1
|
Wang Q, Zhang F, Zhou X, Li H, Zhao J, Yuan H. Functional analysis of a novel FBN1 deep intronic variant causing Marfan syndrome in a Chinese patient. Front Genet 2025; 16:1564824. [PMID: 40176791 PMCID: PMC11962022 DOI: 10.3389/fgene.2025.1564824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Marfan syndrome (MFS MIM#154700), due to pathogenic variants in the FBN1 gene, is an autosomal dominant connective tissue disorder, typically involving the skeletal, cardiovascular and ocular systems. Currently, over 3000 MFS patients were reported, and approximately 1800 pathogenic variants in FBN1 were identified. However, the molecular diagnosis still remains challenging for 8%-10% of patients with clinical features suggestive of MFS. In this study, we reported a 2-month-old Chinese female patient whose clinical features were compatible with the MFS. Whole-exome sequencing (WES) identified a novel de novo deep intronic variant, c.4943-8_4943-7insTATGTGATATTCAT TCAC in intron 40 of FBN1 that was predicted to affect the RNA splicing. Minigene analysis showed that this variant causes skipping of exon 41, leading to the deletion of 41 amino acids (c.4943_5065del, p.Val1649_Asp1689del). It confirmed the pathogenic nature of the variant and established the genotype-phenotype relationship. Our study expands the mutation spectrum of FBN1 and emphasizes the importance of deep intronic variant interpretation and the need for additional functional studies to verify the pathogenicity of these variants.
Collapse
Affiliation(s)
- Qingming Wang
- Key Laboratory for Precision Diagnosis and Treatment of Severe Infectious Diseases in Children, Dongguan Maternal and Child Health Hospital, Dongguan, China
| | - Fang Zhang
- Key Laboratory for Precision Diagnosis and Treatment of Severe Infectious Diseases in Children, Dongguan Maternal and Child Health Hospital, Dongguan, China
| | - Xinlong Zhou
- Key Laboratory for Precision Diagnosis and Treatment of Severe Infectious Diseases in Children, Dongguan Maternal and Child Health Hospital, Dongguan, China
| | - Hui Li
- Huadu District People's Hospital, Guangzhou, China
| | - Juan Zhao
- Huadu District People's Hospital, Guangzhou, China
| | - Haiming Yuan
- Key Laboratory for Precision Diagnosis and Treatment of Severe Infectious Diseases in Children, Dongguan Maternal and Child Health Hospital, Dongguan, China
| |
Collapse
|
2
|
Rocha Ferreira J, Passarelli Pereira J, Arpini Botelho AP, do Nascimento Aprijo D, Machado Melo M, Cramer Veiga Rey H, Monteiro Dias G. Genetic insights from a Brazilian cohort of aortopathies through targeted next-generation sequencing and FBN1 direct sequencing. Sci Rep 2024; 14:27172. [PMID: 39511342 PMCID: PMC11543835 DOI: 10.1038/s41598-024-78788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Thoracic aortic diseases (or aortopathies) result from complex interactions between genetic and hemodynamic factors. Often clinically silent, these diseases can lead to lethal complications such as aortic dissection or rupture. This study focused on a Brazilian cohort of 79 individuals with thoracic aortic diseases and explored genetic factors through targeted next-generation sequencing (tNGS) of 15 priority genes and FBN1 direct sequencing. The majority of individuals had nonsyndromic aortopathy, with eight diagnosed with Marfan syndrome (MFS). Pathogenic or likely pathogenic variants (PV/LPV) were found in five genes, namely, FBN1, ACTA2, TGFBR2, MYLK, and SMAD3. Notably, novel variants in FBN1 were identified that contributed to Marfan-like phenotypes. The diagnostic yield for isolated aortopathies was 7.1%, which increased to 55.5% for syndromic cases. Variants of uncertain significance (VUS) were identified, emphasizing the need for further research and familial investigations to refine variant classifications. This study provides valuable insights into the genetic landscape of aortopathies in Brazil, aiding early diagnosis and personalized management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Glauber Monteiro Dias
- Cellular and Tissue Biology Laboratory, State University of Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
3
|
Galante N, Bedeschi MF, Beltrami B, Bailo P, Silva Palomino LA, Piccinini A. Reviewing hereditary connective tissue disorders: Proposals of harmonic medicolegal assessments. Int J Legal Med 2024; 138:2507-2522. [PMID: 39008115 PMCID: PMC11490457 DOI: 10.1007/s00414-024-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Hereditary connective tissue disorders (HCTDs) are a heterogeneous group of inherited diseases. These disorders show genetic mutations with loss of function of primary components of connective tissue, such as collagen and elastic fibers. There are more than 200 conditions that involve hereditary connective tissue disorders, while the most known are Marfan syndrome, Osteogenesis Imperfecta, and Ehlers-Danlos syndromes. These disorders need continuous updates, multidisciplinary skills, and specific methodologic evaluations sharing many medicolegal issues. Marfan syndrome and Ehlers-Danlos syndromes show a high risk of early sudden death. As a consequence of this, postmortem genetic testing can identify novel genotype-phenotype correlations which help the clinicians to assess personalized cardiovascular screening programs among the ill subjects. Genetic testing is also essential to identify children suffering from Osteogenesis Imperfecta, especially when a physical abuse is clinically suspected. However, this is a well-known clinical problem even though there are still challenges to interpret genetic data and variants of unknown significance due to the current extensive use of new genetic/genomic techniques. Additionally, the more significant applications and complexities of genomic testing raise novel responsibilities on the clinicians, geneticists, and forensic practitioners as well, increasing potential liability and medical malpractice claims. This systematic review provides a detailed overview on how multidisciplinary skills belonging to clinicians, medicolegal consultants, radiologists, and geneticists can cooperate to manage HCTDs from autopsy or clinical findings to genetic testing. Thus, technical aspects need to be addressed to the medicolegal community since there is no consensus works or guidelines which specifically discuss these issues.
