1
|
Osterman MD, Song YE, Lynn A, Miskimen K, Adams LD, Laux RA, Caywood LJ, Prough MB, Clouse JE, Herington SD, Slifer SH, Fuzzell SL, Hochstetler SD, Main LR, Dorfsman DA, Zaman AF, Ogrocki P, Lerner AJ, Vance JM, Cuccaro ML, Scott WK, Pericak-Vance MA, Haines JL. Founder population-specific weights yield improvements in performance of polygenic risk scores for Alzheimer disease in the Midwestern Amish. HGG ADVANCES 2023; 4:100241. [PMID: 37742071 PMCID: PMC10565871 DOI: 10.1016/j.xhgg.2023.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia and is estimated to affect 6 million Americans. Risk for AD is multifactorial, including both genetic and environmental risk factors. AD genomic research has generally focused on identification of risk variants. Using this information, polygenic risk scores (PRSs) can be calculated to quantify an individual's relative disease risk due to genetic factors. The Amish are a founder population descended from German and Swiss Anabaptist immigrants. They experienced a genetic bottleneck after arrival in the United States, making their genetic architecture different from the broader European ancestry population. Prior work has demonstrated the lack of transferability of PRSs across populations. Here, we compared the performance of PRSs derived from genome-wide association studies (GWASs) of Amish individuals to those derived from a large European ancestry GWAS. Participants were screened for cognitive impairment with further evaluation for AD. Genotype data were imputed after collection via Illumina genotyping arrays. The Amish individuals were split into two groups based on the primary site of recruitment. For each group, GWAS was conducted with account for relatedness and adjustment for covariates. PRSs were then calculated using weights from the other Amish group. PRS models were evaluated with and without covariates. The Amish-derived PRSs distinguished between dementia status better than the European-derived PRS in our Amish populations and demonstrated performance improvements despite a smaller training sample size. This work highlighted considerations for AD PRS usage in populations that cannot be adequately described by basic race/ethnicity or ancestry classifications.
Collapse
Affiliation(s)
- Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Kristy Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Larry D Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Laura J Caywood
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael B Prough
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason E Clouse
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sharlene D Herington
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Slifer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Leighanne R Main
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel A Dorfsman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew F Zaman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Prough MB, Zaman A, Caywood LJ, Clouse JE, Herington SD, Slifer SH, Dorfsman DA, Adams LA, Laux RA, Song YE, Lynn A, Fuzzell D, Fuzzell SL, Miller SD, Miskimen K, Main LR, Osterman MD, Ogrocki P, Lerner AJ, Vance JM, Haines JL, Scott WK, Pericak-Vance M, Cuccaro ML. Visuospatial and Verbal Memory Differences in Amish Individuals With Alzheimer Disease and Related Dementias. Alzheimer Dis Assoc Disord 2023; 37:195-199. [PMID: 37561946 PMCID: PMC10529392 DOI: 10.1097/wad.0000000000000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Verbal and visuospatial memory impairments are common to Alzheimer disease and Related Dementias (ADRD), but the patterns of decline in these domains may reflect genetic and lifestyle influences. The latter may be pertinent to populations such as the Amish who have unique lifestyle experiences. METHODS Our data set included 420 Amish and 401 CERAD individuals. Sex-adjusted, age-adjusted, and education-adjusted Z-scores were calculated for the recall portions of the Constructional Praxis Delay (CPD) and Word List Delay (WLD). ANOVAs were then used to examine the main and interaction effects of cohort (Amish, CERAD), cognitive status (case, control), and sex on CPD and WLD Z-scores. RESULTS The Amish performed better on the CPD than the CERAD cohort. In addition, the difference between cases and controls on the CPD and WLD were smaller in the Amish and Amish female cases performed better on the WLD than the CERAD female cases. DISCUSSION The Amish performed better on the CPD task, and ADRD-related declines in CPD and WLD were less severe in the Amish. In addition, Amish females with ADRD may have preferential preservation of WLD. This study provides evidence that the Amish exhibit distinct patterns of verbal and visuospatial memory loss associated with aging and ADRD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reneé A Laux
- Department of Population and Quantitative Health Sciences
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences
| | | | | | | | - Leighanne R Main
- Department of Genetics and Genome Sciences
- Cleveland Institute for Computational Biology, Case Western Reserve University
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences
- Cleveland Institute for Computational Biology, Case Western Reserve University
| | - Paula Ogrocki
- Department of Neurology, Case Western Reserve University School of Medicine
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Alan J Lerner
- Department of Neurology, Case Western Reserve University School of Medicine
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences
- Cleveland Institute for Computational Biology, Case Western Reserve University
| | - William K Scott
- John P. Hussman Institute for Human Genomics
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
3
|
Osterman MD, Song YE, Adams LD, Laux RA, Caywood LJ, Prough MB, Clouse JE, Herington SD, Slifer SH, Lynn A, Fuzzell MD, Fuzzell SL, Hochstetler SD, Miskimen K, Main LR, Dorfsman DA, Ogrocki P, Lerner AJ, Ramos J, Vance JM, Cuccaro ML, Scott WK, Pericak-Vance MA, Haines JL. The genetic architecture of Alzheimer disease risk in the Ohio and Indiana Amish. HGG ADVANCES 2022; 3:100114. [PMID: 35599847 PMCID: PMC9114685 DOI: 10.1016/j.xhgg.2022.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia and is currently estimated to affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States, and the proportion of deaths due to AD has been increasing since 2000, while the proportion of many other leading causes of deaths have decreased or remained constant. The risk for AD is multifactorial, including genetic and environmental risk factors. Although APOE ε4 remains the largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. Here, we recruited Amish adults from Ohio and Indiana to investigate AD risk and protective genetic effects. As a founder population that typically practices endogamy, variants that are rare in the general population may be of a higher frequency in the Amish population. Since the Amish have a slightly lower incidence and later age of onset of disease, they represent an excellent and unique population for research on protective genetic variants. We compared AD risk in the Amish and to a non-Amish population through APOE genotype, a non-APOE genetic risk score of genome-wide significant variants, and a non-APOE polygenic risk score considering all of the variants. Our results highlight the lesser relative impact of APOE and differing genetic architecture of AD risk in the Amish compared to a non-Amish, general European ancestry population.
