMYB63 regulates the expression of downstream genes by binding to the promoters of downstream genes. However, CtJAZ9 inhibits the expression of downstream genes. In summary, our experiments show that CtMYB63 enhances the waterlogging tolerance of safflower through the JA signalling pathway, providing a new idea for improving safflower yield through molecular breeding.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| | - Shiwen Zhou
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Yu L, Ahmad N, Meng W, Zhao S, Chang Y, Wang N, Zhang M, Yao N, Liu X, Zhang J. Integrated Metabolomics and Transcriptomics Provide Key Molecular Insights into Floral Stage-Driven Flavonoid Pathway in Safflower. Int J Mol Sci 2024; 25:11903. [PMID: 39595977 PMCID: PMC11593580 DOI: 10.3390/ijms252211903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Safflower (Carthamus tinctorius L.) is a traditional Chinese medicinal herb renowned for its high flavonoid content and significant medicinal value. However, the dynamic changes in safflower petal flavonoid profiles across different flowering phases present a challenge in optimizing harvest timing and medicinal use. To enhance the utilization of safflower, this study conducted an integrated transcriptomic and metabolomic analysis of safflower petals at different flowering stages. Our findings revealed that certain flavonoids were more abundant during the fading stage, while others peaked during full bloom. Specifically, seven metabolites, including p-coumaric acid, naringenin chalcone, naringenin, dihydrokaempferol, apigenin, kaempferol, and quercetin, accumulated significantly during the fading stage. In contrast, dihydromyricetin and delphinidin levels were notably reduced. Furthermore, key genes in the flavonoid biosynthesis pathway, such as 4CL, DFR, and ANR, exhibited up-regulated expression with safflower's flowering progression, whereas CHI, F3H, and FLS were down-regulated. Additionally, exposure to UV-B stress at full bloom led to an up-regulation of flavonoid content and altered the expression of key flavonoid biosynthetic genes over time. This study not only elucidates the regulatory mechanisms underlying flavonoid metabolism in safflower but also provides insights for maximizing its medicinal and industrial applications.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Weijie Meng
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Shangyang Zhao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Min Zhang
- Ginseng and Antler Products Testing Center of the Ministry of Agriculture PRC Jilin Agricultural University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Institute for Safflower Industry Research, Pharmacy College, Shihezi University, Ministry of Education, Shihezi 832003, China
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (W.M.); (S.Z.); (Y.C.); (N.W.); (N.Y.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Institute for Safflower Industry Research, Pharmacy College, Shihezi University, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
3
|
Chen J, Wang Y, Wu Y, Huang X, Qiu X, Chen J, Lin Q, Zhao H, Chen F, Gao G. Genome-wide identification and expression analysis of the PP2C gene family in Apocynum venetum and Apocynum hendersonii. BMC PLANT BIOLOGY 2024; 24:652. [PMID: 38982365 PMCID: PMC11232223 DOI: 10.1186/s12870-024-05328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Protein phosphatase class 2 C (PP2C) is the largest protein phosphatase family in plants. Members of the PP2C gene family are involved in a variety of physiological pathways in plants, including the abscisic acid signalling pathway, the regulation of plant growth and development, etc., and are capable of responding to a wide range of biotic and abiotic stresses, and play an important role in plant growth, development, and response to stress. Apocynum is a perennial persistent herb, divided into Apocynum venetum and Apocynum hendersonii. It mainly grows in saline soil, deserts and other harsh environments, and is widely used in saline soil improvement, ecological restoration, textiles and medicine. A. hendersonii was found to be more tolerant to adverse conditions. The main purpose of this study was to investigate the PP2C gene family and its expression pattern under salt stress and to identify important candidate genes related to salt tolerance. RESULTS In this study, 68 AvPP2C genes and 68 AhPP2C genes were identified from the genomes of A. venetum and A. hendersonii, respectively. They were classified into 13 subgroups based on their phylogenetic relationships and were further analyzed for their subcellular locations, gene structures, conserved structural domains, and cis-acting elements. The results of qRT-PCR analyses of seven AvPP2C genes and seven AhPP2C genes proved that they differed significantly in gene expression under salt stress. It has been observed that the PP2C genes in A. venetum and A. hendersonii exhibit different expression patterns. Specifically, AvPP2C2, 6, 24, 27, 41 and AhPP2C2, 6, 24, 27, 42 have shown significant differences in expression under salt stress. This indicates that these genes may play a crucial role in the salt tolerance mechanism of A. venetum and A. hendersonii. CONCLUSIONS In this study, we conducted a genome-wide analysis of the AvPP2C and AhPP2C gene families in Apocynum, which provided a reference for further understanding the functional characteristics of these genes.