Collapse
Affiliation(s)
- Nicola Galante
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
| | | | - Benedetta Beltrami
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetic Unit, Milan, Italy
| | - Paolo Bailo
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | | | - Andrea Piccinini
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| |
Collapse
|
4
|
Butnariu LI, Russu G, Luca AC, Sandu C, Trandafir LM, Vasiliu I, Popa S, Ghiga G, Bălănescu L, Țarcă E. Identification of Genetic Variants Associated with Hereditary Thoracic Aortic Diseases (HTADs) Using Next Generation Sequencing (NGS) Technology and Genotype-Phenotype Correlations. Int J Mol Sci 2024; 25:11173. [PMID: 39456956 PMCID: PMC11508433 DOI: 10.3390/ijms252011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Hereditary thoracic aorta diseases (HTADs) are a heterogeneous group of rare disorders whose major manifestation is represented by aneurysm and/or dissection frequently located at the level of the ascending thoracic aorta. The diseases have an insidious evolution and can be encountered as an isolated manifestation or can also be associated with systemic, extra-aortic manifestations (syndromic HTADs). Along with the development of molecular testing technologies, important progress has been made in deciphering the heterogeneous etiology of HTADs. The aim of this study is to identify the genetic variants associated with a group of patients who presented clinical signs suggestive of a syndromic form of HTAD. Genetic testing based on next-generation sequencing (NGS) technology was performed using a gene panel (Illumina TruSight Cardio Sequencing Panel) or whole exome sequencing (WES). In the majority of cases (8/10), de novo mutations in the FBN1 gene were detected and correlated with the Marfan syndrome phenotype. In another case, a known mutation in the TGFBR2 gene associated with Loeys-Dietz syndrome was detected. Two other pathogenic heterozygous variants (one de novo and the other a known mutation) in the SLC2A10 gene (compound heterozygous genotype) were identified in a patient diagnosed with arterial tortuosity syndrome (ATORS). We presented the genotype-phenotype correlations, especially related to the clinical evolution, highlighting the particularities of each patient in a family context. We also emphasized the importance of genetic testing and patient monitoring to avoid acute aortic events.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Georgiana Russu
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
| | - Alina-Costina Luca
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Constantin Sandu
- Department of Medical Abilities, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Laura Bălănescu
- Department of Pediatric Surgery and Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
5
|
Zodanu GKE, Hwang JH, Mehta Z, Sisniega C, Barsegian A, Kang X, Biniwale R, Si MS, Satou GM, Halnon N, UCLA Congenital Heart Defect BioCore Faculty, Grody WW, Van Arsdell GS, Nelson SF, Touma M. High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects. Int J Mol Sci 2024; 25:5469. [PMID: 38791509 PMCID: PMC11122089 DOI: 10.3390/ijms25105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrillin-1 and fibrillin-2, encoded by FBN1 and FBN2, respectively, play significant roles in elastic fiber assembly, with pathogenic variants causing a diverse group of connective tissue disorders such as Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCD). Different genomic variations may lead to heterogeneous phenotypic features and functional consequences. Recent high-throughput sequencing modalities have allowed detection of novel variants that may guide the care for patients and inform the genetic counseling for their families. We performed clinical phenotyping for two newborn infants with complex congenital heart defects. For genetic investigations, we employed next-generation sequencing strategies including whole-genome Single-Nucleotide Polymorphism (SNP) microarray for infant A with valvular insufficiency, aortic sinus dilatation, hydronephrosis, and dysmorphic features, and Trio whole-exome sequencing (WES) for infant B with dextro-transposition of the great arteries (D-TGA) and both parents. Infant A is a term male with neonatal marfanoid features, left-sided hydronephrosis, and complex congenital heart defects including tricuspid regurgitation, aortic sinus dilatation, patent foramen ovale, patent ductus arteriosus, mitral regurgitation, tricuspid regurgitation, aortic regurgitation, and pulmonary sinus dilatation. He developed severe persistent pulmonary hypertension and worsening acute hypercapnic hypoxemic respiratory failure, and subsequently expired on day of life (DOL) 10 after compassionate extubation. Cytogenomic whole-genome SNP microarray analysis revealed a deletion within the FBN1 gene spanning exons 7-30, which overlapped with the exon deletion hotspot region associated with neonatal Marfan syndrome. Infant B is a term male prenatally diagnosed with isolated D-TGA. He required balloon atrial septostomy on DOL 0 and subsequent atrial switch operation, atrial septal defect repair, and patent ductus arteriosus ligation on DOL 5. Trio-WES revealed compound heterozygous c.518C>T and c.8230T>G variants in the FBN2 gene. Zygosity analysis confirmed each of the variants was inherited from one of the parents who were healthy heterozygous carriers. Since his cardiac repair at birth, he has been growing and developing well without any further hospitalization. Our study highlights novel FBN1/FBN2 variants and signifies the phenotype-genotype association in two infants affected with complex congenital heart defects with and without dysmorphic features. These findings speak to the importance of next-generation high-throughput genomics for novel variant detection and the phenotypic variability associated with FBN1/FBN2 variants, particularly in the neonatal period, which may significantly impact clinical care and family counseling.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Zubin Mehta
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Reshma Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - UCLA Congenital Heart Defect BioCore Faculty
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
| | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanley F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Lu X, Wang R, Li M, Zhang B, Rao H, Huang X, Chen X, Wu Y. Identification of two novel large deletions in FBN1 gene by next-generation sequencing and multiplex ligation-dependent probe amplification. BMC Med Genomics 2024; 17:47. [PMID: 38317175 PMCID: PMC10840365 DOI: 10.1186/s12920-024-01822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Mutations in fibrillin-1 (FBN1) are known to be associated with Marfan syndrome (MFS), an autosomal dominant connective tissue disorder. Most FBN1 mutations are missense or nonsense mutations. Traditional molecular genetic testing for the FBN1 gene, like Sanger sequencing, may miss disease-causing mutations in the gene's regulatory regions or non-coding sequences, as well as partial or complete gene deletions and duplications. METHODS Next-generation sequencing, multiplex ligation-dependent probe amplification and gap PCR were conducted on two MFS patients to screen for disease-causing mutations. RESULTS We identified two large deletions in FBN1 from two MFS patients. One patient had a 0.23 Mb deletion (NC_000015.9:g.48550506_48779360del) including 5'UTR-exon6 of FBN1. The other patient harbored a 1416 bp deletion (NC_000015.9:g.48410869_48412284del) affecting the last exon, exon 66, of the FBN1 gene. CONCLUSION Our results expanded the number of large FBN1 deletions and highlighted the importance of screening for large deletions in FBN1 in clinical genetic testing, especially for those with the classic MFS phenotype.
Collapse
Affiliation(s)
- Xinxin Lu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Ren Wang
- Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Mingjie Li
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Biao Zhang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Huiying Rao
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xijun Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yan'an Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Piscopo A, Warner T, Nagy J, Nagrale V, Stence A, Guseva N, Bernat JA, Calhoun A. A novel de novo intragenic duplication in FBN1 associated with early-onset Marfan syndrome in a 16-month-old: A case report and review of the literature. Am J Med Genet A 2024; 194:368-373. [PMID: 37840436 DOI: 10.1002/ajmg.a.63440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.
Collapse
Affiliation(s)
- Anthony Piscopo
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Taylor Warner
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jaime Nagy
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vidya Nagrale
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aaron Stence
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Natalya Guseva
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - John A Bernat
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy Calhoun
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
9
|
Tiedemann K, Muthu ML, Reinhardt DP, Komarova SV. Male Marfan mice are predisposed to high fat diet induced obesity, diabetes, and fatty liver. Am J Physiol Cell Physiol 2022; 323:C354-C366. [PMID: 35759435 DOI: 10.1152/ajpcell.00062.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene mutations in the extracellular matrix protein fibrillin-1 cause connective tissue disorders including Marfan syndrome (MFS) with clinical symptoms in the cardiovascular, skeletal, and ocular systems. MFS patients also exhibit alterations in adipose tissues, which in some individuals leads to lipodystrophy, whereas in others to obesity. We have recently demonstrated that fibrillin-1 regulates adipose tissue homeostasis. Here, we examined how fibrillin-1 abnormality affects metabolic adaptation to different diets. We used two MFS mouse models: Hypomorph Fbn1mgR/mgR mice and Fbn1C1041G/+ mice with a fibrillin-1 missense mutation. When Fbn1mgR/mgR mice were fed with high fat diet (HFD) for 12 weeks, male mice were heavier than littermate controls (LC), whereas female mice gained less weight compared to LC. Female Fbn1C1041G/+ mice on a HFD for 24 weeks were similarly protected from weight gain. Male Fbn1C1041G/+ mice on HFD demonstrated higher insulin levels, insulin intolerance, circulating levels of cholesterol and high-density lipoproteins. Moreover, male HFD-fed Fbn1C1041G/+ mice showed a higher liver weight and a fatty liver phenotype, which was reduced to LC levels after orchiectomy. Phosphorylation of protein kinase-like endoplasmic reticulum kinase (PERK) as well as the expression of sterol regulatory element-binding protein 1 (Srebp1) in livers of HFD-fed male Fbn1C1041G/+ mice were elevated. In conclusion, the data demonstrate that male mice of both MFS models are susceptible to HFD-induced obesity and diabetes. Moreover, male Fbn1C1041G/+ mice develop a fatty liver phenotype, likely mediated by a baseline increased endoplasmic reticulum stress. In contrast, female MFS mice were protected from the consequence of HFD.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Dieter P Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| |