Collapse
Affiliation(s)
- Michael D. Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Larry D. Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renee A. Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Laura J. Caywood
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael B. Prough
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason E. Clouse
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sharlene D. Herington
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H. Slifer
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - M. Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarada L. Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sherri D. Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristy Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Leighanne R. Main
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel A. Dorfsman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alan J. Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jairo Ramos
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William K. Scott
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Mitochondrial DNA and Alzheimer's disease: a first case-control study of the Tunisian population. Mol Biol Rep 2021; 49:1687-1700. [PMID: 34854014 DOI: 10.1007/s11033-021-06978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder in humans and presents a major health problem throughout the world. The etiology of AD is complex, and many factors are implicated, including mitochondria. Mitochondrial alteration has been proposed as a possible cause of AD. Therefore, several studies have focused on finding an association between inherited mitochondrial DNA variants and AD onset. METHODS In this study, we looked, for the first time, for a potential association between mitochondrial haplogroups or polymorphisms and AD in the Tunisian population. We also evaluated the distribution of the major genetic risk factor for AD, the apolipoprotein E epsilon 4 (APOE ε4), in this population. In total, 159 single-nucleotide polymorphisms (SNPs) of mitochondrial DNA haplogroups were genotyped in 254 individuals (58 patients and 196 controls). An additional genotyping of APOE ε4 was performed. RESULTS No significant association between mitochondrial haplogroups and AD was found. However, two individual SNPs, A5656G (p = 0.03821, OR = 10.46) and A13759G (p = 0.03719, OR = 10.78), showed a significant association with AD. APOE 4 was confirmed as a risk factor for AD (p = 0.000014). CONCLUSION Our findings may confirm the absence of a relation between mitochondrial haplogroups and AD and support the possible involvement of some inherited variants in the pathogenicity of AD.
Collapse
|
5
|
Waksmunski AR, Song YE, Kinzy TG, Laux RA, Sewell J, Fuzzell D, Fuzzell S, Miller S, Wiggs JL, Pasquale LR, Skarie JM, Haines JL, Cooke Bailey JN. The GGLEAM Study: Understanding Glaucoma in the Ohio Amish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1551. [PMID: 33561996 PMCID: PMC7915874 DOI: 10.3390/ijerph18041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Glaucoma leads to millions of cases of visual impairment and blindness around the world. Its susceptibility is shaped by both environmental and genetic risk factors. Although over 120 risk loci have been identified for glaucoma, a large portion of its heritability is still unexplained. Here we describe the foundation of the Genetics of GLaucoma Evaluation in the AMish (GGLEAM) study to investigate the genetic architecture of glaucoma in the Ohio Amish, which exhibits lower genetic and environmental heterogeneity compared to the general population. To date, we have enrolled 81 Amish individuals in our study from Holmes County, Ohio. As a part of our enrollment process, 62 GGLEAM study participants (42 glaucoma-affected and 20 unaffected individuals) received comprehensive eye examinations and glaucoma evaluations. Using the data from the Anabaptist Genealogy Database, we found that 80 of the GGLEAM study participants were related to one another through a large, multigenerational pedigree containing 1586 people. We plan to integrate the health and kinship data obtained for the GGLEAM study to interrogate glaucoma genetics and pathophysiology in this unique population.
Collapse
Affiliation(s)
- Andrea R. Waksmunski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Tyler G. Kinzy
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Reneé A. Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Jane Sewell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Sarada Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Sherri Miller
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA;
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jonathan M. Skarie
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Ohio Eye Associates, Mansfield, OH 44906, USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica N. Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (A.R.W.); (Y.E.S.); (T.G.K.); (R.A.L.); (J.S.); (D.F.); (S.F.); (S.M.); (J.M.S.); (J.L.H.)