Collapse
Affiliation(s)
- Jiayi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Yue Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yongmei Wu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Yuelushan Laboratory, Changsha, 410082, P.R. China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Yuelushan Laboratory, Changsha, 410082, P.R. China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
| | - Gang Gao
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
4
|
Guo Y, Liu C, Chen S, Tian Z. GmHXK2 promotes the salt tolerance of soybean seedlings by mediating AsA synthesis, and auxin synthesis and distribution. BMC PLANT BIOLOGY 2024; 24:613. [PMID: 38937682 PMCID: PMC11210165 DOI: 10.1186/s12870-024-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Salt is an important factor that affects crop productivity. Plant hexokinases (HXKs) are key enzymes in the glycolytic pathway and sugar signaling transduction pathways of plants. In previous studies, we identified and confirmed the roles of GmHXK2 in salt tolerance. RESULTS In this study, we analyzed the tissue-specific expression of GmHXK2 at different growth stages throughout the plant's life cycle. The results showed that GmHXK2 was expressed significantly in all tissues at vegetative stages, including germination and seedling. However, no expression was detected in the pods, and there was little expression in flowers during the later mature period. Arabidopsis plants overexpressing the GmHXK2 (OE) had more lateral roots. The OE seedlings also produced higher levels of auxin and ascorbic acid (AsA). Additionally, the expression levels of genes PMM, YUC4/YUC6/YUC8, and PIN/LAX1,LAX3, which are involved respectively in the synthesis of AsA and auxin, as well as polar auxin transport, were upregulated in OE plants. This upregulation occurred specifically under exogenous glucose treatment. AtHKT1, AtSOS1, and AtNHX1 were up-regulated in OE plants under salt stress, suggesting that GmHXK2 may modulate salt tolerance by maintaining ion balance within the cells and alleviating damage caused by salt stress. Additionally, we further confirmed the interaction between GmHXK2 and the protein GmPMM through yeast two-hybridization and bimolecular fluorescence complementation assays, respectively. CONCLUSION The expression of GmHXK2 gene in plants is organ-specific and developmental stage specific. GmHXK2 not only regulates the synthesis of AsA and the synthesis and distribution of auxin, but also promotes root elongation and induces lateral root formation, potentially enhancing soil water absorption. This study reveals the crosstalk between sugar signaling and hormone signaling in plants, where GmHXK2 acts as a glucose sensor through its interaction with GmPMM, and sheds light on the molecular mechanism by which GmHXK2 gene is involved in salt tolerance in plants.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Ahmad S, Khan K, Saleh IA, Okla MK, Alaraidh IA, AbdElgawad H, Naeem M, Ahmad N, Fahad S. TALE gene family: identification, evolutionary and expression analysis under various exogenous hormones and waterlogging stress in Cucumis sativus L. BMC PLANT BIOLOGY 2024; 24:564. [PMID: 38879470 PMCID: PMC11179211 DOI: 10.1186/s12870-024-05274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.
Collapse
Affiliation(s)
- Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Khushboo Khan
- Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
6
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
7
|
Ye Y, Wen S, Ying J, Cai Y, Qian R. Screening and Preliminary Identification of Asparagus officinalis Varieties under Low-Temperature Stress. Genes (Basel) 2024; 15:486. [PMID: 38674420 PMCID: PMC11050096 DOI: 10.3390/genes15040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
To meet the large demand for Asparagus officinalis in the spring market and improve the economic benefits of cultivating asparagus, we explored the molecular mechanism underlying the response of A. officinalis to low temperature. First, "Fengdao No. 1" was screened out under low-temperature treatment. Then, the transcriptome sequencing and hormone detection of "Fengdao No. 1" and "Grande" (control) were performed. Transcriptome sequencing resulted in screening out key candidate genes, while hormone analysis indicated that ABA was important for the response to low temperature. The combined analysis indicated that the AoMYB56 gene may regulate ABA in A. officinalis under low temperature. And the phylogenetic tree was constructed, and subcellular localisation was performed. From these results, we speculated that the AoMYB56 gene may regulate ABA in A. officinalis. The results of this research provide a theoretical basis for the further exploration of low-temperature response in A. officinalis.