Collapse
|
10
|
Meester JAN, Peeters S, Van Den Heuvel L, Vandeweyer G, Fransen E, Cappella E, Dietz HC, Forbus G, Gelb BD, Goldmuntz E, Hoskoppal A, Landstrom AP, Lee T, Mital S, Morris S, Olson AK, Renard M, Roden DM, Singh MN, Selamet Tierney ES, Tretter JT, Van Driest SL, Willing M, Verstraeten A, Van Laer L, Lacro RV, Loeys BL. Molecular characterization and investigation of the role of genetic variation in phenotypic variability and response to treatment in a large pediatric Marfan syndrome cohort. Genet Med 2022; 24:1045-1053. [PMID: 35058154 PMCID: PMC9680912 DOI: 10.1016/j.gim.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Silke Peeters
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lotte Van Den Heuvel
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Erik Fransen
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD; Howard Hughes Medical Institute, Baltimore, MD
| | - Geoffrey Forbus
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC
| | - Bruce D Gelb
- Departments of Pediatrics and Genetics & Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arvind Hoskoppal
- Departments of Pediatrics and Internal Medicine, University of Utah and Intermountain Healthcare, Salt Lake City, UT
| | - Andrew P Landstrom
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Teresa Lee
- Children's Hospital of New York, New York City, NY
| | - Seema Mital
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shaine Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Aaron K Olson
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Marjolijn Renard
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael N Singh
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sara L Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ronald V Lacro
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Sarel-Gallily R, Golan-Lev T, Yilmaz A, Sagi I, Benvenisty N. Genome-wide analysis of haploinsufficiency in human embryonic stem cells. Cell Rep 2022; 38:110573. [PMID: 35354027 DOI: 10.1016/j.celrep.2022.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022] Open
Abstract
Haploinsufficiency describes a phenomenon where one functioning allele is insufficient for a normal phenotype, underlying several human diseases. The effect of haploinsufficiency on human embryonic stem cells (hESC) has not been thoroughly studied. To establish a genome-wide loss-of-function screening for heterozygous mutations, we fuse normal haploid hESCs with a library of mutant haploid hESCs. We identify over 600 genes with a negative effect on hESC growth in a haploinsufficient manner and characterize them as genes showing less tolerance to mutations, conservation during evolution, and depletion from telomeres and X chromosome. Interestingly, a large fraction of these genes is associated with extracellular matrix and plasma membrane and enriched for genes within WNT and TGF-β pathways. We thus identify haploinsufficiency-related genes that show growth retardation in early embryonic cells, suggesting dosage-dependent phenotypes in hESCs. Overall, we construct a unique model for studying haploinsufficiency and identified important dosage-dependent pathways involved in hESC growth and survival.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Stengl R, Ágg B, Pólos M, Mátyás G, Szabó G, Merkely B, Radovits T, Szabolcs Z, Benke K. Potential predictors of severe cardiovascular involvement in Marfan syndrome: the emphasized role of genotype-phenotype correlations in improving risk stratification-a literature review. Orphanet J Rare Dis 2021; 16:245. [PMID: 34059089 PMCID: PMC8165977 DOI: 10.1186/s13023-021-01882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetically determined systemic connective tissue disorder, caused by a mutation in the FBN1 gene. In MFS mainly the cardiovascular, musculoskeletal and ocular systems are affected. The most dangerous manifestation of MFS is aortic dissection, which needs to be prevented by a prophylactic aortic root replacement. MAIN BODY The indication criteria for the prophylactic procedure is currently based on aortic diameter, however aortic dissections below the threshold defined in the guidelines have been reported, highlighting the need for a more accurate risk stratification system to predict the occurrence of aortic complications. The aim of this review is to present the current knowledge on the possible predictors of severe cardiovascular manifestations in MFS patients, demonstrating the wide range of molecular and radiological differences between people with MFS and healthy individuals, and more importantly between MFS patients with and without advanced aortic manifestations. These differences originating from the underlying common molecular pathological processes can be assessed by laboratory (e.g. genetic testing) and imaging techniques to serve as biomarkers of severe aortic involvement. In this review we paid special attention to the rapidly expanding field of genotype-phenotype correlations for aortic features as by collecting and presenting the ever growing number of correlations, future perspectives for risk stratification can be outlined. CONCLUSIONS Data on promising biomarkers of severe aortic complications of MFS have been accumulating steadily. However, more unifying studies are required to further evaluate the applicability of the discussed predictors with the aim of improving the risk stratification and therefore the life expectancy and quality of life of MFS patients.
Collapse
Affiliation(s)
- Roland Stengl
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary.
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Gábor Mátyás
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People With Rare Diseases, Wagistrasse 25, 8952, CH-Schlieren-Zurich, Switzerland
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| |
Collapse
|
13
|
Postma JK, Altamirano-Diaz L, Rupar CA, Siu VM. Symptomatic mosaicism for a novel FBN1 splice site variant in a parent causing inherited neonatal Marfan syndrome. Am J Med Genet A 2021; 185:2507-2513. [PMID: 33988295 DOI: 10.1002/ajmg.a.62339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
Neonatal Marfan syndrome is a severe, early onset presentation of pathogenic variants in FBN1. Because of the significant cardiac involvement and early mortality, nearly all reported cases have been de novo, and the disorder has not been documented to be inherited from a symptomatic parent. Here, we present a female infant with neonatal Marfan syndrome who was born to a father with Marfan syndrome. Prior to the birth of his daughter, the father had been found to have an FBN1 missense variant of uncertain clinical significance. Initial familial variant testing of the infant did not reveal the same missense variant, but Sanger sequencing of FBN1 subsequently identified a pathogenic splice site variant. The father was then found to have 10%-20% mosaicism for the same splice site variant.
Collapse
Affiliation(s)
- Julianne K Postma
- Division of Medical Genetics, Department of Pediatrics, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luis Altamirano-Diaz
- Division of Pediatric Cardiology, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - C Anthony Rupar
- Departments of Pathology and Laboratory Medicine, Pediatrics and Biochemistry, Children's Health Research Institute, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Victoria M Siu
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
14
|
Jensen SA, Atwa O, Handford PA. Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis. PLoS One 2021; 16:e0248532. [PMID: 33735269 PMCID: PMC7971562 DOI: 10.1371/journal.pone.0248532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The human FBN1 gene encodes fibrillin-1 (FBN1); the main component of the 10–12 nm diameter extracellular matrix microfibrils. Marfan syndrome (MFS) is a common inherited connective tissue disorder, caused by FBN1 mutations. It features a wide spectrum of disease severity, from mild cases to the lethal neonatal form (nMFS), that is yet to be explained at the molecular level. Mutations associated with nMFS generally affect a region of FBN1 between domains TB3-cbEGF18—the "neonatal region". To gain insight into the process of fibril assembly and increase our understanding of the mechanisms determining disease severity in MFS, we compared the secretion and assembly properties of FBN1 variants containing nMFS-associated substitutions with variants associated with milder, classical MFS (cMFS). In the majority of cases, both nMFS- and cMFS-associated neonatal region variants were secreted at levels comparable to wild type. Microfibril incorporation by the nMFS variants was greatly reduced or absent compared to the cMFS forms, however, suggesting that nMFS substitutions disrupt a previously undefined site of microfibril assembly. Additional analysis of a domain deletion variant caused by exon skipping also indicates that register in the neonatal region is likely to be critical for assembly. These data demonstrate for the first time new requirements for microfibril biogenesis and identify at least two distinct molecular mechanisms associated with disease substitutions in the TB3-cbEGF18 region; incorporation of mutant FBN1 into microfibrils changing their integral properties (cMFS) or the blocking of wild type FBN1 assembly by mutant molecules that prevents late-stage lateral assembly (nMFS).
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ondine Atwa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Stengl R, Bors A, Ágg B, Pólos M, Matyas G, Molnár MJ, Fekete B, Csabán D, Andrikovics H, Merkely B, Radovits T, Szabolcs Z, Benke K. Optimising the mutation screening strategy in Marfan syndrome and identifying genotypes with more severe aortic involvement. Orphanet J Rare Dis 2020; 15:290. [PMID: 33059708 PMCID: PMC7558671 DOI: 10.1186/s13023-020-01569-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background Marfan syndrome (MFS) is a systemic connective tissue disorder with life-threatening manifestations affecting the ascending aorta. MFS is caused by dominant negative (DN) and haploinsufficient (HI) mutations of the FBN1 gene. Our aim was to identify mutations of MFS patients with high detection rate and to investigate the use of a gene panel for patients with Marfanoid habitus. We also aimed to examine correlations between genotype and cardiovascular manifestations to predict “malignant” mutations.