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Burhanullah MH, Tschanz JT, Peters ME, Leoutsakos JM, Matyi J, Lyketsos CG, Nowrangi MA, Rosenberg PB. Neuropsychiatric Symptoms as Risk Factors for Cognitive Decline in Clinically Normal Older Adults: The Cache County Study. Am J Geriatr Psychiatry 2020; 28:64-71. [PMID: 31186157 PMCID: PMC6874723 DOI: 10.1016/j.jagp.2019.03.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION There has been considerable progress in identifying early cognitive and biomarker predictors of Alzheimer's disease (AD). Neuropsychiatric symptoms (NPS) are common in AD and appear to predict progression after the onset of mild cognitive impairment or dementia. OBJECTIVES The objective of the study is to examine the relationship between NPS in clinically normal older adults and subsequent cognitive decline in a population-based sample. METHODS The Cache County Study on Memory in Aging consists of a population-based sample of 5,092 older adults. We identified 470 clinically normal adults who were followed for an average period of 5.73 years. NPS were evaluated at the baseline clinical assessment using the Neuropsychiatric Inventory (NPI). NPI domain scores were quantified as the product of frequency X severity in individual NPI domains, and then summed for the NPI-Total. Neuropsychological measures were collected at baseline and at each subsequent follow-up wave. Linear mixed-effects models assessed the association of NPI-Total, NPI-Depression, and NPI-Anxiety scores (obtained at baseline) on longitudinal change in neuropsychological performance, controlling for age, sex, and education. RESULTS Baseline NPI-Total score was associated with a more rapid rate of decline in word list memory, praxis recall, and animal fluency. Baseline NPI-Depression was not associated with later decline on any of the cognitive tests, while baseline NPI-Anxiety was associated with decline in Symbol Digit Modality. CONCLUSION In conclusion, among clinically normal older adults derived from this population-based study, total burden of NPS was associated with longitudinal cognitive decline. These results add to the evidence that NPS are risk factors for or clinical indicators of preclinical dementia syndrome. Our study was an exploratory study and we did not control for multiple comparisons.
Collapse
|
7
|
Wang Y, Hernandez G, Mack WJ, Schneider LS, Yin F, Brinton RD. Retrospective analysis of phytoSERM for management of menopause-associated vasomotor symptoms and cognitive decline: a pilot study on pharmacogenomic effects of mitochondrial haplogroup and APOE genotype on therapeutic efficacy. Menopause 2020; 27:57-65. [PMID: 31567873 PMCID: PMC7100617 DOI: 10.1097/gme.0000000000001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE PhytoSERM is a selective estrogen receptor beta (ERβ) modulator comprised of three phytoestrogens: genistein, daidzein, and S-equol. The PhytoSERM formulation promotes estrogenic action in the brain while largely inactive or inhibitory in reproductive tissue. A phase Ib/IIa clinical trial (ClinicalTrial.gov ID: NCT01723917) of PhytoSERM demonstrated safety and pharmacokinetics profile of PhytoSERM. While this study was not powered for efficacy analysis, we conducted a pilot, retrospective analysis to identify potential responders to PhytoSERM treatment, and to determine the optimal populations to pursue in a phase II clinical trial of efficacy of the PhytoSERM formulation. METHODS In this retrospective analysis involving 46 participants (n = 16, placebo; n = 18, 50 mg/d PhytoSERM; and n = 12, 100 mg/d PhytoSERM), the therapeutic effect of PhytoSERM was stratified by 2 genetic risk modulators for Alzheimer's disease: mitochondrial haplogroup and APOE genotype. RESULTS Our retrospective responder analysis indicated that participants on 50 mg of daily PhytoSERM (PS50) for 12 weeks significantly reduced hot flash frequency compared with their baseline (mean [95% CI])-1.61, [-2.79, -0.42], P = 0.007). Participants on 50 mg of PhytoSERM also had significantly greater reduction in hot flash frequency at 12 weeks compared with the placebo group (-1.38, -0.17 [median PS50, median placebo], P = 0.04). Fifty milligrams of daily PhytoSERM also preserved cognitive function in certain aspects of verbal learning and executive function. Our analysis further suggests that mitochondrial haplogroup and APOE genotype can modify PhytoSERM response. CONCLUSION Our data support a precision medicine approach for further development of PhytoSERM as a safe and effective alternative to hormone therapy for menopause-associated hot flash and cognitive decline. While definitive determination of PhytoSERM efficacy is limited by the small sample size, these data provide a reasonable rationale to extend analyses to a larger study set powered to address statistical significance.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Gerson Hernandez
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Fei Yin
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Roberta D Brinton
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| |
Collapse
|
8
|
Wang Y, Brinton RD. Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex. Front Aging Neurosci 2016; 8:232. [PMID: 27757081 PMCID: PMC5047907 DOI: 10.3389/fnagi.2016.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
9
|