Collapse
Affiliation(s)
| | | | | | | | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Wenzhou 325005, China; (Y.Y.); (S.W.); (J.Y.); (Y.C.)
| |
Collapse
|
8
|
Song X, Hou X, Zeng Y, Jia D, Li Q, Gu Y, Miao H. Genome-wide identification and comprehensive analysis of WRKY transcription factor family in safflower during drought stress. Sci Rep 2023; 13:16955. [PMID: 37805641 PMCID: PMC10560227 DOI: 10.1038/s41598-023-44340-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023] Open
Abstract
The WRKY family is an important family of transcription factors in plant development and stress response. Currently, there are few reports on the WRKY gene family in safflower (Carthamus tinctorius L.). In this study, a total of 82 CtWRKY genes were identified from the safflower genome and could be classified into 3 major groups and 5 subgroups based on their structural and phylogenetic characteristics. The results of gene structure, conserved domain and motif analyses indicated that CtWRKYs within the same subfamily maintained a consistent exon/intron organization and composition. Chromosomal localization and gene duplication analysis results showed that CtWRKYs were randomly localized on 12 chromosomes and that fragment duplication and purification selection may have played an important role in the evolution of the WRKY gene family in safflower. Promoter cis-acting element analysis revealed that the CtWRKYs contain many abiotic stress response elements and hormone response elements. Transcriptome data and qRT-PCR analyses revealed that the expression of CtWRKYs showed tissue specificity and a strong response to drought stress. Notably, the expression level of the CtWRKY55 gene rapidly increased more than eightfold under drought treatment and rehydration, indicating that it may be a key gene in response to drought stress. These results provide useful insights for investigating the regulatory function of the CtWRKY gene in safflower growth and development, as well as identifying key genes for future molecular breeding programmes.
Collapse
Affiliation(s)
- Xianming Song
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, China
| | - Xianfei Hou
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, China.
| | - Donghai Jia
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Qiang Li
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Yuanguo Gu
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Haocui Miao
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| |
Collapse
|
9
|
Dabravolski SA, Isayenkov SV. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2558. [PMID: 37447119 DOI: 10.3390/plants12132558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Drought and salinity affect various biochemical and physiological processes in plants, inhibit plant growth, and significantly reduce productivity. The anthocyanin biosynthesis system represents one of the plant stress-tolerance mechanisms, activated by surplus reactive oxygen species. Anthocyanins act as ROS scavengers, protecting plants from oxidative damage and enhancing their sustainability. In this review, we focus on molecular and biochemical mechanisms underlying the role of anthocyanins in acquired tolerance to drought and salt stresses. Also, we discuss the role of abscisic acid and the abscisic-acid-miRNA156 regulatory node in the regulation of drought-induced anthocyanin production. Additionally, we summarise the available knowledge on transcription factors involved in anthocyanin biosynthesis and development of salt and drought tolerance. Finally, we discuss recent progress in the application of modern gene manipulation technologies in the development of anthocyanin-enriched plants with enhanced tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str., 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
10
|
Wang Y, Li Z, Ahmad N, Sheng X, Iqbal B, Naeem M, Wang N, Li F, Yao N, Liu X. Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamus tinctorius. Funct Integr Genomics 2023; 23:172. [PMID: 37212893 DOI: 10.1007/s10142-023-01110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The cytochrome P450 superfamily of monooxygenases plays a major role in the evolution and diversification of plant natural products. The function of cytochrome P450s in physiological adaptability, secondary metabolism, and xenobiotic detoxification has been studied extensively in numerous plant species. However, their underlying regulatory mechanism in safflower still remained unclear. In this study, we aimed to elucidate the functional role of a putative CtCYP82G24-encoding gene in safflower, which suggests crucial insights into the regulation of methyl jasmonate-induced flavonoid accumulation in transgenic plants. The results showed that methyl jasmonate (MeJA) was associated with a progressive upregulation of CtCYP82G24 expression in safflower among other treatment conditions including light, dark, and polyethylene glycol (PEG). In addition, transgenic plants overexpressing CtCYP82G24 demonstrated increased expression level of other key flavonoid biosynthetic genes, such as AtDFR, AtANS, and AtFLS, and higher content of flavonoid and anthocyanin accumulation when compared with wild-type and mutant plants. Under exogenous MeJA treatment, the CtCYP82G24 transgenic overexpressed lines showed a significant spike in flavonoid and anthocyanin content compared with wild-type and mutant plants. Moreover, the virus-induced gene silencing (VIGS) assay of CtCYP82G24 in safflower leaves exhibited decreased flavonoid and anthocyanin accumulation and reduced expression of key flavonoid biosynthetic genes, suggesting a possible coordination between transcriptional regulation of CtCYP82G24 and flavonoid accumulation. Together, our findings confirmed the likely role of CtCYP82G24 during MeJA-induced flavonoid accumulation in safflower.