Methods 136 individuals were enrolled. In the first phase, next-generation sequencing (NGS) and Sanger sequencing were performed for 57 patients to screen the FBN1 gene, followed by multiplex ligation-dependent probe amplification (MLPA) in negative cases. For repeated negative results, NGS gene panel involving 9 genes was used. In the second phase, 79 patients were tested primarily with the same gene panel, negative samples were tested by MLPA. Results 84 pathogenic mutations were detected, out of which 78 affected FBN1, 6 non-FBN1 mutations (2 TGFB2, 1 TGFBR2, 2 TGFBR1, 1 SMAD3) are associated with Loeys-Dietz syndrome (LDS). LDS patients had lower systemic score and they were younger, but their aortic involvement did not differ. MLPA detected 4 multi-exon deletions of FBN1 gene, which could not be identified by our first-step screening method. Aortic involvement (aortic dissection and/or dilation) did not differ significantly among HI and DN mutations (p = 0.061). Combined group of HI and DN mutations eliminating a disulphide-bonding cysteine (DN Cys) had significantly higher aortic involvement rate than DN mutations not eliminating a disulphide-bonding cysteine (DN non-Cys) (p < 0.001). Patients with DN Cys required significantly more aortic surgeries than HI and DN non-Cys mutations (p = 0.042 and p = 0.015, respectively). Conclusions Due to the relevant number of mutations affecting genes other than FBN1, preferred approach for testing individuals with Marfanoid habitus is using a gene panel rather than single-gene analysis, followed by MLPA for negative samples. DN Cys and HI mutations should be considered as risk factors for aortic involvement. Genetic testing for patients with Marfanoid features and a systemic score under 7 is recommended, as LDS patients may have lower scores, but they may have severe cardiovascular manifestations.
Collapse
Affiliation(s)
- Roland Stengl
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary. .,Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary.
| | - András Bors
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People With Rare Diseases, Wagistrasse 25, 8952, Schlieren, Zurich, Switzerland
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Bálint Fekete
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Hajnalka Andrikovics
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
16
|
Steered molecular dynamic simulations reveal Marfan syndrome mutations disrupt fibrillin-1 cbEGF domain mechanosensitive calcium binding. Sci Rep 2020; 10:16844. [PMID: 33033378 PMCID: PMC7545174 DOI: 10.1038/s41598-020-73969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Marfan syndrome (MFS) is a highly variable genetic connective tissue disorder caused by mutations in the calcium binding extracellular matrix glycoprotein fibrillin-1. Patients with the most severe form of MFS (neonatal MFS; nMFS) tend to have mutations that cluster in an internal region of fibrillin-1 called the neonatal region. This region is predominantly composed of eight calcium-binding epidermal growth factor-like (cbEGF) domains, each of which binds one calcium ion and is stabilized by three highly conserved disulfide bonds. Crucially, calcium plays a fundamental role in stabilizing cbEGF domains. Perturbed calcium binding caused by cbEGF domain mutations is thus thought to be a central driver of MFS pathophysiology. Using steered molecular dynamics (SMD) simulations, we demonstrate that cbEGF domain calcium binding decreases under mechanical stress (i.e. cbEGF domains are mechanosensitive). We further demonstrate the disulfide bonds in cbEGF domains uniquely orchestrate protein unfolding by showing that MFS disulfide bond mutations markedly disrupt normal mechanosensitive calcium binding dynamics. These results point to a potential mechanosensitive mechanism for fibrillin-1 in regulating extracellular transforming growth factor beta (TGFB) bioavailability and microfibril integrity. Such mechanosensitive “smart” features may represent novel mechanisms for mechanical hemostasis regulation in extracellular matrix that are pathologically activated in MFS.
Collapse
|
17
|
Mannucci L, Luciano S, Salehi LB, Gigante L, Conte C, Longo G, Ferradini V, Piumelli N, Brancati F, Ruvolo G, Novelli G, Sangiuolo F. Mutation analysis of the FBN1 gene in a cohort of patients with Marfan Syndrome: A 10-year single center experience. Clin Chim Acta 2020; 501:154-164. [DOI: 10.1016/j.cca.2019.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 01/25/2023]
|
18
|
Characterization of Two Novel Intronic Variants Affecting Splicing in FBN1-Related Disorders. Genes (Basel) 2019; 10:genes10060442. [PMID: 31185693 PMCID: PMC6627396 DOI: 10.3390/genes10060442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/30/2023] Open
Abstract
FBN1 encodes fibrillin 1, a key structural component of the extracellular matrix, and its variants are associated with a wide range of hereditary connective tissues disorders, such as Marfan syndrome (MFS) and mitral valve–aorta–skeleton–skin (MASS) syndrome. Interpretations of the genomic data and possible genotype–phenotype correlations in FBN1 are complicated by the high rate of intronic variants of unknown significance. Here, we report two unrelated individuals with the FBN1 deep intronic variants c.6872-24T>A and c.7571-12T>A, clinically associated with MFS and MASS syndrome, respectively. The individual carrying the c.6872-24T>A variant is positive for aortic disease. Both individuals lacked ectopia lentis. In silico analysis and subsequent mRNA study by RT-PCR demonstrated the effect of the identified variant on the splicing process in both cases. The c.6872-24T>A and c.7571-12T>A variants generate the retention of intronic nucleotides and lead to the introduction of a premature stop codon. This study enlarges the mutation spectrum of FBN1 and points out the importance of intronic sequence analysis and the need for integrative functional studies in FBN1 diagnostics.
Collapse
|
19
|
Gong B, Yang L, Wang Q, Ye Z, Guo X, Yang C, Hao F, Shi Y, Huang Y, Qu C, Yang Z. Mutation screening in the FBN1 gene responsible for Marfan syndrome and related disorder in Chinese families. Mol Genet Genomic Med 2019; 7:e00594. [PMID: 30838813 PMCID: PMC6465674 DOI: 10.1002/mgg3.594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Background Previous studies showed that the fibrillin‐1 gene (FBN1) is responsible for Marfan sydrome (MFS) pathogenesis. This study is conducted to screen for mutations in the FBN1 gene in Chinese families with MFS. Methods Eight families with MFS and related disorder were recruited in this study. All available family members underwent complete physical, ophthalmic, and cardiovascular examination. Mutation screening was performed using targeted next‐generation sequencing. Candidate variants were amplified by polymerase chain reaction and verified by direct Sanger sequencing. Results Four novel heterozygous mutations in FBN1, including c.2861G>T (p.R954L), c.4087G>A (p.D1363N), c.4987T>G (p.C1663G), and c.5032T>G (p.Y1678D), as well as four known mutations, c.3617G>A (p.G1206D), c.4460A>G (p.D1487G), c.4588C>T (p.R1530C), and c.718C>T (p.R240C) were identified. Affected patients from each family were found to carry one of the mutations, whereas the unaffected members and 1,086 normal controls were not. Each mutation was found to be cosegregated with MFS phenotype and related disorder in each family. Multiple sequence alignment of the human fibrillin‐1 protein showed that these mutations occurred in a highly conserved region among different species. Conclusions Eight FBN1 mutations were identified in Chinese families with MFS and related disorder. These data expands FBN1 mutation spectrum and further emphasizes the role of FBN1 in the pathogenesis of MFS.
Collapse
Affiliation(s)
- Bo Gong
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Lan Yang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Clinic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qingwei Wang
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zimeng Ye
- School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoxin Guo
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chen Yang
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chao Qu
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Disease Gene Study and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Jones W, Rodriguez J, Bassnett S. Targeted deletion of fibrillin-1 in the mouse eye results in ectopia lentis and other ocular phenotypes associated with Marfan syndrome. Dis Model Mech 2019; 12:dmm.037283. [PMID: 30642872 PMCID: PMC6361150 DOI: 10.1242/dmm.037283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
Fibrillin is an evolutionarily ancient protein that lends elasticity and resiliency to a variety of tissues. In humans, mutations in fibrillin-1 cause Marfan and related syndromes, conditions in which the eye is often severely affected. To gain insights into the ocular sequelae of Marfan syndrome, we targeted Fbn1 in mouse lens or non-pigmented ciliary epithelium (NPCE). Conditional knockout of Fbn1 in NPCE, but not lens, profoundly affected the ciliary zonule, the system of fibrillin-rich fibers that centers the lens in the eye. The tensile strength of the fibrillin-depleted zonule was reduced substantially, due to a shift toward production of smaller caliber fibers. By 3 months, zonular fibers invariably ruptured and mice developed ectopia lentis, a hallmark of Marfan syndrome. At later stages, untethered lenses lost their polarity and developed cataracts, and the length and volume of mutant eyes increased. This model thus captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease. Summary: Targeted knockout of Fbn1 in the ciliary epithelium of the mouse eye undermines the structural and biomechanical integrity of the ciliary zonule and results in an ectopia lentis phenotype.