Crawford DC, Dumitrescu L, Goodloe R, Brown-Gentry K, Boston J, McClellan B, Sutcliffe C, Wiseman R, Baker P, Pericak-Vance MA, Scott WK, Allen M, Mayo P, Schnetz-Boutaud N, Dilks HH, Haines JL, Pollin TI. Rare variant APOC3 R19X is associated with cardio-protective profiles in a diverse population-based survey as part of the Epidemiologic Architecture for Genes Linked to Environment Study. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:848-53. [PMID: 25363704 PMCID: PMC4305446 DOI: 10.1161/circgenetics.113.000369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A founder mutation was recently discovered and described as conferring favorable lipid profiles and reduced subclinical atherosclerotic disease in a Pennsylvania Amish population. Preliminary data have suggested that this null mutation APOC3 R19X (rs76353203) is rare in the general population. METHODS AND RESULTS To better describe the frequency and lipid profile in the general population, we as part of the Population Architecture using Genomics and Epidemiology I Study and the Epidemiological Architecture for Genes Linked to Environment Study genotyped rs76353203 in 1113 Amish participants from Ohio and Indiana and 19 613 participants from the National Health and Nutrition Examination Surveys (NHANES III, 1999 to 2002, and 2007 to 2008). We found no carriers among the Ohio and Indiana Amish. Of the 19 613 NHANES participants, we identified 31 participants carrying the 19X allele, for an overall allele frequency of 0.08%. Among fasting adults, the 19X allele was associated with lower triglycerides (n=7603; β=-71.20; P=0.007) and higher high-density lipoprotein cholesterol (n=8891; β=15.65; P=0.0002) and, although not significant, lower low-density lipoprotein cholesterol (n=6502; β= -4.85; P=0.68) after adjustment for age, sex, and race/ethnicity. On average, 19X allele participants had approximately half the triglyceride levels (geometric means, 51.3 to 69.7 versus 134.6 to 141.3 mg/dL), >20% higher high-density lipoprotein cholesterol levels (geometric means, 56.8 to 74.4 versus 50.38 to 53.36 mg/dL), and lower low-density lipoprotein cholesterol levels (geometric means, 104.5 to 128.6 versus 116.1 to 125.7 mg/dL) compared with noncarrier participants. CONCLUSIONS These data demonstrate that APOC3 19X exists in the general US population in multiple racial/ethnic groups and is associated with cardio-protective lipid profiles.
Collapse
Affiliation(s)
- Dana C Crawford
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.).
| | - Logan Dumitrescu
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Robert Goodloe
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Kristin Brown-Gentry
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Jonathan Boston
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Bob McClellan
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Cara Sutcliffe
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Rachel Wiseman
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Paxton Baker
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Margaret A Pericak-Vance
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - William K Scott
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Melissa Allen
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Ping Mayo
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Nathalie Schnetz-Boutaud
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Holli H Dilks
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Jonathan L Haines
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Toni I Pollin
- From the Institute for Computational Biology (D.C.C., P.M., J.L.H.), Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (D.C.C., J.L.H.); Center for Human Genetics Research (L.D., R.G., K.B.-G., J.B., B.M., M.A., N.S.-B.), Department of Molecular Physiology and Biophysics (L.D.), Vanderbilt Technologies for Advanced Genomics Core Facility, Vanderbilt University, Nashville, TN (C.S., R.W., P.B., H.H.D.); Hussman Institute for Human Genomics, University of Miami, FL (M.A.P.-V., W.K.S.); and Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| |
Collapse
|
10
|
Sevini F, Giuliani C, Vianello D, Giampieri E, Santoro A, Biondi F, Garagnani P, Passarino G, Luiselli D, Capri M, Franceschi C, Salvioli S. mtDNA mutations in human aging and longevity: controversies and new perspectives opened by high-throughput technologies. Exp Gerontol 2014; 56:234-44. [PMID: 24709341 DOI: 10.1016/j.exger.2014.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
The last 30 years of research greatly contributed to shed light on the role of mitochondrial DNA (mtDNA) variability in aging, although contrasting results have been reported, mainly due to bias regarding the population size and stratification, and to the use of analysis methods (haplogroup classification) that resulted to be not sufficiently adequate to grasp the complexity of the phenomenon. A 5-years European study (the GEHA EU project) collected and analyzed data on mtDNA variability on an unprecedented number of long-living subjects (enriched for longevity genes) and a comparable number of controls (matched for gender and ethnicity) in Europe. This very large study allowed a reappraisal of the role of both the inherited and the somatic mtDNA variability in aging, as an association with longevity emerged only when mtDNA variants in OXPHOS complexes co-occurred. Moreover, the availability of data from both nuclear and mitochondrial genomes on a large number of subjects paves the way for an evaluation at a very large scale of the epistatic interactions at a higher level of complexity. This scenario is expected to be even more clarified in the next future with the use of next generation sequencing (NGS) techniques, which are becoming applicable to evaluate mtDNA variability and, then, new mathematical/bioinformatic analysis methods are urgently needed. Recent advances of association studies on age-related diseases and mtDNA variability will also be discussed in this review, taking into account the bias hidden by population stratification. Finally, very recent findings in terms of mtDNA heteroplasmy (i.e. the coexistence of wild type and mutated copies of mtDNA) and aging as well as mitochondrial epigenetic mechanisms will also be discussed.