Collapse
Affiliation(s)
- Yufei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiling Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiao Sheng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, Yao N, Liu X, Li H. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1277-1296. [PMID: 36598461 DOI: 10.1111/jipb.13444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
The regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size. Yeast-two-hybrid, functional, and genetic assays demonstrated that the safflower E3 ligase CtBB1 (BIG BROTHER 1) can ubiquitinate CtbHLH41, marking it for degradation through the 26S proteasome and negatively regulating flavonoid accumulation. CtMYB63/CtWD40-6 enhanced the transcriptional activity of CtbHLH41 on the CtDFR (dihydroflavonol 4-reductase) promoter. We propose that the MBW-CtBB1 regulatory module may play an important role in coordinating HYSA accumulation with other response mechanisms.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghaijiaotong University, Shanghai, 200240, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| |
Collapse
|
12
|
Yang H, Zhai X, Zhao Z, Fan G. Comprehensive analyses of the SPL transcription factor family in Paulownia fortunei and their responses to biotic and abiotic stresses. Int J Biol Macromol 2023; 226:1261-1272. [PMID: 36442550 DOI: 10.1016/j.ijbiomac.2022.11.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
To study the molecular characteristics, phylogenetic evolution, and gene functions of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Paulownia fortunei, a whole genome sequence analysis was carried out, and a total of 23 PfSPL genes were identified. Tandem duplication and fragment replication were the main patterns of gene expansion in the PfSPL family. Phylogenetic analysis showed that the 23 identified PfSPLs formed seven subgroups, and the structures of the proteins in the same subgroup were similar. Functional analysis indicated that PfSPL11 may regulate flowering, PfSPL5 was involved in gibberellin signaling, PfSPL1/4/23 regulated branching, and PfSPL9/16/18 were related to pathogen resistance. Yeast one hybrid technology confirmed that PfSPL4 and PfSP23 can bind to the promoter of PfTCPa. The transcriptome analysis indicated that PfSPL10 was sensitive to both drought and salt stress. Ten PfSPLs that responded to phytoplasma infection were identified. Molecular docking showed that PfSPL10 and PfSPL 4/5/9/10/11/13 formed active pockets in the conserved SBP domain that could bind methyl methane sulfonate (MMS) and rifampicin (Rif) through stable hydrogen bonds, respectively. This study provides a basis for further studies on the functions of the PfSPL transcription factor family, and for genetic improvement and breeding of trees resistant to PaWB disease.
Collapse
Affiliation(s)
- Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Xiaoqiao Zhai
- Henan Province Academy of forestry, Zhengzhou 450008, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
13
|
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, Garg M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotechnol 2023; 361:12-29. [PMID: 36414125 DOI: 10.1016/j.jbiotec.2022.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.
Collapse
Affiliation(s)
- Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Era Chaudhary
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India.