Collapse
Affiliation(s)
- Wendell Jones
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave, Box 8096, St. Louis, MO 63117, USA
| | - Juan Rodriguez
- St Louis College of Pharmacy, Department of Basic Sciences, 4588 Parkview Place, St. Louis, MO 63110, USA
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave, Box 8096, St. Louis, MO 63117, USA
| |
Collapse
|
21
|
Kumar C, Song S, Dewani P, Kumar M, Parkash O, Ma Y, Malhi KK, Yang N, Mwacharo JM, He X, Jiang L. Population structure, genetic diversity and selection signatures within seven indigenous Pakistani goat populations. Anim Genet 2018; 49:592-604. [PMID: 30229969 DOI: 10.1111/age.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Goat farming in Pakistan depends on indigenous breeds that have adapted to specific agro-ecological conditions. Pakistan has a rich resource of goat breeds, and the genetic diversity of these goat breeds is largely unknown. In this study, genetic diversity and population structure were characterized from seven indigenous goat breeds using the goat 50K SNP chip. The genetic diversity analysis showed that Bugi toori goats have the highest inbreeding level, consistent with the highest linkage disequilibrium, lowest diversity and long run of heterozygosity segments. This indicates that this breed should be prioritized in future conservation activities. The population structure analysis revealed four fairly distinct clusters (including Bugi toori, Bari, Black Tapri and some Kamori) and three other breeds that are seemingly the results of admixture between these or related groups (some Kamori, Pateri, Tapri and White Tapri). The selection signatures were evaluated in each breed. A total of 2508 putative selection signals were reported. The 26 significant windows were identified in more than four breeds, and selection signatures spanned several genes that directly or indirectly influence traits included coat colour variation (KIT), reproduction (BMPR1B, GNRHR, INSL6, JAK2 and EGR4), body size (SOCS2), ear size (MSRB3) and milk composition (ABCG2, SPP1, CSN1S2, CSN2, CSN3 and PROLACTIN).
Collapse
Affiliation(s)
- C Kumar
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan.,Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - S Song
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - P Dewani
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - M Kumar
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - O Parkash
- Directorate of Veterinary Research and Diagnostic Central Veterinary Diagnostic Laboratory, Tando Jam, 70050, Sindh, Pakistan
| | - Y Ma
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - K K Malhi
- Department of Animal Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agricultural University, Tando Jam, 70060, Sindh, Pakistan
| | - N Yang
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100094, China
| | - J M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - X He
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - L Jiang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| |
Collapse
|
22
|
Cao Y, Tan H, Li Z, Linpeng S, Long X, Liang D, Wu L. Three Novel Mutations in FBN1 and TGFBR2 in Patients with the Syndromic Form of Thoracic Aortic Aneurysms and Dissections. Int Heart J 2018; 59:1059-1068. [DOI: 10.1536/ihj.18-046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yingxi Cao
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Hu Tan
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Zhuo Li
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Siyuan Linpeng
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Xigui Long
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University
| |
Collapse
|
23
|
Benke K, Ágg B, Meienberg J, Kopps AM, Fattorini N, Stengl R, Daradics N, Pólos M, Bors A, Radovits T, Merkely B, De Backer J, Szabolcs Z, Mátyás G. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era. J Thorac Dis 2018; 10:2456-2460. [PMID: 29850152 DOI: 10.21037/jtd.2018.04.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era.
Collapse
Affiliation(s)
- Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Anna M Kopps
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Nathalie Fattorini
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Roland Stengl
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary
| | - Noémi Daradics
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary
| | - András Bors
- Laboratory of Molecular Diagnostics, Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Julie De Backer
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Hungarian Marfan Foundation, Budapest, Hungary
| | - Gábor Mátyás
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Patient with Marfan Syndrome and a Novel Variant in FBN1 Presenting with Bilateral Popliteal Artery Aneurysm. Case Rep Genet 2018; 2018:6780494. [PMID: 29796325 PMCID: PMC5896231 DOI: 10.1155/2018/6780494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
We present a 43-year-old man with aortic root dilation, mitral valve prolapse, and marfanoid appearance, who presented with acute onset left leg pain. He underwent a Doppler ultrasound that revealed left popliteal artery aneurysm with thrombus. CT angiogram showed bilateral popliteal artery aneurysms. After repairing of his left popliteal artery aneurysm, he was sent for genetic evaluation. He was diagnosed with Marfan syndrome (MFS) based on the revised Ghent criteria and then underwent FBN1 sequencing and deletion/duplication analysis, which detected a novel pathogenic variant in gene FBN1, denoted by c.5872 T>A (p.Cys1958Ser). MFS is a connective tissue disorder with an autosomal dominant inheritance due to pathogenic variants in FBN1 that encodes Fibrillin-1, a major element of the extracellular matrix, and connective tissue throughout the body. MFS involves multiple systems, most commonly the cardiovascular, musculoskeletal, and visual systems. In our case we present a rare finding of bilateral popliteal artery aneurysms in a male patient with MFS.
Collapse
|
25
|
Li J, Wu W, Lu C, Liu Y, Wang R, Si N, Liu F, Zhou J, Zhang S, Zhang X. Gross deletions in FBN1 results in variable phenotypes of Marfan syndrome. Clin Chim Acta 2017; 474:54-59. [PMID: 28842177 DOI: 10.1016/j.cca.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND A mutation in FBN1 is primarily attributed to Marfan syndrome (MFS). So far, >1800 unique FBN1 mutations have been identified, with the vast majority being single-nucleotide substitutions, small deletions, and insertions. The rearrangement of large fragments of FBN1 accounts for only 1.7% of all variants. The aim of this study was to investigate the characteristics of large genomic rearrangements in FBN1 among MFS patients and to evaluate the correlations between genotype and phenotype. METHODS Systematic sequencing of the disease-related genes FBN1, TGFBR1, and TGFBR2, was carried out previously for 26 unrelated patients with MFS. No small mutations were found. Subsequently, multiplex ligation-dependent probe amplification was performed for the detection of copy number variations in these patients. The breakpoints were determined by gap PCR and sequencing. Transcription level analysis was conducted in patients whose RNA sample was available. RESULTS Four gross deletions were identified in FBN1. Three deletions (exons 6, 48-53, and 49-50) were predicted to be in-frame deletions; the remaining deletion (exons 1-36) was expected to induce the loss of one copy of the FBN1 gene. The breakpoints of these four deletions were cloned, and revealed deletion sizes of 16,551, 10,346, 4563, and 187,047bp, respectively. Patients with in-frame deletions of exons 48-53 and 49-50 showed severe clinical phenotypes; Patient with an exon 6 deletion showed mild potential MFS phenotypes. And the patient had classic MFS with a deletion of exons 1-36. CONCLUSIONS We characterized four large genomic rearrangements in FBN1. FBN1 haploinsufficiency correlated with a classic MFS phenotype, while in-frame deletions between exons 24-53 of FBN1 tended to cause severe clinical phenotypes.
Collapse
Affiliation(s)
- Jiacheng Li
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chaoxia Lu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jian Zhou
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Milewicz DM, Prakash SK, Ramirez F. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annu Rev Med 2017; 68:51-67. [PMID: 28099082 PMCID: PMC5499376 DOI: 10.1146/annurev-med-100415-022956] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.