Collapse
Affiliation(s)
- Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy.
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | - Fiammetta Biondi
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, Laboratory of Anthropology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; Department of Biological, Geological and Environmental Sciences, Centre for Genome Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Ospedale Bellaria, Via Altura 3, 40139 Bologna, Italy; CNR, Institute of Organic Synthesis and Photoreactivity (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| |
Collapse
|
11
|
Edwards DRV, Gilbert JR, Hicks JE, Myers JL, Jiang L, Cummings AC, Guo S, Gallins PJ, Konidari I, Caywood L, Reinhart-Mercer L, Fuzzell D, Knebusch C, Laux R, Jackson CE, Pericak-Vance MA, Haines JL, Scott WK. Linkage and association of successful aging to the 6q25 region in large Amish kindreds. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1467-1477. [PMID: 22773346 PMCID: PMC3705095 DOI: 10.1007/s11357-012-9447-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Successful aging (SA) is a multidimensional phenotype involving living to older age with high physical function, preserved cognition, and continued social engagement. Several domains underlying SA are heritable, and identifying health-promoting polymorphisms and their interactions with the environment could provide important information regarding the health of older adults. In the present study, we examined 263 cognitively intact Amish individuals age 80 and older (74 SA and 189 "normally aged") all of whom are part of a single 13-generation pedigree. A genome-wide association study of 630,309 autosomal single nucleotide polymorphisms (SNPs) was performed and analyzed for linkage using multipoint analyses and for association using the modified quasi-likelihood score test. There was evidence for linkage on 6q25-27 near the fragile site FRA6E region with a dominant model maximum multipoint heterogeneity LOD score = 3.2. The 1-LOD-down support interval for this linkage contained one SNP for which there was regionally significant evidence of association (rs205990, p = 2.36 × 10(-5)). This marker survived interval-wide Bonferroni correction for multiple testing and was located between the genes QKI and PDE10A. Other areas of chromosome 6q25-q27 (including the FRA6E region) contained several SNPs associated with SA (minimum p = 2.89 × 10(-6)). These findings suggest potentially novel genes in the 6q25-q27 region linked and associated with SA in the Amish; however, these findings should be verified in an independent replication cohort.
Collapse
Affiliation(s)
- Digna R. Velez Edwards
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
- />Center for Human Genetics Research, Vanderbilt University Epidemiology Center, Institute of Medicine and Public Health, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN USA
| | - John R. Gilbert
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - James E. Hicks
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Jamie L. Myers
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Lan Jiang
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | - Anna C. Cummings
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | - Shengru Guo
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Paul J. Gallins
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Ioanna Konidari
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Laura Caywood
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Lori Reinhart-Mercer
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Denise Fuzzell
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | - Claire Knebusch
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | - Renee Laux
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | | | - Margaret A. Pericak-Vance
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| | - Jonathan L. Haines
- />Center for Human Genetics Research, Vanderbilt University, Nashville, TN USA
| | - William K. Scott
- />Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute of Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Room 414, Miami, FL 33136 USA
| |
Collapse
|
12
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mitochondrial haplogroup X is associated with successful aging in the Amish. Hum Genet 2011; 131:201-8. [PMID: 21750925 DOI: 10.1007/s00439-011-1060-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Avoiding disease, maintaining physical and cognitive function, and continued social engagement in long-lived individuals describe successful aging (SA). Mitochondrial lineages described by patterns of common genetic variants ("haplogroups") have been associated with increased longevity in different populations. We investigated the influence of mitochondrial haplogroups on SA in an Amish community sample. Cognitively intact volunteers aged ≥80 years (n = 261) were enrolled in a door-to-door survey of Amish communities in Indiana and Ohio. Individuals scoring in the top third for lower extremity function, needing little assistance with self-care tasks, having no depression symptoms, and expressing high life satisfaction were considered SA (n = 74). The remainder (n = 187) were retained as controls. These individuals descend from 51 matrilines in a single 13-generation pedigree. Mitochondrial haplogroups were assigned using the ten mitochondrial single nucleotide polymorphisms (mtSNPs) defining the nine most common European haplogroups. An additional 17 mtSNPs from a genome-wide association panel were also investigated. Associations between haplogroups, mtSNPs, and SA were determined by logistic regression models accounting for sex, age, body mass index, and matriline via generalized estimating equations. SA cases were more likely to carry Haplogroup X (OR = 7.56, p = 0.0015), and less likely to carry Haplogroup J (OR = 0.40, p = 0.0003). Our results represent a novel association of Haplogroup X with SA and suggest that variants in the mitochondrial genome may promote maintenance of both physical and cognitive function in older adults.