| |
Collapse
|
14
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
15
|
Molecular Characterization of an Isoflavone 2'-Hydroxylase Gene Revealed Positive Insights into Flavonoid Accumulation and Abiotic Stress Tolerance in Safflower. Molecules 2022; 27:molecules27228001. [PMID: 36432102 PMCID: PMC9697648 DOI: 10.3390/molecules27228001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Flavonoids with significant therapeutic properties play an essential role in plant growth, development, and adaptation to various environments. The biosynthetic pathway of flavonoids has long been studied in plants; however, its regulatory mechanism in safflower largely remains unclear. Here, we carried out comprehensive genome-wide identification and functional characterization of a putative cytochrome P45081E8 gene encoding an isoflavone 2'-hydroxylase from safflower. A total of 15 CtCYP81E genes were identified from the safflower genome. Phylogenetic classification and conserved topology of CtCYP81E gene structures, protein motifs, and cis-elements elucidated crucial insights into plant growth, development, and stress responses. The diverse expression pattern of CtCYP81E genes in four different flowering stages suggested important clues into the regulation of secondary metabolites. Similarly, the variable expression of CtCYP81E8 during multiple flowering stages further highlighted a strong relationship with metabolite accumulation. Furthermore, the orchestrated link between transcriptional regulation of CtCYP81E8 and flavonoid accumulation was further validated in the yellow- and red-type safflower. The spatiotemporal expression of CtCYP81E8 under methyl jasmonate, polyethylene glycol, light, and dark conditions further highlighted its likely significance in abiotic stress adaption. Moreover, the over-expressed transgenic Arabidopsis lines showed enhanced transcript abundance in OE-13 line with approximately eight-fold increased expression. The upregulation of AtCHS, AtF3'H, and AtDFR genes and the detection of several types of flavonoids in the OE-13 transgenic line also provides crucial insights into the potential role of CtCYP81E8 during flavonoid accumulation. Together, our findings shed light on the fundamental role of CtCYP81E8 encoding a putative isoflavone 2'-hydroxylase via constitutive expression during flavonoid biosynthesis.
Collapse
|
16
|
IbMYB308, a Sweet Potato R2R3-MYB Gene, Improves Salt Stress Tolerance in Transgenic Tobacco. Genes (Basel) 2022; 13:genes13081476. [PMID: 36011387 PMCID: PMC9408268 DOI: 10.3390/genes13081476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factor family plays an important role in plant growth, development, and response to biotic and abiotic stresses. However, the gene functions of MYB transcription factors in sweet potato (Ipomoea batatas (L.) Lam) have not been elucidated. In this study, an MYB transcription factor gene, IbMYB308, was identified and isolated from sweet potato. Multiple sequence alignment showed that IbMYB308 is a typical R2R3-MYB transcription factor. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that IbMYB308 was expressed in root, stem, and, especially, leaf tissues. Moreover, it showed that IbMYB308 had a tissue-specific profile. The experiment also showed that the expression of IbMYB308 was induced by different abiotic stresses (20% PEG-6000, 200 mM NaCl, and 20% H2O2). After a 200 mM NaCl treatment, the expression of several stress-related genes (SOD, POD, APX, and P5CS) was upregulation in transgenic plants, and the CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. In conclusion, this study demonstrated that IbMYB308 could improve salt stress tolerance in transgenic tobacco. These findings lay a foundation for future studies on the R2R3-MYB gene family of sweet potato and suggest that IbMYB308 could potentially be used as an important positive factor in transgenic plant breeding to improve salt stress tolerance in sweet potato plants.
Collapse
|
17
|
Yingqi H, Lv Y, Zhang J, Ahmad N, Li Y, Wang N, Xiuming L, Na Y, Li X. Identification and functional characterization of safflower cysteine protease 1 as negative regulator in response to low-temperature stress in transgenic Arabidopsis. PLANTA 2022; 255:106. [PMID: 35445865 DOI: 10.1007/s00425-022-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
We performed genome-wide and heterologous expression analysis of the safflower cysteine protease family and found that inhibition of CtCP1 expression enhanced plant cold resistance. Cysteine protease (CP) is mainly involved in plant senescence and stress responses. However, the molecular mechanism of endogenous cysteine protease inhibition in plant stress tolerance is yet unknown. Here, we report the discovery and functional characterization of a candidate CP1 gene from safflower. The conserved structural topology of CtCPs revealed important insights into their possible roles in plant growth and stress responses. The qRT-PCR results implied that most of CtCP genes were highly expressed at fading stage suggesting that they are most likely involved in senescence process. The CtCP1 expression was significantly induced at different time points under cold, NaCl, H2O2 and PEG stress, respectively. The in-vitro activity of heterologously expressed CtCP1 protein showed highest protease activity for casein and azocasein substrates. The expression and phenotypic data together with antioxidant activity and physiological indicators revealed that transgenic plants inhibited by CtCP1-anti showed higher tolerance to low temperature than WT and CtCP1-OE plants. Our findings demonstrated the discovery of a new Cysteine protease 1 gene that exerted a detrimental effect on transgenic Arabidopsis under low-temperature stress.
Collapse
Affiliation(s)
- Hong Yingqi
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Youbao Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Liu Xiuming
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Yao Na
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|