1
|
Mou D, Wu S, Chen Y, Wang Y, Dai Y, Tang M, Teng X, Bai S, Bai X. Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncol Rep 2025; 53:60. [PMID: 40183369 PMCID: PMC11976372 DOI: 10.3892/or.2025.8893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Paternally expressed gene 10 (PEG10) is an imprinting gene. In addition to its known roles in placental development, as well as mouse embryonic stem cell and trophoblast stem cell differentiation, PEG10 has recently been shown to have significance in cancers. High expression of PEG10 is observed in various cancer types and is associated with poor prognosis. Of note, disruption of PEG10 expression leads to increased apoptosis, as well as decreased proliferation, invasion and migration of cancer cells. PEG10 is expected to become a target for cancer and neurodegenerative disorder therapy. This article reviewed the latest progress in the role of PEG10 in cancers.
Collapse
Affiliation(s)
- Dachao Mou
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shasha Wu
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanqiong Chen
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Wang
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yufang Dai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu Teng
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shijun Bai
- Department of Agriculture Forestry and Food Engineering, Yibin University, Lingang Economic and Technological Development Zone, Yibin, Sichuan 644000, P.R. China
| | - Xiufeng Bai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Marshall H, de la Filia AG, Cavalieri R, Mallon EB, Clark JM, Ross L. Lack of paternal silencing and ecotype-specific expression in head and body lice hybrids. Evol Lett 2024; 8:455-465. [PMID: 38818422 PMCID: PMC11134467 DOI: 10.1093/evlett/qrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 06/01/2024] Open
Abstract
Paternal genome elimination (PGE) is a non-Mendelian inheritance system, described in numerous arthropod species, in which males develop from fertilized eggs, but their paternally inherited chromosomes are eliminated before or during spermatogenesis. Therefore, PGE males only transmit their maternally inherited set of chromosomes to their offspring. In addition to the elimination of paternal chromosomes, diverse PGE species have also repeatedly evolved the transcriptional silencing of the paternal genome, making males effectively haploid. However, it is unclear if this paternal chromosome silencing is mechanistically linked to the chromosome elimination or has evolved at a later stage, and if so, what drives the haploidization of males under PGE. In order to understand these questions, here we study the human louse, Pediculus humanus, which represents an ideal model system, as it appears to be the only instance of PGE where males eliminate, but not silence their paternal chromosomes, although the latter remains to be shown conclusively. In this study, we analyzed parent-of-origin allele-specific expression patterns in male offspring of crosses between head and body lice ecotypes. We show that hybrid adult males of P. humanus display biparental gene expression, which constitutes the first case of a species with PGE in which genetic activity of paternal chromosomes in the soma is not affected by embryonic silencing or (partial or complete) elimination. We did however also identify a small number of maternally biased genes (potentially imprinted genes), which may be involved in the elimination of paternal chromosomes during spermatogenesis. Finally, we have identified genes that show ecotype-specific expression bias. Given the low genetic diversity between ecotypes, this is suggestive for a role of epigenetic processes in ecotype differences.
Collapse
Affiliation(s)
- Hollie Marshall
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Cavalieri
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Eamonn B Mallon
- The Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John M Clark
- Massachusetts Pesticide Analysis Lab, Veterinary and Animal Sciences, University of Massachusetts Amherst, Massachusetts, United States
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Esteves F, Xavier JM, Ford AM, Rocha C, Pharoah PDP, Caldas C, Chin SF, Maia AT. Germline allelic expression of genes at 17q22 locus associates with risk of breast cancer. Eur J Cancer 2022; 172:146-157. [PMID: 35772352 DOI: 10.1016/j.ejca.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Translation of genome-wide association study (GWAS) findings into preventive approaches is challenged by the identification of the causal risk variants and the understanding of the biological mechanisms by which they act. We present using allelic expression (AE) ratios to perform quantitative case-control analysis as a novel approach to identify risk associations, causal regulatory variants, and target genes. METHODS Using the breast cancer (BC) risk locus 17q22 to validate this approach, we measured AE ratios in normal breast tissue samples from controls and cases, as well as from unmatched blood samples. Then we used in-silico and in-vitro analysis to map and functionally characterised candidate causal variants. RESULTS We found a significant shift in the AE patterns of STXBP4 (rs2628315) and COX11 (rs17817901) in the normal breast tissue of cases and healthy controls. Preferential expression of the G-rs2628315 and A-rs17817901 alleles, more often observed in cases, was associated with an increased risk for BC. Analysis of blood samples from cases and controls found a similar association. Furthermore, we identified two putative cis-regulatory variants - rs17817901 and rs8066588 - that affect a miRNA and a transcription factor binding site, respectively. CONCLUSION We propose causal variants and target genes for the 17q22 BC risk locus and show that using AE ratios in case-control association studies is helpful in identifying risk and mapping causal variants.