Collapse
|
14
|
Edwards DRV, Gilbert JR, Jiang L, Gallins PJ, Caywood L, Creason M, Fuzzell D, Knebusch C, Jackson CE, Pericak-Vance MA, Haines JL, Scott WK. Successful aging shows linkage to chromosomes 6, 7, and 14 in the Amish. Ann Hum Genet 2011; 75:516-28. [PMID: 21668908 PMCID: PMC3756593 DOI: 10.1111/j.1469-1809.2011.00658.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Successful aging (SA) is a multidimensional phenotype involving preservation of cognitive ability, physical function, and social engagement throughout life. Multiple components of SA are heritable, supporting a genetic component. The Amish are genetically and socially isolated with homogeneous lifestyles, making them a suitable population for studying the genetics of SA. DNA and measures of SA were collected on 214 cognitively intact Amish individuals over age 80. Individuals were grouped into a 13-generation pedigree using the Anabaptist Genealogy Database. A linkage screen of 5944 single nucleotide polymorphisms (SNPs) was performed using 12 informative subpedigrees with an affected-only 2-point and multipoint linkage analysis. Eleven SNPs produced 2-point LOD scores >2, suggestive of linkage. Multipoint linkage analyses, allowing for heterogeneity, detected significant LOD scores on chromosomes 6 (HLOD = 4.50), 7 (LOD*= 3.11), and 14 (HLOD = 4.17), suggesting multiple new loci underlying SA.
Collapse
Affiliation(s)
- Digna R Velez Edwards
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:320-30. [PMID: 20624441 DOI: 10.1016/j.pnpbp.2010.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 07/05/2010] [Indexed: 01/16/2023]
Abstract
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warszawa, Poland.
| | | |
Collapse
|
16
|
Davis MC, Novak SJ, Hampikian G. Mitochondrial DNA analysis of an immigrant Basque population: loss of diversity due to founder effects. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 144:516-25. [PMID: 21404229 DOI: 10.1002/ajpa.21432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/27/2010] [Indexed: 01/21/2023]
Abstract
The Basques have a well-documented history of migration and settlement in the Americas, and they often retain cultural identity across generations. Numerous genetic studies have been carried out on European Basques; thus, immigrant Basques are an ideal population for investigating the genetic consequences of a recent human migration event. We have sampled 53 unrelated individuals with Basque ancestry in Boise, Idaho and determined the mitochondrial DNA (mtDNA) sequence variation of the first and second hypervariable regions. Thirty-six mtDNA haplotypes were detected in our sample. We found evidence of genetic changes consistent with founder effects, which is compatible with the known history of migration. Compared with the European Basque population, the immigrant Basques are significantly different in terms of haplogroup frequency distribution and diversity. They have a lower measure of weighted intralineage mean pairwise diversity (WIMP) and greater genetic distance from other European populations. These data indicate that this immigrant Basque population has experienced a reduction in genetic diversity compared with the putative source population. However, this loss of diversity is not detectable using indices of demographic history such as Tajima's D and Fu's F. This study represents the first description of mtDNA diversity in an immigrant Basque population, and our findings indicate that founder effects accompanying this relatively recent migration event have shaped the genetic diversity of this population.
Collapse
Affiliation(s)
- Michael C Davis
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | | | | |
Collapse
|
17
|
Kenny EE, Kim M, Gusev A, Lowe JK, Salit J, Smith JG, Kovvali S, Kang HM, Newton-Cheh C, Daly MJ, Stoffel M, Altshuler DM, Friedman JM, Eskin E, Breslow JL, Pe'er I. Increased power of mixed models facilitates association mapping of 10 loci for metabolic traits in an isolated population. Hum Mol Genet 2010; 20:827-39. [PMID: 21118897 DOI: 10.1093/hmg/ddq510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The potential benefits of using population isolates in genetic mapping, such as reduced genetic, phenotypic and environmental heterogeneity, are offset by the challenges posed by the large amounts of direct and cryptic relatedness in these populations confounding basic assumptions of independence. We have evaluated four representative specialized methods for association testing in the presence of relatedness; (i) within-family (ii) within- and between-family and (iii) mixed-models methods, using simulated traits for 2906 subjects with known genome-wide genotype data from an extremely isolated population, the Island of Kosrae, Federated States of Micronesia. We report that mixed models optimally extract association information from such samples, demonstrating 88% power to rank the true variant as among the top 10 genome-wide with 56% achieving genome-wide significance, a >80% improvement over the other methods, and demonstrate that population isolates have similar power to non-isolate populations for observing variants of known effects. We then used the mixed-model method to reanalyze data for 17 published phenotypes relating to metabolic traits and electrocardiographic measures, along with another 8 previously unreported. We replicate nine genome-wide significant associations with known loci of plasma cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, thyroid stimulating hormone, homocysteine, C-reactive protein and uric acid, with only one detected in the previous analysis of the same traits. Further, we leveraged shared identity-by-descent genetic segments in the region of the uric acid locus to fine-map the signal, refining the known locus by a factor of 4. Finally, we report a novel associations for height (rs17629022, P< 2.1 × 10⁻⁸).
Collapse
Affiliation(s)
- Eimear E Kenny
- Department of Computer Science, Columbia University, 505 Computer Science Building, 1214 Amsterdam Ave.: Mailcode 0401, New York, NY 10027-7003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Santoro A, Balbi V, Balducci E, Pirazzini C, Rosini F, Tavano F, Achilli A, Siviero P, Minicuci N, Bellavista E, Mishto M, Salvioli S, Marchegiani F, Cardelli M, Olivieri F, Nacmias B, Chiamenti AM, Benussi L, Ghidoni R, Rose G, Gabelli C, Binetti G, Sorbi S, Crepaldi G, Passarino G, Torroni A, Franceschi C. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease. PLoS One 2010; 5:e12037. [PMID: 20700462 PMCID: PMC2917370 DOI: 10.1371/journal.pone.0012037] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/26/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Welsh-Bohmer KA, Ostbye T, Sanders L, Pieper CF, Hayden KM, Tschanz JT, Norton MC, Cache Country Study Group. Neuropsychological performance in advanced age: influences of demographic factors and Apolipoprotein E: findings from the Cache County Memory Study. Clin Neuropsychol 2009; 23:77-99. [PMID: 18609337 PMCID: PMC2761675 DOI: 10.1080/13854040801894730] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Cache County Study of Memory in Aging (CCMS) is an epidemiological study of Alzheimer's disease (AD), mild cognitive disorders, and aging in a population of exceptionally long-lived individuals (7th to 11th decade). Observation of population members without dementia provides an opportunity for establishing the range of normal neurocognitive performance in a representative sample of the very old. We examined neurocognitive performance of the normal participants undergoing full clinical evaluations (n = 507) and we tested the potential modifying effects of apolipoprotein E (APOE) genotype, a known genetic risk factor for the later development of AD. The results indicate that advanced age and low education are related to lower test scores across nearly all of the neurocognitive measures. Gender and APOE epsilon4 both had negligible and inconsistent influences, affecting only isolated measures of memory and expressive speech (in case of gender). The gender and APOE effects disappeared once age and education were controlled. The study of this exceptionally long-lived population provides useful normative information regarding the broad range of "normal" cognition seen in advanced age. Among elderly without dementia or other cognitive impairment, APOE does not appear to exert any major effects on cognition once other demographic influences are controlled.
Collapse
Affiliation(s)
- Katheen A Welsh-Bohmer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | |
Collapse
Collaborators
James Anthony, Erin Bigler, John Breitner, Ron Brookmeyer, James Burke, Eric Christopher, Chris Corcoran, Jane Gagliardi, Robert Green, Michael Helms, Christine Hulette, Ara S Khatchaturian, Liz Klein, Carol Leslie, Constantine Lyketsos, Lawrence Mayer, John Morris, Ron Munger, Chiadi Onyike, Ron Petersen, Kathy Piercy, Brenda Plassman, Peter Rabins, Pritham Raj, Russell Ray, Ingmar Skoog, David Steffens, Martin Steinberg, Marty Toohill, Leslie Toone, Jeannette Townsend, Lauren Warren, Heidi Wengreen, Michael Williams, Bonita Wyse, Peter Zandi,
Collapse
|
20
|
Beeri MS, Davidson M, Silverman JM, Schmeidler J, Springer RR, Noy S, Goldbourt U. Religious education and midlife observance are associated with dementia three decades later in Israeli men. J Clin Epidemiol 2008; 61:1161-8. [PMID: 18538995 PMCID: PMC2911134 DOI: 10.1016/j.jclinepi.2007.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to examine the association of religious education and observance with dementia among participants in the Israeli Ischemic Heart Disease study. STUDY DESIGN AND SETTING We assessed dementia in 1,890 participants among 2,604 survivors of 10,059 participants in the Israeli Ischemic Heart Disease study, a longitudinal investigation of the incidence and risk factors for cardiovascular disease among Jewish male civil servants in Israel. Face-to-face interviews were conducted with 651 subjects identified as possibly demented by the Modified Telephone Interview for Cognitive Status. RESULTS Of 1,628 subjects included in this analysis (mean age 82 at assessment), 308 (18.9%) had dementia. The prevalence rates of dementia (and odds ratios (ORs) relative to those with exclusively religious education, adjusted for age, area of birth, and socioeconomic status) were 27.1% for those with exclusively religious education, 12.6% (OR=0.49) for those with mixed education, and 16.1% (OR=0.76) for those with secular education. For religious self-definition and practice, the prevalence rates were 9.7%, 17.7%, 14.1%, 19.3%, and 28.8% for categories from least to most religious (ORs relative to the most religious: 0.43, 0.67, 0.48, 0.55). CONCLUSIONS Examining lifestyles associated with religiosity might shed light onto environmental risks for dementia. Mechanisms underlying these associations remain elusive.