Collapse
Affiliation(s)
- Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Siddharth K Prakash
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
27
|
Dordoni C, Ciaccio C, Santoro G, Venturini M, Cavallari U, Ritelli M, Colombi M. Marfan syndrome: Report of a complex phenotype due to a 15q21.1 contiguos gene deletion encompassing FBN1, and literature review. Am J Med Genet A 2016; 173:200-206. [PMID: 27615407 DOI: 10.1002/ajmg.a.37975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/31/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that primarily involves skeletal, ocular, and cardiovascular systems with large inter- and intra-familial variability in terms of age of onset, severity, and aortic disease. The causal gene, FBN1, encodes for fibrillin 1, a multi-domain glycoprotein essential for many biological functions, including deposition and formation of elastic fibers. Reports describing chromosomal alterations involving FBN1 are rare, but in the last years their number has increased after copy number state analyses, such as multiplex ligation-dependent probe amplification and microarray-based comparative genomic hybridization, were adopted as routine diagnostic tools. Herein we report a patient with MFS and an atypical facial appearance and neuropsychiatric involvement likely not attributable to MFS due to a 15q21.1 deletion that involves part of FBN1 and 13 additional contiguous genes listed in OMIM. We compare his phenotype with those of the few patients described in the literature who share similar 15q11.2 deletions. This report expands the phenotype of patients with 15q11.2 deletion involving FBN1 and its contiguous genes, and suggests a possible role for these other genes in the pathogenesis of the observed unusual clinical signs that are not explained by FBN1 haploinsufficiency. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Dordoni
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Claudia Ciaccio
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Graziano Santoro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, Spedali Civili University Hospital, Brescia, Italy
| | - Ugo Cavallari
- Azienda Istituti Ospitalieri, Medical Genetics, Cremona, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
28
|
FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591:279-291. [PMID: 27437668 DOI: 10.1016/j.gene.2016.07.033] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
FBN1 encodes the gene for fibrillin-1, a structural macromolecule that polymerizes into microfibrils. Fibrillin microfibrils are morphologically distinctive fibrils, present in all connective tissues and assembled into tissue-specific architectural frameworks. FBN1 is the causative gene for Marfan syndrome, an inherited disorder of connective tissue whose major features include tall stature and arachnodactyly, ectopia lentis, and thoracic aortic aneurysm and dissection. More than one thousand individual mutations in FBN1 are associated with Marfan syndrome, making genotype-phenotype correlations difficult. Moreover, mutations in specific regions of FBN1 can result in the opposite features of short stature and brachydactyly characteristic of Weill-Marchesani syndrome and other acromelic dysplasias. How can mutations in one molecule result in disparate clinical syndromes? Current concepts of the fibrillinopathies require an appreciation of tissue-specific fibrillin microfibril microenvironments and the collaborative relationship between the structures of fibrillin microfibril networks and biological functions such as regulation of growth factor signaling.
Collapse
|
29
|
A Case Based Approach to Clinical Genetics of Thoracic Aortic Aneurysm/Dissection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9579654. [PMID: 27314043 PMCID: PMC4897665 DOI: 10.1155/2016/9579654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 12/04/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a potential lethal condition with a rising incidence. This condition may occur sporadically; nevertheless, it displays familial clustering in >20% of the cases. Family history confers a six- to twentyfold increased risk of TAAD and has to be considered in the identification and evaluation of patients needing an adequate clinical follow-up. Familial TAAD recognizes a number of potential etiologies with a significant genetic heterogeneity, in either syndromic or nonsyndromic forms of the manifestation. The clinical impact and the management of patients with TAAD differ according to the syndromic and nonsyndromic forms of the manifestation. The clinical management of TAAD patients varies, depending on the different forms. Starting from the description of patient history, in this paper, we summarized the state of the art concerning assessment of clinical/genetic profile and therapeutic management of TAAD patients.
Collapse
|
30
|
The Genetic Counselor’s Role in Managing Ethical Dilemmas Arising in the Laboratory Setting. J Genet Couns 2016; 25:838-54. [DOI: 10.1007/s10897-016-9957-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/31/2016] [Indexed: 01/23/2023]
|
31
|
Loeys B. The search for genotype/phenotype correlation in Marfan syndrome: to be or not to be? Eur Heart J 2016; 37:3291-3293. [DOI: 10.1093/eurheartj/ehw154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Verstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery. Hum Mutat 2016; 37:524-31. [DOI: 10.1002/humu.22977] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences; University of Antwerp and Antwerp University Hospital; Antwerp Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences; University of Antwerp and Antwerp University Hospital; Antwerp Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences; University of Antwerp and Antwerp University Hospital; Antwerp Belgium
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences; University of Antwerp and Antwerp University Hospital; Antwerp Belgium
- Department of Human Genetics; Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| |
Collapse
|
33
|
Fibrillin-1 mgΔlpn Marfan syndrome mutation associates with preserved proteostasis and bypass of a protein disulfide isomerase-dependent quality checkpoint. Int J Biochem Cell Biol 2016; 71:81-91. [DOI: 10.1016/j.biocel.2015.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022]
|
34
|
Tjeldhorn L, Amundsen SS, Barøy T, Rand-Hendriksen S, Geiran O, Frengen E, Paus B. Qualitative and quantitative analysis of FBN1 mRNA from 16 patients with Marfan Syndrome. BMC MEDICAL GENETICS 2015; 16:113. [PMID: 26684006 PMCID: PMC4683784 DOI: 10.1186/s12881-015-0260-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
Background Pathogenic mutations in FBN1, encoding the glycoprotein, fibrillin-1, cause Marfan syndrome (MFS) and related connective tissue disorders. In the present study, qualitative and quantitative effects of 16 mutations, identified in FBN1 in MFS patients with systematically described phenotypes, were investigated in vitro. Methods Qualitative analysis was performed with reverse transcription-PCR (RT-PCR) and gel electrophoresis, and quantitative analysis to determine the FBN1 mRNA levels in fibroblasts from the 16 patients with MFS was performed with real-time PCR. Results Qualitative analysis documented that the mutations c.4817-2delA and c.A4925G led to aberrant FBN1 mRNA splicing leading to in frame deletion of exon 39 and in exon 39, respectively. No difference in the mean FBN1 mRNA level was observed between the entire group of cases and controls, nor between the group of patients with missense mutations and controls. The mean expression levels associated with premature termination codon (PTC) and splice site mutations were significantly lower than the levels in patients with missense mutations. A high level of FBN1 mRNA in the patient with the missense mutation c.G2447T did not segregate with the mutation in three of his first degree relatives. No association was indicated between the FBN1 transcript level and specific phenotypic manifestations. Conclusions Abnormal FBN1 transcripts were indicated in fibroblasts from patients with the splice site mutation c.4817-2delA and the missense mutation c.A4925G. While the mean FBN1 mRNA expression level in fibroblasts from patients with splice site and PTC mutations were lower than the mean level in patients with missense mutations and controls, inter-individual variability was high. The observation that high level of FBN1 mRNA in the patient with the missense mutation c.G2447T did not segregate with the mutation in the family suggests that variable expression of the normal FBN1 allele may contribute to explain the variability in FBN1 mRNA level. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0260-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Tjeldhorn
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424, Oslo, Norway.
| | - Silja Svanstrøm Amundsen
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Svend Rand-Hendriksen
- TRS National Resource Centre for Rare Disorders, Sunnaas Rehabilitation Hospital, 1450 Nesoddtangen, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Odd Geiran
- Department of Cardiothoracic Surgery, Oslo University Hospital, Box 4950, 0424 Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Benedicte Paus
- Department of Medical Genetics, Oslo University Hospital, Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
35
|
Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos. PLoS One 2015; 10:e0143378. [PMID: 26630129 PMCID: PMC4667915 DOI: 10.1371/journal.pone.0143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our understanding of the location-specific and breed-specific genes and pathways but also provides some candidate molecular targets for increasing muscle products and meat quality by genetic control.