Collapse
Affiliation(s)
- Filipa Esteves
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Universidade do Algarve, 805-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, Gambelas Campus, 805-139 Faro, Portugal
| | - Joana M Xavier
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, Sutton SM2 5NG, United Kingdom
| | - Cátia Rocha
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, 805-139 Faro, Portugal
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, United Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, 805-139 Faro, Portugal; Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
5
|
Allelic imbalance of HLA-B expression in human lung cells infected with coronavirus and other respiratory viruses. Eur J Hum Genet 2022; 30:922-929. [PMID: 35322240 PMCID: PMC8940983 DOI: 10.1038/s41431-022-01070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
The human leucocyte antigen (HLA) loci have been widely characterized to be associated with viral infectious diseases using either HLA allele frequency-based association or in silico predicted studies. However, there is less experimental evidence to link the HLA alleles with COVID-19 and other respiratory infectious diseases, particularly in the lung cells. To examine the role of HLA alleles in response to coronavirus and other respiratory viral infections in disease-relevant cells, we designed a two-stage study by integrating publicly accessible RNA-seq data sets, and performed allelic expression (AE) analysis on heterozygous HLA genotypes. We discovered an increased AE pattern accompanied with overexpression of HLA-B gene in SARS-CoV-2-infected human lung epithelial cells. Analysis of independent data sets verified the respiratory virus-induced AE of HLA-B gene in lung cells and tissues. The results were further experimentally validated in cultured lung cells infected with SARS-CoV-2. We further uncovered that the antiviral cytokine IFNβ contribute to AE of the HLA-B gene in lung cells. Our analyses provide a new insight into allelic influence on the HLA expression in association with SARS-CoV-2 and other common viral infectious diseases.
Collapse
|
6
|
Zhang Y, Day K, Absher DM. STAT3-mediated allelic imbalance of novel genetic variant Rs1047643 and B-cell-specific super-enhancer in association with systemic lupus erythematosus. eLife 2022; 11:72837. [PMID: 35188103 PMCID: PMC8884724 DOI: 10.7554/elife.72837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Mapping of allelic imbalance (AI) at heterozygous loci has the potential to establish links between genetic risk for disease and biological function. Leveraging multi-omics data for AI analysis and functional annotation, we discovered a novel functional risk variant rs1047643 at 8p23 in association with systemic lupus erythematosus (SLE). This variant displays dynamic AI of chromatin accessibility and allelic expression on FDFT1 gene in B cells with SLE. We further found a B-cell restricted super-enhancer (SE) that physically contacts with this SNP-residing locus, an interaction that also appears specifically in B cells. Quantitative analysis of chromatin accessibility and DNA methylation profiles further demonstrated that the SE exhibits aberrant activity in B cell development with SLE. Functional studies identified that STAT3, a master factor associated with autoimmune diseases, directly regulates both the AI of risk variant and the activity of SE in cultured B cells. Our study reveals that STAT3-mediated SE activity and cis-regulatory effects of SNP rs1047643 at 8p23 locus are associated with B cell deregulation in SLE.
Collapse
Affiliation(s)
- Yanfeng Zhang
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | | | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| |
Collapse
|
7
|
Crippa M, Bonati MT, Calzari L, Picinelli C, Gervasini C, Sironi A, Bestetti I, Guzzetti S, Bellone S, Selicorni A, Mussa A, Riccio A, Ferrero GB, Russo S, Larizza L, Finelli P. Molecular Etiology Disclosed by Array CGH in Patients With Silver-Russell Syndrome or Similar Phenotypes. Front Genet 2019; 10:955. [PMID: 31749829 PMCID: PMC6843062 DOI: 10.3389/fgene.2019.00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Silver–Russell syndrome (SRS) is an imprinting disorder primarily caused by genetic and epigenetic aberrations on chromosomes 11 and 7. SRS is a rare growth retardation disorder often misdiagnosed due to its heterogeneous and non-specific clinical features. The Netchine–Harbison clinical scoring system (NH-CSS) is the recommended tool for differentiating patients into clinical SRS or unlikely SRS. However, the clinical diagnosis is molecularly confirmed only in about 60% of patients, leaving the remaining substantial proportion of SRS patients with unknown genetic etiology. Materials and Methods: A cohort of 34 Italian patients with SRS or SRS-like features scored according to the NH-CSS and without any SRS-associated (epi)genetic alterations was analyzed by high-resolution array-based comparative genomic hybridization (CGH) in order to identify potentially pathogenic copy number variants (CNVs). Results and Discussion: In seven patients, making up 21% of the initial cohort, five pathogenic and two potentially pathogenic CNVs were found involving distinct genomic regions either previously associated with growth delay conditions (1q24.3-q25.3, 17p13.3, 17q22, and 22q11.2-q11.22) and with SRS spectrum (7p12.1 and 7p15.3-p14.3) or outlined for the first time (19q13.42), providing a better definition of reported and as yet unreported SRS overlapping syndromes. All the variants involve genes with a defined role in growth pathways, and for two genes mapping at 7p, IGF2BP3 and GRB10, the association with SRS turns out to be reinforced. The deleterious effect of the two potentially pathogenic variants, comprising GRB10 and ZNF331 genes, was explored by targeted approaches, though further studies are needed to validate their pathogenic role in the SRS etiology. In conclusion, we reconfirm the utility of performing a genome-wide scan to achieve a differential diagnosis in patients with SRS or similar features and to highlight novel chromosome alterations associated with SRS and growth retardation disorders.
Collapse
Affiliation(s)
- Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Picinelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Guzzetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Alessandro Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," Caserta, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | | | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Palma Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Schulze KV, Szafranski P, Lesmana H, Hopkin RJ, Hamvas A, Wambach JA, Shinawi M, Zapata G, Carvalho CMB, Liu Q, Karolak JA, Lupski JR, Hanchard NA, Stankiewicz P. Novel parent-of-origin-specific differentially methylated loci on chromosome 16. Clin Epigenetics 2019; 11:60. [PMID: 30961659 PMCID: PMC6454695 DOI: 10.1186/s13148-019-0655-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV.
Collapse
Affiliation(s)
- Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harry Lesmana
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron Hamvas
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gladys Zapata
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Yeung KS, Ho MSP, Lee SL, Kan ASY, Chan KYK, Tang MHY, Mak CCY, Leung GKC, So PL, Pfundt R, Marshall CR, Scherer SW, Choufani S, Weksberg R, Hon-Yin Chung B. Paternal uniparental disomy of chromosome 19 in a pair of monochorionic diamniotic twins with dysmorphic features and developmental delay. J Med Genet 2018; 55:847-852. [PMID: 30007940 DOI: 10.1136/jmedgenet-2018-105328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND We report here clinical, cytogenetic and molecular data for a pair of monochorionic diamniotic twins with paternal isodisomy for chromosome 19. Both twins presented with dysmorphic features and global developmental delay. This represents, to our knowledge, the first individual human case of paternal uniparental disomy for chromosome 19 (UPD19). METHODS Whole-exome sequencing, together with conventional karyotype and SNP array analysis were performed along with genome-wide DNA methylation array for delineation of the underlying molecular defects. RESULTS Conventional karyotyping on amniocytes and lymphocytes showed normal karyotypes for both twins. Whole-exome sequencing did not identify any pathogenic sequence variants but >5000 homozygous exonic variants on chromosome 19, suggestive of UPD19. SNP arrays on blood and buccal DNA both showed paternal isodisomy for chromosome 19. Losses of imprinting for known imprinted genes on chromosome 19 were identified, including ZNF331, PEG3, ZIM2 and MIMT1. In addition, imprinting defects were also identified in genes located on other chromosomes, including GPR1-AS, JAKMP1 and NHP2L1. CONCLUSION Imprinting defects are the most likely cause for the dysmorphism and developmental delay in this first report of monozygotic twins with UPD19. However, epigenotype-phenotype correlation will require identification of additional individuals with UPD19 and further molecular analysis.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Matthew Sai Pong Ho
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - So Lun Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong
| | - Anita Sik Yau Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong.,Prenatal Diagnostic Laboratory, Tsan Yuk Hospital, Hong Kong
| | - Mary Hoi Yin Tang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Gordon Ka Chun Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Po Lam So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Hong Kong.,Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Brekke TD, Henry LA, Good JM. Genomic imprinting, disrupted placental expression, and speciation. Evolution 2016; 70:2690-2703. [PMID: 27714796 PMCID: PMC5123974 DOI: 10.1111/evo.13085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
The importance of regulatory incompatibilities to the early stages of speciation remains unclear. Hybrid mammals often show extreme parent-of-origin growth effects that are thought to be a consequence of disrupted genetic imprinting (parent-specific epigenetic gene silencing) during early development. Here, we test the long-standing hypothesis that abnormal hybrid growth reflects disrupted gene expression due to loss of imprinting (LOI) in hybrid placentas, resulting in dosage imbalances between paternal growth factors and maternal growth repressors. We analyzed placental gene expression in reciprocal dwarf hamster hybrids that show extreme parent-of-origin growth effects relative to their parental species. In massively enlarged hybrid placentas, we observed both extensive transgressive expression of growth-related genes and biallelic expression of many genes that were paternally silenced in normal sized hybrids. However, the apparent widespread disruption of paternal silencing was coupled with reduced gene expression levels overall. These patterns are contrary to the predictions of the LOI model and indicate that hybrid misexpression of dosage-sensitive genes is caused by other regulatory mechanisms in this system. Collectively, our results support a central role for disrupted gene expression and imprinting in the evolution of mammalian hybrid inviability, but call into question the generality of the widely invoked LOI model.
Collapse
Affiliation(s)
- Thomas D. Brekke
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Lindy A. Henry
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| |
Collapse
|
12
|
Joshi RS, Garg P, Zaitlen N, Lappalainen T, Watson CT, Azam N, Ho D, Li X, Antonarakis SE, Brunner HG, Buiting K, Cheung SW, Coffee B, Eggermann T, Francis D, Geraedts JP, Gimelli G, Jacobson SG, Le Caignec C, de Leeuw N, Liehr T, Mackay DJ, Montgomery SB, Pagnamenta AT, Papenhausen P, Robinson DO, Ruivenkamp C, Schwartz C, Steiner B, Stevenson DA, Surti U, Wassink T, Sharp AJ. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. Am J Hum Genet 2016; 99:555-566. [PMID: 27569549 DOI: 10.1016/j.ajhg.2016.06.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.
Collapse
Affiliation(s)
- Ricky S Joshi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noah Zaitlen
- Department of Medicine, UCSF MC2552, 1700 4th Street, Byers Hall Suite 503C, San Francisco, CA 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, 101 Avenue of the Americas, 7th Floor, New York, NY 10013, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nidha Azam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Li
- Departments of Pathology, Genetics and Computer Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 9th Floor, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bradford Coffee
- Emory Genetics Laboratory, Emory University, Atlanta, GA 30033, USA
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, RWTH, 52074 Aachen, Germany
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joep P Geraedts
- Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 5800, Maastricht AZ 6202, the Netherlands
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G. Gaslini, 16148 Genova, Italy
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, Philadelphia, PA 19104, USA
| | - Cedric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Institut de Biologie, 9 quai Moncousu, 44093 Nantes, France; INSERM, UMR 957, Nantes 44035, France; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes 44035, France
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Deborah J Mackay
- Wessex Regional Genetics Laboratory Salisbury District Hospital, Salisbury, Wiltshire SO2 8BJ, UK
| | - Stephen B Montgomery
- Departments of Pathology, Genetics and Computer Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Papenhausen
- Division of Cytogenetics, LabCorp, Center for Molecular Biology and Pathology, Research Triangle Park, NC 27709, USA
| | - David O Robinson
- Wessex Regional Genetics Laboratory Salisbury District Hospital, Salisbury, Wiltshire SO2 8BJ, UK
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Charles Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Bernhard Steiner
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - David A Stevenson
- Division of Medical Genetics, Lucile Salter Packard Children's Hospital, 300 Pasteur Drive, Boswell Building A097, Stanford, CA 94304, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas Wassink
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
13
|
A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. Nat Commun 2016; 7:11101. [PMID: 27089393 PMCID: PMC4837449 DOI: 10.1038/ncomms11101] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org).
Collapse
|
14
|
Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease. PLoS One 2016; 11:e0152670. [PMID: 27082954 PMCID: PMC4833382 DOI: 10.1371/journal.pone.0152670] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes.
Collapse
|
15
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, Del Campo M, Gener B, Gabau E, Botella MP, Gutiérrez-Arumí A, Antiñolo G, Pérez-Jurado LA, Cuscó I. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism 2015; 6:21. [PMID: 25969726 PMCID: PMC4427998 DOI: 10.1186/s13229-015-0017-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. METHODS We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. RESULTS We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. CONCLUSIONS Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
Collapse
Affiliation(s)
- Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | | | - Aïda Homs
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Javier Santoyo
- Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain
| | - Maria Rigau
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain
| | - Gemma Aznar-Laín
- Pediatric Neurology, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003 Spain
| | - Miguel Del Campo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Servicio de Genética, Hospital Vall d'Hebron, Passeig Vall d'Hebron, 119-129, Barcelona, 08015 Spain
| | - Blanca Gener
- Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, Barakaldo, Bizkaia 48093 Spain
| | - Elisabeth Gabau
- Pediatrics Service, Corporació Sanitària Parc Taulí, Parc Taulí 1, Sabadell, 08208 Spain
| | - María Pilar Botella
- Pediatric Neurology, Hospital de Txagorritxu, C/José de Atxotegui s/n, Victoria-Gasteiz, 01009 Spain
| | - Armand Gutiérrez-Arumí
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Guillermo Antiñolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain ; Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda Manuel Siurot s/n, Sevilla, 41013 Spain
| | - Luis Alberto Pérez-Jurado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Ivon Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| |
Collapse
|
17
|
Stelzer Y, Bar S, Bartok O, Afik S, Ronen D, Kadener S, Benvenisty N. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Rep 2015; 11:308-20. [DOI: 10.1016/j.celrep.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022] Open
|
18
|
Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 2014; 113:156-66. [PMID: 24619182 PMCID: PMC4105452 DOI: 10.1038/hdy.2014.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression.
Collapse
Affiliation(s)
- X Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet 2014; 10:e1004508. [PMID: 25078964 PMCID: PMC4117451 DOI: 10.1371/journal.pgen.1004508] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Collapse
|
20
|
Involvement of parental imprinting in the antisense regulation of onco-miR-372-373. Nat Commun 2014; 4:2724. [PMID: 24201333 DOI: 10.1038/ncomms3724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
The monoallelic nature of imprinted genes renders them highly susceptible to genetic and epigenetic perturbations, potentially resulting in transformation and disease. Here we show, using parthenogenetic induced pluripotent stem cells, an imprinted transcript that serves as an antisense regulator of onco-miR-372-3 (named anti-miR-371-3). As miR-372-3 have been shown to have an oncogenic role in testicular germ cell tumours, we study the involvement of their antisense transcript in these cells. Our results suggest that hypermethylation, leading to loss-of-expression of the imprinted antisense transcript, contributes to tumorigenic transformation by affecting the downstream target LATS2. Finally, we provide evidence for a tumour suppressive role of anti-miR-371-3, as its overexpression in tumour cells results in cell growth arrest and apoptosis, and prevents tumour formation on injection into immunodeficient mice.
Collapse
|
21
|
Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51:229-38. [PMID: 24501229 PMCID: PMC3963529 DOI: 10.1136/jmedgenet-2013-102116] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder patients have hypomethylation of several imprinted loci (HIL) throughout the genome and may have atypically severe clinical features. Here we used array analysis in HIL patients to define patterns of aberrant methylation throughout the genome. DESIGN We developed a novel informatic pipeline capable of small sample number analysis, and profiled 10 HIL patients with two clinical presentations (Beckwith-Wiedemann syndrome and neonatal diabetes) using the Illumina Infinium Human Methylation450 BeadChip array to identify candidate imprinted regions. We used robust statistical criteria to quantify DNA methylation. RESULTS We detected hypomethylation at known imprinted loci, and 25 further candidate imprinted regions (nine shared between patient groups) including one in the Down syndrome critical region (WRB) and another previously associated with bipolar disorder (PPIEL). Targeted analysis of three candidate regions (NHP2L1, WRB and PPIEL) showed allelic expression, methylation patterns consistent with allelic maternal methylation and frequent hypomethylation among an additional cohort of HIL patients, including six with Silver-Russell syndrome presentations and one with pseudohypoparathyroidism 1B. CONCLUSIONS This study identified novel candidate imprinted genes, revealed remarkable epigenetic convergence among clinically divergent patients, and highlights the potential of epigenomic profiling to expand our understanding of the normal methylome and its disruption in human disease.
Collapse
|
22
|
Ben-David E, Shohat S, Shifman S. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders. Hum Mol Genet 2014; 23:4111-24. [PMID: 24659497 DOI: 10.1093/hmg/ddu128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequencing of aberrantly methylated loci in a patient with multiple methylation defects. PLoS One 2013; 8:e76953. [PMID: 24130816 PMCID: PMC3793946 DOI: 10.1371/journal.pone.0076953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022] Open
Abstract
NLRP7 is a maternal effect gene as maternal mutations in this gene cause recurrent hydatidiform moles, spontaneous abortions and stillbirths, whereas live births are very rare. We have studied a patient with multiple anomalies born to a mother with a heterozygous NLRP7 mutation. By array-based CpG methylation analysis of blood DNA from the patient, his parents and 18 normal controls on Illumina Infinium HumanMethylation27 BeadChips we found that the patient had methylation changes (delta ß ≥ 0.3) at many imprinted loci as well as at 87 CpGs associated with 85 genes of unknown imprinting status. Using a pseudoproband (permutation) approach, we found methylation changes at only 7-24 CpGs (mean 15; standard deviation 4.84) in the controls. Thus, the number of abberantly methylated CpGs in the patient is more than 14 standard deviations higher. In order to identify novel imprinted genes among the 85 conspicuous genes in the patient, we selected 19 (mainly hypomethylated) genes for deep bisulfite amplicon sequencing on the ROCHE/454 Genome Sequencer in the patient and at least two additional controls. These controls had not been included in the array analysis and were heterozygous for a single nucleotide polymorphism at the test locus, so that allele-specific DNA methylation patterns could be determined. Apart from FAM50B, which we proved to be imprinted in blood, we did not observe allele-specific DNA methylation at the other 18 loci. We conclude that the patient does not only have methylation defects at imprinted loci but (at least in blood) also an excess of methylation changes at apparently non-imprinted loci.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Gritzan
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Melanie Heitmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katrin Rademacher
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, Lin XM, Chng K, Yeo GSH, Ferguson-Smith AC, Ding C. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013; 14:685. [PMID: 24094292 PMCID: PMC3829101 DOI: 10.1186/1471-2164-14-685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. RESULTS Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. CONCLUSIONS Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.
Collapse
Affiliation(s)
- Radhika Das
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kok Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruslan Strogantsev
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Shengnan Jin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yen Ching Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Poh Yong Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xueqin Michelle Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keefe Chng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - George SH Yeo
- Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore
| | - Anne C Ferguson-Smith
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
25
|
Abstract
Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.
Collapse
Affiliation(s)
- Xiajun Li
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
| |
Collapse
|
26
|
Data mining as a discovery tool for imprinted genes. Methods Mol Biol 2012; 925:89-134. [PMID: 22907493 DOI: 10.1007/978-1-62703-011-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language.
Collapse
|
27
|
Garg P, Borel C, Sharp AJ. Detection of parent-of-origin specific expression quantitative trait loci by cis-association analysis of gene expression in trios. PLoS One 2012; 7:e41695. [PMID: 22912676 PMCID: PMC3422236 DOI: 10.1371/journal.pone.0041695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/25/2012] [Indexed: 12/02/2022] Open
Abstract
Parent-of-origin (PofO) effects, such as imprinting are a phenomenon in which homologous chromosomes exhibit differential gene expression and epigenetic modifications according to their parental origin. Such non-Mendelian inheritance patterns are generally ignored by conventional association studies, as these tests consider the maternal and paternal alleles as equivalent. To identify regulatory regions that show PofO effects on gene expression (imprinted expression Quantitative Trait Loci, ieQTLs), here we have developed a novel method in which we associate SNP genotypes of defined parental origin with gene expression levels. We applied this method to study 59 HapMap phase II parent-offspring trios. By analyzing mother/father/child trios, rules of Mendelian inheritance allowed the parental origin to be defined for ∼95% of SNPs in each child. We used 680,475 informative SNPs and corresponding expression data for 92,167 probe sets from Affymetrix GeneChip Human Exon 1.0 ST arrays and performed four independent cis-association analyses with the expression level of RefSeq genes within 1 Mb using PLINK. Independent analyses of maternal and paternal genotypes identified two significant cis-ieQTLs (p<10−7) at which expression of genes SFT2D2 and SRRT associated exclusively with maternally inherited SNPs rs3753292 and rs6945374, respectively. 28 additional suggestive cis-associations with only maternal or paternal SNPs were found at a lower stringency threshold of p<10−6, including associations with two known imprinted genes PEG10 and TRAPPC9, demonstrating the efficacy of our method. Furthermore, comparison of our method that utilizes independent analyses of maternal and paternal genotypes with the Likelihood Ratio Test (LRT) showed it to be more effective for detecting imprinting effects than the LRT. Our method represents a novel approach that can identify imprinted regulatory elements that control gene expression, suggesting novel PofO effects in the human genome.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Christelle Borel
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessières B, