1
|
Rothschild B. The character of parietal and orbital alterations in the superfamily Hominoidea (families Hominidae [exclusive of Homo] and Hylobotidae). Am J Primatol 2020; 83:e23227. [PMID: 33347652 DOI: 10.1002/ajp.23227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Parietal external surface disruption routinely referred to as porotic hyperostosis, and orbital alterations (cribra orbitalia), have been attributed to anemia-related bone marrow hyperplasia in humans. A recent study in humans identified that they were actually vascular in nature. Skeletons were examined and epi-illumination surface microscopy was performed on the parietal region and orbit of 156 Hominidae and 123 Hylobotidae to assess if these phenomena were trans-phylogenetic. Trans-cortical channels were recognized on the basis of visualized ectocranial surface defects penetrating the parietal; cribra orbitalia, by alteration of the normally smooth orbital roof appearance. Trans-cortical parietal channels, ranging in size from 20 to 100 µm, are rare in Gorilla and Pan troglodytes and absent in Pan paniscus. They are universally present in adult Pongo abeli and in Hylobatidae, independent of species. Cribra orbitalia was common in Hylobotidae, Pongo pygmaeus and P. abelii, less prevalent in adult P. troglodytes, and not recognized in any Gorilla gorilla or P. paniscus examined. The proliferative form predominated, with the exception of Hylobates concolor and muelleri, in which uncalcified vascular grooves predominated. No correlation was observed between the presence of either trans-cortical channels or cribra orbitalia and fractures, osteoarthritis, or inflammatory arthritis. Parietal alterations observed in apes are trans-cortical channels, analogous to those observed in humans, and do not represent porosity. Similarly, cribra orbitalia in apes is confirmed as vascular in nature. The proliferative form apparently represents calcification of blood vessel walls, indistinguishable from observations in humans. Predominant presence in adults rather than in juveniles suggests that both forms are acquired rather than developmental in derivation. Sex and bone alteration/disease-independence suggests that mechanical, endocrine, and inflammatory phenomena do not contribute to the development of either. Further, independent occurrence of trans-cortical channels and cribra orbitalia suggests that they do not have a shared etiology.
Collapse
Affiliation(s)
- Bruce Rothschild
- Department of Vertebrate Paleontology, Carnegie Museum, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Segmental duplications are hot spots of copy number variants affecting barley gene content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1073-1088. [PMID: 32338390 PMCID: PMC7496488 DOI: 10.1111/tpj.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/31/2023]
Abstract
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low-copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD-rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome-wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.
Collapse
Affiliation(s)
- Gianluca Bretani
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Chiara Ferrandi
- Parco Tecnologico PadanoLoc. C.na CodazzaVia Einstein26900LodiItaly
| | | | - Robbie Waugh
- James Hutton Institute, InvergowrieDundeeDD2 5DAUK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 306466GaterslebenGermany
- Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| |
Collapse
|
3
|
Demaerel W, Mostovoy Y, Yilmaz F, Vervoort L, Pastor S, Hestand MS, Swillen A, Vergaelen E, Geiger EA, Coughlin CR, Chow SK, McDonald-McGinn D, Morrow B, Kwok PY, Xiao M, Emanuel BS, Shaikh TH, Vermeesch JR. The 22q11 low copy repeats are characterized by unprecedented size and structural variability. Genome Res 2019; 29:1389-1401. [PMID: 31481461 PMCID: PMC6724673 DOI: 10.1101/gr.248682.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Low copy repeats (LCRs) are recognized as a significant source of genomic instability, driving genome variability and evolution. The Chromosome 22 LCRs (LCR22s) mediate nonallelic homologous recombination (NAHR) leading to the 22q11 deletion syndrome (22q11DS). However, LCR22s are among the most complex regions in the genome, and their structure remains unresolved. The difficulty in generating accurate maps of LCR22s has also hindered localization of the deletion end points in 22q11DS patients. Using fiber FISH and Bionano optical mapping, we assembled LCR22 alleles in 187 cell lines. Our analysis uncovered an unprecedented level of variation in LCR22s, including LCR22A alleles ranging in size from 250 to 2000 kb. Further, the incidence of various LCR22 alleles varied within different populations. Additionally, the analysis of LCR22s in 22q11DS patients and their parents enabled further refinement of the rearrangement site within LCR22A and -D, which flank the 22q11 deletion. The NAHR site was localized to a 160-kb paralog shared between the LCR22A and -D in seven 22q11DS patients. Thus, we present the most comprehensive map of LCR22 variation to date. This will greatly facilitate the investigation of the role of LCR variation as a driver of 22q11 rearrangements and the phenotypic variability among 22q11DS patients.