Collapse
|
36
|
TGF-β signalopathies as a paradigm for translational medicine. Eur J Med Genet 2015; 58:695-703. [DOI: 10.1016/j.ejmg.2015.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 11/19/2022]
|
37
|
Jensen SA, Iqbal S, Bulsiewicz A, Handford PA. A microfibril assembly assay identifies different mechanisms of dominance underlying Marfan syndrome, stiff skin syndrome and acromelic dysplasias. Hum Mol Genet 2015; 24:4454-63. [PMID: 25979247 PMCID: PMC4492404 DOI: 10.1093/hmg/ddv181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Fibrillin-1 is the major component of the 10–12 nm diameter extracellular matrix microfibrils. The majority of mutations affecting the human fibrillin-1 gene, FBN1, result in Marfan syndrome (MFS), a common connective tissue disorder characterised by tall stature, ocular and cardiovascular defects. Recently, stiff skin syndrome (SSS) and a group of syndromes known collectively as the acromelic dysplasias, which typically result in short stature, skin thickening and joint stiffness, have been linked to FBN1 mutations that affect specific domains of the fibrillin-1 protein. Despite their apparent phenotypic differences, dysregulation of transforming growth factor β (TGFβ) is a common factor in all of these disorders. Using a newly developed assay to track the secretion and incorporation of full-length, GFP-tagged fibrillin-1 into the extracellular matrix, we investigated whether or not there were differences in the secretion and microfibril assembly profiles of fibrillin-1 variants containing substitutions associated with MFS, SSS or the acromelic dysplasias. We show that substitutions in fibrillin-1 domains TB4 and TB5 that cause SSS and the acromelic dysplasias do not prevent fibrillin-1 from being secreted or assembled into microfibrils, whereas MFS-associated substitutions in these domains result in a loss of recombinant protein in the culture medium and no association with microfibrils. These results suggest fundamental differences in the dominant pathogenic mechanisms underlying MFS, SSS and the acromelic dysplasias, which give rise to TGFβ dysregulation associated with these diseases.
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Sarah Iqbal
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Alicja Bulsiewicz
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
38
|
Ramachandra CJA, Mehta A, Guo KWQ, Wong P, Tan JL, Shim W. Molecular pathogenesis of Marfan syndrome. Int J Cardiol 2015; 187:585-91. [PMID: 25863307 DOI: 10.1016/j.ijcard.2015.03.423] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023]
Abstract
Marfan syndrome (MFS) is a genetic disorder that affects multiple organs. Mortality imposed by aortic aneurysm and dissections represent the most serious clinical manifestation of MFS. Progressive pathological aortic root enlargement as the result of degeneration of microfibril architecture and consequential loss of extracellular matrix integrity due to fibrillin-1 (FBN1) mutations are commonly diagnosed clinical manifestations of MFS. However, overlapping clinical manifestations with other aneurysmal disorders present a significant challenge in early and accurate diagnosis of MFS. While FBN1 mutations, abnormal transforming growth factor-β signaling and dysregulated matrix metalloproteinases have been implicated in MFS, clinically accepted risk-stratifying biomarkers have yet to be reliably identified. In this review, we summarize current consensus and recent insights in the understanding of MFS pathogenesis. Finally, we introduce the application of induced pluripotent stem cells (iPSCs) as cellular models for MFS and its potential as a novel platform into providing better appreciation of mechanisms underlying MFS diverse manifestations in the cardiovascular system.
Collapse
Affiliation(s)
| | - Ashish Mehta
- National Heart Research Institute Singapore, Singapore
| | | | - Philip Wong
- National Heart Research Institute Singapore, Singapore; Department of Cardiology, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Ju Le Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Winston Shim
- National Heart Research Institute Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore.
| |
Collapse
|
39
|
Meienberg J, Zerjavic K, Keller I, Okoniewski M, Patrignani A, Ludin K, Xu Z, Steinmann B, Carrel T, Röthlisberger B, Schlapbach R, Bruggmann R, Matyas G. New insights into the performance of human whole-exome capture platforms. Nucleic Acids Res 2015; 43:e76. [PMID: 25820422 PMCID: PMC4477645 DOI: 10.1093/nar/gkv216] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants.
Collapse
Affiliation(s)
- Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland
| | - Katja Zerjavic
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland
| | - Irene Keller
- Department of Clinical Research, University of Berne, Berne CH-3010, Switzerland
| | - Michal Okoniewski
- Functional Genomics Center Zurich, Zurich CH-8057, Switzerland Division of Scientific IT Services, ETH Zurich, Zurich CH-8092, Switzerland
| | | | - Katja Ludin
- Division of Medical Genetics, Center for Laboratory Medicine, Aarau CH-5001, Switzerland
| | - Zhenyu Xu
- Sophia Genetics SA, Lausanne CH-1015, Switzerland
| | - Beat Steinmann
- Division of Metabolism, University Children's Hospital, Zurich CH-8032, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, University Hospital, Berne CH-3010, Switzerland
| | - Benno Röthlisberger
- Division of Medical Genetics, Center for Laboratory Medicine, Aarau CH-5001, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Berne, Berne CH-3012, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich CH-8952, Switzerland Department of Cardiovascular Surgery, University Hospital, Berne CH-3010, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
40
|
Aubart M, Gross MS, Hanna N, Zabot MT, Sznajder M, Detaint D, Gouya L, Jondeau G, Boileau C, Stheneur C. The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele. Hum Mol Genet 2015; 24:2764-70. [PMID: 25652400 DOI: 10.1093/hmg/ddv037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/31/2015] [Indexed: 11/14/2022] Open
Abstract
Marfan syndrome is an autosomal dominant disorder mainly caused by mutations within FBN1 gene. The disease displays large variability in age of onset or severity and very poor phenotype/genotype correlations have been demonstrated. We investigated the hypothesis that phenotype severity could be related to the variable expression level of fibrillin-1 (FBN1) synthesized from the wild-type (WT) allele. Quantitative reverse-transcription and polymerase chain reaction was used to evaluate FBN1 levels in skin fibroblasts from 80 Marfan patients with premature termination codons and in skin fibroblasts from 80 controls. Results in controls showed a 3.9-fold variation in FBN1 mRNA synthesis level between subjects. A similar 4.4-fold variation was found in the Marfan population, but the mean level of FBN1 mRNA was a half of the control population. Differential allelic expression analysis in Marfan fibroblasts showed that over 90% of FBN1 mRNA was transcribed from the wild allele and the mutated allele was not detected. In the control population, independently of the expression level of FBN1, we observed steady-state equilibrium between the two allelic-mRNAs suggesting that FBN1 expression mainly depends on trans-acting regulators. Finally, we show that a low level of residual WT FBN1 mRNA accounts for a high risk of ectopia lentis and pectus abnormality and tends to increase the risk of aortic dilatation.
Collapse
Affiliation(s)
- Mélodie Aubart
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France
| | - Marie-Sylvie Gross
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France
| | - Nadine Hanna
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France, Département de Génétique and
| | - Marie-Thérèse Zabot
- Laboratoire de Biotechnologies Cellulaires, Groupement Hospitalier Est, Hospices Civils de Lyon, 69008 Lyon, France and
| | - Marc Sznajder
- Service de Pédiatrie, Hôpital Ambroise Paré, Assistance Publique Hôpitaux de Paris, 92100 Boulogne, France
| | - Delphine Detaint
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France, National Reference Centre for Marfan Syndrome and Related Disorders, Service de Cardiologie, Centre Hospitalier Universitaire Xavier Bichat, Assistance Publique Hôpitaux de Paris, 75018 Paris, France
| | - Laurent Gouya
- National Reference Centre for Marfan Syndrome and Related Disorders, Service de Cardiologie, Centre Hospitalier Universitaire Xavier Bichat, Assistance Publique Hôpitaux de Paris, 75018 Paris, France
| | - Guillaume Jondeau
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France, National Reference Centre for Marfan Syndrome and Related Disorders, Service de Cardiologie, Centre Hospitalier Universitaire Xavier Bichat, Assistance Publique Hôpitaux de Paris, 75018 Paris, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science, INSERM U1148, 75018 Paris, France, National Reference Centre for Marfan Syndrome and Related Disorders, Service de Cardiologie, Centre Hospitalier Universitaire Xavier Bichat, Assistance Publique Hôpitaux de Paris, 75018 Paris, France
| | - Chantal Stheneur
- National Reference Centre for Marfan Syndrome and Related Disorders, Service de Cardiologie, Centre Hospitalier Universitaire Xavier Bichat, Assistance Publique Hôpitaux de Paris, 75018 Paris, France,
| |
Collapse
|
41
|
Franken R, Heesterbeek TJ, de Waard V, Zwinderman AH, Pals G, Mulder BJM, Groenink M. Diagnosis and genetics of Marfan syndrome. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.950223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Abstract
With the increasing use of next-generation sequencing applications, there has been an increase in identification of genetic causes of cardiac disease. This technology has also enabled the transition of these genes into the clinical setting and the rapid growth of large gene tests for the diagnosis of heart disorders. The ability to combine tests to include similar, but distinct, diseases has shown that many genes can be responsible for a wide variety of both syndromic and nonsyndromic disorders. This article discusses the current state of molecular genetic diagnosis for cardiac disorders, focusing on diseases with mendelian inheritance.