Collapse
|
21
|
Raule N, Sevini F, Santoro A, Altilia S, Franceschi C. Association studies on human mitochondrial DNA: methodological aspects and results in the most common age-related diseases. Mitochondrion 2006; 7:29-38. [PMID: 17306632 DOI: 10.1016/j.mito.2006.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/21/2006] [Indexed: 11/15/2022]
Abstract
Mitochondrial DNA (mtDNA) follows direct maternal inheritance and, as such, can be used in phylogenetic studies to determine a human lineage tree. The presence of common polymorphisms allows a classification of mtDNA in haplogroups and sub-haplogroups, according to the branch they belong to. Thanks to the rapidly growing number of mtDNA sequences available, this classification is being corrected and redefined to be more accurate. In parallel with this process, several studies are trying to identify an association between common mtDNA polymorphisms and common complex traits, as hypothesized by the common disease-common variant theory. Here we review the associations already reported with the main age-related complex diseases and we identify the critical points (sample size, size of the recruiting area, careful matching between cases and controls regarding geographical origin and ethnicity, data quality checking) to be taken in account in planning such studies. On the whole, this research area is opening a new perspective as an important component of "mitochondrial medicine", capable of identifying new molecular targets for the diagnosis, prevention and treatment of common complex diseases.
Collapse
Affiliation(s)
- Nicola Raule
- Centro Interdipartimentale L. Galvani, via S. Giacomo 12, 40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
22
|
Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, Monti D, Bellizzi D, Passarino G, Rose G, De Benedictis G, Franceschi C. Mitochondrial DNA involvement in human longevity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1388-99. [PMID: 16857160 DOI: 10.1016/j.bbabio.2006.05.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/14/2006] [Accepted: 05/26/2006] [Indexed: 12/01/2022]
Abstract
The main message of this review can be summarized as follows: aging and longevity, as complex traits having a significant genetic component, likely depend on a number of nuclear gene variants interacting with mtDNA variability both inherited and somatic. We reviewed the data available in the literature with particular attention to human longevity, and argued that what we hypothesize for aging and longevity could have a more general relevance and be extended to other age-related complex traits such as Alzheimer's and Parkinson's diseases. The genetics which emerges for complex traits, including aging and longevity, is thus even more complicated than previously thought, as epistatic interactions between nuclear gene polymorphisms and mtDNA variability (both somatic and inherited) as well as between mtDNA somatic mutations (tissue specific) and mtDNA inherited variants (haplogroups and sub-haplogroups) must be considered as additional players capable of explaining a part of the aging and longevity phenotype. To test this hypothesis is one of the main challenge in the genetics of aging and longevity in the next future.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental Pathology, University of Bologna, via S Giacomo 12, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCauley JL, Hahs DW, Jiang L, Scott WK, Welsh-Bohmer KA, Jackson CE, Vance JM, Pericak-Vance MA, Haines JL. Combinatorial Mismatch Scan (CMS) for loci associated with dementia in the Amish. BMC MEDICAL GENETICS 2006; 7:19. [PMID: 16515697 PMCID: PMC1448207 DOI: 10.1186/1471-2350-7-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Population heterogeneity may be a significant confounding factor hampering detection and verification of late onset Alzheimer's disease (LOAD) susceptibility genes. The Amish communities located in Indiana and Ohio are relatively isolated populations that may have increased power to detect disease susceptibility genes. METHODS We recently performed a genome scan of dementia in this population that detected several potential loci. However, analyses of these data are complicated by the highly consanguineous nature of these Amish pedigrees. Therefore we applied the Combinatorial Mismatch Scanning (CMS) method that compares identity by state (IBS) (under the presumption of identity by descent (IBD)) sharing in distantly related individuals from such populations where standard linkage and association analyses are difficult to implement. CMS compares allele sharing between individuals in affected and unaffected groups from founder populations. Comparisons between cases and controls were done using two Fisher's exact tests, one testing for excess in IBS allele frequency and the other testing for excess in IBS genotype frequency for 407 microsatellite markers. RESULTS In all, 13 dementia cases and 14 normal controls were identified who were not related at least through the grandparental generation. The examination of allele frequencies identified 24 markers (6%) nominally (p < or = 0.05) associated with dementia; the most interesting (empiric p < or = 0.005) markers were D3S1262, D5S211, and D19S1165. The examination of genotype frequencies identified 21 markers (5%) nominally (p < or = 0.05) associated with dementia; the most significant markers were both located on chromosome 5 (D5S1480 and D5S211). Notably, one of these markers (D5S211) demonstrated differences (empiric p < or = 0.005) under both tests. CONCLUSION Our results provide the initial groundwork for identifying genes involved in late-onset Alzheimer's disease within the Amish community. Genes identified within this isolated population will likely play a role in a subset of late-onset AD cases across more general populations. Regions highlighted by markers demonstrating suggestive allelic and/or genotypic differences will be the focus of more detailed examination to characterize their involvement in dementia.
Collapse
Affiliation(s)
- Jacob L McCauley
- Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel W Hahs
- Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lan Jiang
- Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William K Scott
- Center for Human Genetics and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kathleen A Welsh-Bohmer
- Joseph & Kathleen Bryan ADRC/Division of Neurology, Duke University Medical Center, Durham, NC, USA
| | | | - Jeffery M Vance
- Center for Human Genetics and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Margaret A Pericak-Vance
- Center for Human Genetics and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jonathan L Haines
- Center for Human Genetics Research and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|