Collapse
Affiliation(s)
| | - Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Feyza Yilmaz
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204, USA
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | - Steven Pastor
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew S Hestand
- Departement of Human Genetics, KU Leuven, Leuven, 3000 Belgium
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Ann Swillen
- Departement of Human Genetics, KU Leuven, Leuven, 3000 Belgium
| | - Elfi Vergaelen
- Departement of Human Genetics, KU Leuven, Leuven, 3000 Belgium
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Donna McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bernice Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
4
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
5
|
Franchini LF, Pollard KS. Genomic approaches to studying human-specific developmental traits. Development 2015; 142:3100-12. [DOI: 10.1242/dev.120048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and non-human – that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues.
Collapse
Affiliation(s)
- Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Abstract
The great ape families are the species most closely related to our own, comprising chimpanzees, bonobos, gorillas, and orangutans. They live exclusively in tropical rainforests in Central Africa and the islands of Southeast Asia. Due to their close evolutionary relationship with humans, great apes share many cognitive, physiological, and morphological similarities with humans. The members of the great ape family make obvious models to facilitate the further understanding about humans' biology and history. This review will discuss how the recent addition of genome-wide data from great apes has furthered humans' understanding of these species and humanity, especially in the realm of evolutionary genetics.
Collapse
|
7
|
Abstract
Given the unprecedented tools that are now available for rapidly comparing genomes, the identification and study of genetic and genomic changes that are unique to our species have accelerated, and we are entering a golden age of human evolutionary genomics. Here we provide an overview of these efforts, highlighting important recent discoveries, examples of the different types of human-specific genomic and genetic changes identified, and salient trends, such as the localization of evolutionary adaptive changes to complex loci that are highly enriched for disease associations. Finally, we discuss the remaining challenges, such as the incomplete nature of current genome sequence assemblies and difficulties in linking human-specific genomic changes to human-specific phenotypic traits.
Collapse
|
8
|
Marotta M, Piontkivska H, Tanaka H. Molecular trajectories leading to the alternative fates of duplicate genes. PLoS One 2012; 7:e38958. [PMID: 22720000 PMCID: PMC3375281 DOI: 10.1371/journal.pone.0038958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/14/2012] [Indexed: 11/21/2022] Open
Abstract
Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2) gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes), whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4%) than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes.
Collapse
Affiliation(s)
- Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
9
|
Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L. Polygenic sex determination system in zebrafish. PLoS One 2012; 7:e34397. [PMID: 22506019 PMCID: PMC3323597 DOI: 10.1371/journal.pone.0034397] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite the popularity of zebrafish as a research model, its sex determination (SD) mechanism is still unknown. Most cytogenetic studies failed to find dimorphic sex chromosomes and no primary sex determining switch has been identified even though the assembly of zebrafish genome sequence is near to completion and a high resolution genetic map is available. Recent publications suggest that environmental factors within the natural range have minimal impact on sex ratios of zebrafish populations. The primary aim of this study is to find out more about how sex is determined in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS Using classical breeding experiments, we found that sex ratios across families were wide ranging (4.8% to 97.3% males). On the other hand, repeated single pair crossings produced broods of very similar sex ratios, indicating that parental genotypes have a role in the sex ratio of the offspring. Variation among family sex ratios was reduced after selection for breeding pairs with predominantly male or female offspring, another indication that zebrafish sex is regulated genetically. Further examinations by a PCR-based "blind assay" and array comparative genomic hybridization both failed to find universal sex-linked differences between the male and female genomes. Together with the ability to increase the sex bias of lines by selective breeding, these data suggest that zebrafish is unlikely to utilize a chromosomal sex determination (CSD) system. CONCLUSIONS/SIGNIFICANCE Taken together, our study suggests that zebrafish sex is genetically determined with limited, secondary influences from the environment. As we have not found any sign for CSD in the species, we propose that the zebrafish has a polygenic sex determination system.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Richard Bartfai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zijie Lim
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Kellee R. Siegfried
- Department of Genetics, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Animal Sciences and Animal Husbandry, University of Pannonia, Keszthely, Hungary
| |
Collapse
|
10
|
Abstract
Genomic structural variation (SV) can be thought of on a continuum from a single base pair insertion/deletion (INDEL) to large megabase-scale rearrangements involving insertions, deletions, duplications, inversions, or translocations of whole chromosomes or chromosome arms. These variants can occur in coding or noncoding DNA, they can be inherited or arise sporadically in the germline or somatic cells. Many of these events are segregating in the population and can be considered common alleles while others are new alleles and thus rare events. All species studied to date harbor structural variants and these may be benign, contributing to phenotypes such as sensory perception and immunity, or pathogenic resulting in genomic disorders including DiGeorge/velocardiofacial, Smith-Margenis, Williams-Beuren, and Prader-Willi syndromes. As structural variants are identified, validated, and their significance, origin, and prevalence are elucidated, it is of critical importance that these data be collected and collated in a way that can be easily accessed and analyzed. This chapter describes current structural variation online resources (see Fig. 1 and Table 1), highlights the challenges in capturing, storing, and displaying SV data, and discusses how dbVar and DGVa, the genomic structural variation databases developed at NCBI and EBI, respectively, were designed to address these issues.
Collapse
Affiliation(s)
- Tam P. Sneddon
- NCBI, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Deanna M. Church
- NCBI, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Abstract
The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
Collapse
Affiliation(s)
- David W Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
12
|
Armengol G, Knuutila S, Lozano JJ, Madrigal I, Caballín MR. Identification of human specific gene duplications relative to other primates by array CGH and quantitative PCR. Genomics 2010; 95:203-9. [PMID: 20153417 DOI: 10.1016/j.ygeno.2010.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/13/2010] [Accepted: 02/03/2010] [Indexed: 01/30/2023]
Abstract
In order to identify human lineage specific (HLS) copy number differences (CNDs) compared to other primates, we performed pair wise comparisons (human vs. chimpanzee, gorilla and orangutan) by using cDNA array comparative genomic hybridization (CGH). A set of 23 genes with HLS duplications were identified, as well as other lineage differences in gene copy number specific of chimpanzee, gorilla and orangutan. Each species has gained more copies of specific genes rather than losing gene copies. Eleven of the 23 genes have only been observed to have undergone HLS duplication in Fortna et al. (2004) and in the present study. Then, seven of these 11 genes were analyzed by quantitative PCR in chimpanzee, gorilla and orangutan, as well as in other six primate species (Hylobates lar, Cercopithecus aethiops, Papio hamadryas, Macaca mulatta, Lagothrix lagothricha, and Saimiri sciureus). Six genes confirmed array CGH data, and four of them appeared to have bona fide HLS duplications (ABCB10, E2F6, CDH12, and TDG genes). We propose that these gene duplications have a potential to contribute to specific human phenotypes.
Collapse
Affiliation(s)
- Gemma Armengol
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | | | | | | | | |
Collapse
|
13
|
Perry GH. The evolutionary significance of copy number variation in the human genome. Cytogenet Genome Res 2009; 123:283-7. [PMID: 19287166 DOI: 10.1159/000184719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2008] [Indexed: 12/27/2022] Open
Abstract
Copy number variation provides the raw material for gene family expansion and diversification, which is an important evolutionary force. Moreover, copy number variants (CNVs) can influence gene transcriptional and translational levels and have been associated with complex disease susceptibility. Therefore, natural selection may have affected at least some of the greater than one thousand CNVs thus far discovered among the genomes of phenotypically normal humans. While identifying and understanding particular instances of natural selection may shed light on important aspects of human evolutionary history, our ability to analyze CNVs in traditional population genetic frameworks has been limited. However, progress has been made by adapting some of these frameworks for use with copy number data. Moving forward, these efforts will be aided by non-human organism studies of the population genetics of copy number variation, and by more direct comparisons of within-species copy number variation and between-species copy number fixation.
Collapse
Affiliation(s)
- G H Perry
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Koszul R, Fischer G. A prominent role for segmental duplications in modeling Eukaryotic genomes. C R Biol 2009; 332:254-66. [DOI: 10.1016/j.crvi.2008.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/12/2008] [Indexed: 01/22/2023]
|
15
|
Perry GH, Yang F, Marques-Bonet T, Murphy C, Fitzgerald T, Lee AS, Hyland C, Stone AC, Hurles ME, Tyler-Smith C, Eichler EE, Carter NP, Lee C, Redon R. Copy number variation and evolution in humans and chimpanzees. Genes Dev 2008; 18:1698-710. [PMID: 18775914 PMCID: PMC2577862 DOI: 10.1101/gr.082016.108] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/26/2008] [Indexed: 11/24/2022]
Abstract
Copy number variants (CNVs) underlie many aspects of human phenotypic diversity and provide the raw material for gene duplication and gene family expansion. However, our understanding of their evolutionary significance remains limited. We performed comparative genomic hybridization on a single human microarray platform to identify CNVs among the genomes of 30 humans and 30 chimpanzees as well as fixed copy number differences between species. We found that human and chimpanzee CNVs occur in orthologous genomic regions far more often than expected by chance and are strongly associated with the presence of highly homologous intrachromosomal segmental duplications. By adapting population genetic analyses for use with copy number data, we identified functional categories of genes that have likely evolved under purifying or positive selection for copy number changes. In particular, duplications and deletions of genes with inflammatory response and cell proliferation functions may have been fixed by positive selection and involved in the adaptive phenotypic differentiation of humans and chimpanzees.
Collapse
Affiliation(s)
- George H. Perry
- School of Human Evolution & Social Change, Arizona State University, Tempe, Arizona 85287, USA
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington School of Medicine and the Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - Carly Murphy
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Tomas Fitzgerald
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Arthur S. Lee
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Courtney Hyland
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Anne C. Stone
- School of Human Evolution & Social Change, Arizona State University, Tempe, Arizona 85287, USA
| | - Matthew E. Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine and the Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - Nigel P. Carter
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Charles Lee
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard Redon
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
16
|
Bonnefont J, Nikolaev SI, Perrier AL, Guo S, Cartier L, Sorce S, Laforge T, Aubry L, Khaitovich P, Peschanski M, Antonarakis SE, Krause KH. Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development. Am J Hum Genet 2008; 83:208-18. [PMID: 18656177 DOI: 10.1016/j.ajhg.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/13/2008] [Accepted: 07/07/2008] [Indexed: 12/28/2022] Open
Abstract
The size and organization of the brain neocortex has dramatically changed during primate evolution. This is probably due to the emergence of novel genes after duplication events, evolutionary changes in gene expression, and/or acceleration in protein evolution. Here, we describe a human Ret finger protein-like (hRFPL)1,2,3 gene cluster on chromosome 22, which is transactivated by the corticogenic transcription factor Pax6. High hRFPL1,2,3 transcript levels were detected at the onset of neurogenesis in differentiating human embryonic stem cells and in the developing human neocortex, whereas the unique murine RFPL gene is expressed in liver but not in neural tissue. Study of the evolutionary history of the RFPL gene family revealed that the RFPL1,2,3 gene ancestor emerged after the Euarchonta-Glires split. Subsequent duplication events led to the presence of multiple RFPL1,2,3 genes in Catarrhini ( approximately 34 mya) resulting in an increase in gene copy number in the hominoid lineage. In Catarrhini, RFPL1,2,3 expression profile diverged toward the neocortex and cerebellum over the liver. Importantly, humans showed a striking increase in cortical RFPL1,2,3 expression in comparison to their cerebellum, and to chimpanzee and macaque neocortex. Acceleration in RFPL-protein evolution was also observed with signs of positive selection in the RFPL1,2,3 cluster and two neofunctionalization events (acquisition of a specific RFPL-Defining Motif in all RFPLs and of a N-terminal 29 amino-acid sequence in catarrhinian RFPL1,2,3). Thus, we propose that the recent emergence and multiplication of the RFPL1,2,3 genes contribute to changes in primate neocortex size and/or organization.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Darai-Ramqvist E, Sandlund A, Müller S, Klein G, Imreh S, Kost-Alimova M. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. Genome Res 2008; 18:370-9. [PMID: 18230801 DOI: 10.1101/gr.7010208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.
Collapse
Affiliation(s)
- Eva Darai-Ramqvist
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Lee AS, Gutiérrez-Arcelus M, Perry GH, Vallender EJ, Johnson WE, Miller GM, Korbel JO, Lee C. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum Mol Genet 2008; 17:1127-36. [PMID: 18180252 DOI: 10.1093/hmg/ddn002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copy number variants (CNVs) are heritable gains and losses of genomic DNA in normal individuals. While copy number variation is widely studied in humans, our knowledge of CNVs in other mammalian species is more limited. We have designed a custom array-based comparative genomic hybridization (aCGH) platform with 385 000 oligonucleotide probes based on the reference genome sequence of the rhesus macaque (Macaca mulatta), the most widely studied non-human primate in biomedical research. We used this platform to identify 123 CNVs among 10 unrelated macaque individuals, with 24% of the CNVs observed in multiple individuals. We found that segmental duplications were significantly enriched at macaque CNV loci. We also observed significant overlap between rhesus macaque and human CNVs, suggesting that certain genomic regions are prone to recurrent CNV formation and instability, even across a total of approximately 50 million years of primate evolution ( approximately 25 million years in each lineage). Furthermore, for eight of the CNVs that were observed in both humans and macaques, previous human studies have reported a relationship between copy number and gene expression or disease susceptibility. Therefore, the rhesus macaque offers an intriguing, non-human primate outbred model organism with which hypotheses concerning the specific functions of phenotypically relevant human CNVs can be tested.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Pathology, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fickelscher I, Liehr T, Watts K, Bryant V, Barber JCK, Heidemann S, Siebert R, Hertz JM, Tumer Z, Simon Thomas N. The variant inv(2)(p11.2q13) is a genuinely recurrent rearrangement but displays some breakpoint heterogeneity. Am J Hum Genet 2007; 81:847-56. [PMID: 17847011 PMCID: PMC2227935 DOI: 10.1086/521226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/28/2007] [Indexed: 02/04/2023] Open
Abstract
Human chromosome 2 contains large blocks of segmental duplications (SDs), both within and between proximal 2p and proximal 2q, and these may contribute to the frequency of the common variant inversion inv(2)(p11.2q13). Despite their being cytogenetically homogeneous, we have identified four different breakpoint combinations by fluorescence in situ hybridization mapping of 40 cases of inv(2)(p11.2q13) of European origin. For the vast majority of inversions (35/40), the breakpoints fell within the same spanning BACs, which hybridized to both 2p11.2 and 2q13 on the normal and inverted homologues. Sequence analysis revealed that these BACs contain a significant proportion of intrachromosomal SDs with sequence homology to the reciprocal breakpoint region. In contrast, BACs spanning the rare breakpoint combinations contain fewer SDs and with sequence homology only to the same chromosome arm. Using haplotype analysis, we identified a number of related family subgroups with identical or very closely related haplotypes. However, the majority of cases were not related, demonstrating for the first time that the inv(2)(p11.2q13) is a truly recurrent rearrangement. Therefore, there are three explanations to account for the frequent observation of the inv(2)(p11.2q13): the majority have arisen independently in different ancestors, while a minority either have been transmitted from a common founder or have different breakpoints at the molecular cytogenetic level.
Collapse
Affiliation(s)
- Ina Fickelscher
- Institut fur Humangenetik und Anthropologie, Friedrich-Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dumas L, Kim YH, Karimpour-Fard A, Cox M, Hopkins J, Pollack JR, Sikela JM. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 2007; 17:1266-77. [PMID: 17666543 PMCID: PMC1950895 DOI: 10.1101/gr.6557307] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Given the evolutionary importance of gene duplication to the emergence of species-specific traits, we have extended the application of cDNA array-based comparative genomic hybridization (aCGH) to survey gene duplications and losses genome-wide across 10 primate species, including human. Using human cDNA arrays that contained 41,126 cDNAs, corresponding to 24,473 unique human genes, we identified 4159 genes that likely represent most of the major lineage-specific gene copy number gains and losses that have occurred in these species over the past 60 million years. We analyzed 1,233,780 gene-to-gene data points and found that gene gains typically outnumbered losses (ratio of gains/losses = 2.34) and these frequently cluster in complex and dynamic genomic regions that are likely to serve as gene nurseries. Almost one-third of all human genes (6696) exhibit an aCGH- predicted change in copy number in one or more of these species, and within-species gene amplification is also evident. Many of the genes identified here are likely to be important to lineage-specific traits including, for example, human-specific duplications of the AQP7 gene, which represent intriguing candidates to underlie the key physiological adaptations in thermoregulation and energy utilization that permitted human endurance running.
Collapse
Affiliation(s)
- Laura Dumas
- Human Medical Genetics Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | - Young H. Kim
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Anis Karimpour-Fard
- Department of Preventative Medicine and Biometrics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | - Michael Cox
- Human Medical Genetics Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | - Janet Hopkins
- Human Medical Genetics Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | - Jonathan R. Pollack
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - James M. Sikela
- Human Medical Genetics Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
- Corresponding author.E-mail ; fax (303) 724-3663
| |
Collapse
|
21
|
Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2007; 2:e327. [PMID: 17389918 PMCID: PMC1828620 DOI: 10.1371/journal.pone.0000327] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/05/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Array Comparative Genomic Hybridization (a-CGH) is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA). METHODS AND FINDINGS CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5%) of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872) with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524) abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs) of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. CONCLUSIONS This large set of clinical results demonstrates the significantly improved sensitivity of CMA for the detection of clinically relevant genomic imbalances and highlights the need for comprehensive genetic counseling to facilitate accurate clinical correlation and interpretation.
Collapse
Affiliation(s)
- Xinyan Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiangzhen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. Lance Cooper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William R. Wells
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cathy M. Sullivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Trilochan Sahoo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Svetlana A. Yatsenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhishu Ou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - A. Craig Chinault
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Patricia A. Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
23
|
Abstract
Chromosome deletions do abound in cancer and are detected in certain regions in a non-random manner. Although their relevance remains elusive, it is a general agreement that segmental losses provide the cell with selective growth advantage. Consequently these may contain genes and/or regulatory sequences that control normal growth and inhibit malignancy. We have developed a monochromosomal hybrid based experimental model for the generation and functional analysis of deletions, that is called "elimination test" (Et). Focused on human chromosome 3 - that was known to carry multiple 3p deletions - the Et was expected to restrict a 3p tumor suppressor region to a sufficiently small segment that permits the selection of a critically important candidate gene. Surprisingly, we detected three regions that were lost in all or majority of tumors: CER1 (3p21.3, Mb: 43.32-45.74), CER2 (3p22, Mb: 37.83-39.06) and FER (3p14.3-p21.2, Mb: 50.12-58.03). In contrast a 3q26-qter region (CRR) was regularly retained. CER1 - our main focus - contains multiple genes that may inhibit tumor growth, but 3 genes, RIS1, LF (LTF) and LIMD1 have already the necessary experimental support to be considered bona fide tumor suppressors. Tumor suppressor region borders display instability features including: (1) they break in evolution and in tumors, (2) they evolve horizontally, and (3) they are enriched with pseudogene insertions. The most remarkable features at the breakpoint cluster regions were segmental duplications that drive horizontal evolution and contribute to cancer associated instability.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Karolinska Institutet, Microbiology Tumor and Cell Biology Center (MTC), Box 280, 171 77 Stockholm, Sweden
| | | |
Collapse
|
24
|
Kehrer-Sawatzki H, Cooper DN. Structural divergence between the human and chimpanzee genomes. Hum Genet 2006; 120:759-78. [PMID: 17066299 DOI: 10.1007/s00439-006-0270-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 09/19/2006] [Indexed: 01/17/2023]
Abstract
The structural microheterogeneity evident between the human and chimpanzee genomes is quite considerable and includes inversions and duplications as well as deletions, ranging in size from a few base-pairs up to several megabases (Mb). Insertions and deletions have together given rise to at least 150 Mb of genomic DNA sequence that is either present or absent in humans as compared to chimpanzees. Such regions often contain paralogous sequences and members of multigene families thereby ensuring that the human and chimpanzee genomes differ by a significant fraction of their gene content. There is as yet no evidence to suggest that the large chromosomal rearrangements which serve to distinguish the human and chimpanzee karyotypes have influenced either speciation or the evolution of lineage-specific traits. However, the myriad submicroscopic rearrangements in both genomes, particularly those involving copy number variation, are unlikely to represent exclusively neutral changes and hence promise to facilitate the identification of genes that have been important for human-specific evolution.
Collapse
|
25
|
Popesco MC, Maclaren EJ, Hopkins J, Dumas L, Cox M, Meltesen L, McGavran L, Wyckoff GJ, Sikela JM. Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains. Science 2006; 313:1304-7. [PMID: 16946073 DOI: 10.1126/science.1127980] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Extreme gene duplication is a major source of evolutionary novelty. A genome-wide survey of gene copy number variation among human and great ape lineages revealed that the most striking human lineage-specific amplification was due to an unknown gene, MGC8902, which is predicted to encode multiple copies of a protein domain of unknown function (DUF1220). Sequences encoding these domains are virtually all primate-specific, show signs of positive selection, and are increasingly amplified generally as a function of a species' evolutionary proximity to humans, where the greatest number of copies (212) is found. DUF1220 domains are highly expressed in brain regions associated with higher cognitive function, and in brain show neuron-specific expression preferentially in cell bodies and dendrites.
Collapse
Affiliation(s)
- Magdalena C Popesco
- Human Medical Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brault V, Pereira P, Duchon A, Hérault Y. Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization. PLoS Genet 2006; 2:e86. [PMID: 16839184 PMCID: PMC1500809 DOI: 10.1371/journal.pgen.0020086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Transgénose, IEM, CNRS Uni Orléans, UMR6218, Orléans, France
| | | | | | | |
Collapse
|
27
|
Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, Nowak N, Hameister H, Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet 2006; 120:270-84. [PMID: 16838144 DOI: 10.1007/s00439-006-0217-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
The structural diversity of the human genome is much higher than previously assumed although its full extent remains unknown. To investigate the association between segmental duplications that display constitutive copy number differences (CNDs) between humans and the great apes and those which exhibit polymorphic copy number variations (CNVs) between humans, we analysed a BAC array enriched with segmental duplications displaying such CNDs. This study documents for the first time that in addition to human-specific gains common to all humans, these duplication clusters (DCs) also exhibit polymorphic CNVs > 40 kb. Segmental duplication is known to have been a frequent event during human genome evolution. Importantly, among the CNV-associated genes identified here, those involved in transcriptional regulation were found to be significantly overrepresented. Complex patterns of variation were evident at sites of DCs, manifesting as inter-individual differentially sized copy number alterations at the same genomic loci. Thus, CNVs associated with segmental duplications do not simply represent insertion/deletion polymorphisms, but rather constitute a wide variety of rearrangements involving differential amplification and partial gains and losses with high inter-individual variability. Although the number of CNVs was not found to differ between Africans and Caucasians/Asians, the average number of variant patterns per locus was significantly lower in Africans. Thus, complex variation patterns characterizing segmental duplications result from relatively recent genomic rearrangements. The high number of these rearrangements, some of which are potentially recurrent, together with differences in population size and expansion dynamics, may account for the greater diversity of CNV in Caucasians/Asians as compared with Africans.
Collapse
Affiliation(s)
- Violaine Goidts
- Department of Human Genetics, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, Carter NP, Scherer SW, Lee C. Copy number variation: new insights in genome diversity. Genome Res 2006; 16:949-61. [PMID: 16809666 DOI: 10.1101/gr.3677206] [Citation(s) in RCA: 562] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA copy number variation has long been associated with specific chromosomal rearrangements and genomic disorders, but its ubiquity in mammalian genomes was not fully realized until recently. Although our understanding of the extent of this variation is still developing, it seems likely that, at least in humans, copy number variants (CNVs) account for a substantial amount of genetic variation. Since many CNVs include genes that result in differential levels of gene expression, CNVs may account for a significant proportion of normal phenotypic variation. Current efforts are directed toward a more comprehensive cataloging and characterization of CNVs that will provide the basis for determining how genomic diversity impacts biological function, evolution, and common human diseases.
Collapse
Affiliation(s)
- Jennifer L Freeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Szamalek JM, Goidts V, Cooper DN, Hameister H, Kehrer-Sawatzki H. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. Hum Genet 2006; 120:126-38. [PMID: 16775709 DOI: 10.1007/s00439-006-0209-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/16/2006] [Indexed: 11/27/2022]
Abstract
The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.
Collapse
Affiliation(s)
- Justyna M Szamalek
- Department of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
30
|
Szamalek JM, Cooper DN, Schempp W, Minich P, Kohn M, Hoegel J, Goidts V, Hameister H, Kehrer-Sawatzki H. Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees. Hum Genet 2005; 119:103-12. [PMID: 16362346 DOI: 10.1007/s00439-005-0117-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/29/2005] [Indexed: 02/06/2023]
Abstract
A combination of inter- and intra-species genome comparisons is required to identify and classify the full spectrum of genetic changes, both subtle and gross, that have accompanied the evolutionary divergence of humans and other primates. In this study, gene order comparisons of 11,518 human and chimpanzee orthologous gene pairs were performed to detect regions of inverted gene order that are potentially indicative of small-scale rearrangements such as inversions. By these means, a total of 71 potential micro-rearrangements were detected, nine of which were considered to represent micro-inversions encompassing more than three genes. These putative inversions were then investigated by FISH and/or PCR analyses and the authenticity of five of the nine inversions, ranging in size from approximately 800 kb to approximately 4.4 Mb, was confirmed. These inversions mapped to 1p13.2-13.3, 7p22.1, 7p13-14.1, 18p11.21-11.22 and 19q13.12 and encompass 50, 14, 16, 7 and 16 known genes, respectively. Intriguingly, four of the confirmed inversions turned out to be polymorphic: three were polymorphic in the chimpanzee and one in humans. It is concluded that micro-inversions make a significant contribution to genomic variability in both humans and chimpanzees and inversion polymorphisms may be more frequent than previously realized.
Collapse
Affiliation(s)
- Justyna M Szamalek
- Department of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|