Collapse
Affiliation(s)
- Matthew S Lebo
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA, USA; Department of Pathology, Brigham and Woman's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Samantha M Baxter
- Partners HealthCare Center for Personalized Genetic Medicine, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the glycoprotein gene fibrillin-1 (FBN1). Aortic root dilation and mitral valve prolapse are the main presentations among the cardiovascular malformations of MFS. The revised Ghent diagnostics nosology of Marfan syndrome is established in accordance with a combination of major and minor clinical manifestations in various organ systems and the family history. The pathogenesis of Marfan syndrome has not been fully elucidated. However, fibrillin-1 gene mutations are believed to exert a dominant negative effect. The treatment includes prophylactic β-blockers and angiotensin II-receptor blockers in order to slow down the dilation of the ascending aorta and prophylactic aortic surgery. Importantly, β-blocker therapy may reduce TGF-β activation, which has been recognized as a contributory factor in MFS. The identification of a mutation allows for early diagnosis, prognosis, genetic counseling, preventive management of carriers and reassurance for unaffected relatives. The importance of knowing in advance the location of the putative family mutation is highlighted by its straightforward application to prenatal and postnatal screening. The present article aims to provide an overview of this rare hereditary disorder. The revised Ghent diagnostics nosology is used for MFS detection. β-Blockers and angiotensin II-receptor blockers are used in the prophylaxis of MFS. MFS mutation identification involve in genetic counseling family members and relatives.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Genetics Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sarita Agarwal
- Department of Genetics Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
44
|
Quarto N, Li S, Renda A, Longaker MT. Exogenous activation of BMP-2 signaling overcomes TGFβ-mediated inhibition of osteogenesis in Marfan embryonic stem cells and Marfan patient-specific induced pluripotent stem cells. Stem Cells 2013; 30:2709-19. [PMID: 23037987 DOI: 10.1002/stem.1250] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/23/2012] [Indexed: 01/10/2023]
Abstract
Marfan syndrome (MFS) is a hereditary disease caused by mutations in the gene encoding Fibrillin-1 (FBN1) and characterized by a number of skeletal abnormalities, aortic root dilatation, and sometimes ectopia lentis. Although the molecular pathogenesis of MFS was attributed initially to a structural weakness of the fibrillin-rich microfibrils within the extracellular matrix, more recent results have documented that many of the pathogenic abnormalities in MFS are the result of alterations in TGFβ signaling. Mutations in FBN1 are therefore associated with increased activity and bioavailability of TGF-β1, which is suspected to be the basis for phenotypical similarities of FBN1 mutations in MFS and mutations in the receptors for TGFβ in Marfan syndrome-related diseases. We have previously demonstrated that unique skeletal phenotypes observed in human embryonic stem cells carrying the monogenic FBN1 mutation (MFS cells) are faithfully phenocopied by cells differentiated from induced pluripotent-stem cells (MFSiPS) derived independently from MFS patient fibroblasts. In this study, we aimed to determine further the biochemical features of transducing signaling(s) in MFS stem cells and MFSiPS cells highlighting a crosstalk between TGFβ and BMP signaling. Our results revealed that enhanced activation of TGFβ signaling observed in MFS cells decreased their endogenous BMP signaling. Moreover, exogenous BMP antagonized the enhanced TGFβ signaling in both MFS stem cells and MFSiPS cells therefore, rescuing their ability to undergo osteogenic differentiation. This study advances our understanding of molecular mechanisms underlying the pathogenesis of bone loss/abnormal skeletogenesis in human diseases caused by mutations in FBN1.
Collapse
Affiliation(s)
- Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
45
|
Kumar A, Agarwal S. WITHDRAWN: Marfan syndrome: An eyesight of syndrome. Gene 2013:S0378-1119(13)00998-0. [PMID: 23954223 DOI: 10.1016/j.gene.2013.07.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 07/25/2013] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Genetics Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India.
| | | |
Collapse
|
46
|
Precise breakpoint localization of large genomic deletions using PacBio and Illumina next-generation sequencers. Biotechniques 2013; 54:98-100. [PMID: 23384181 DOI: 10.2144/000113992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022] Open
Abstract
Herein we present the applicability of single-molecule (PacBio RS) and second-generation sequencing technology (Illumina) to the characterization of large genomic deletions. By testing samples previously characterized using a Sanger approach, our methods determined that both next-generation sequencing platforms were able to identify the position of deletion breakpoints. Our results point out various advantages of next-generation sequencing platforms when characterizing genomic deletions; however, special attention must be dedicated to identical sequences flanking the breakpoints, such as poly(N) motifs.
Collapse
|
47
|
Guo G, Rödelsperger C, Digweed M, Robinson PN. Regulation of fibrillin-1 gene expression by Sp1. Gene 2013; 527:448-55. [PMID: 23860323 DOI: 10.1016/j.gene.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Mutations in the fibrillin-1 gene (FBN1) cause Marfan Syndrome (MFS), a hereditary disorder of connective tissue. The transcription of FBN1 has been reported to be driven by a short ultraconserved region (SUPR) in the 5' untranslated exon A of FBN1, but the nature of other factors involved in FBN1 gene regulation has not been clarified. In this study, we characterized the transcription factors involved in FBN1 gene regulation. The results show that Sp1 protein binds to two putative binding sites in the promoter of FBN1. Overexpression of Sp1 resulted in a significant increase in both promoter activity and FBN1 mRNA level in HEK 293 cells, whereas inhibition or knockdown of Sp1 decreased FBN1 gene expression. In addition, we found that Poly [ADP-ribose] polymerase 1 (PARP1) binds to the palindromic sequence TCTCGCGAGA in the ultraconserved region of the FBN1 promoter and that the regulation of FBN1 expression by PARP1 is dependent on Sp1. These results indicate that both Sp1 and PARP1 contribute to FBN1 gene expression. These observations add to our understanding of the transcriptional regulation of FBN1 gene expression.
Collapse
Affiliation(s)
- Gao Guo
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Kemper KE, Visscher PM, Goddard ME. Genetic architecture of body size in mammals. Genome Biol 2013; 13:244. [PMID: 22546202 DOI: 10.1186/gb4016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies.
Collapse
Affiliation(s)
- Kathryn E Kemper
- Faculty of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
49
|
Abstract
Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies.
Collapse
Affiliation(s)
- Kathryn E Kemper
- Faculty of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
50
|
Colovati ME, da Silva LR, Takeno SS, Mancini TI, N Dutra AR, Guilherme RS, de Mello CB, Melaragno MI, A Perez AB. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene. Mol Cytogenet 2012; 5:5. [PMID: 22260333 PMCID: PMC3339390 DOI: 10.1186/1755-8166-5-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background The majority of Marfan syndrome (MFS) cases is caused by mutations in the fibrillin-1 gene (FBN1), mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.
Collapse
Affiliation(s)
- Mileny Es Colovati
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|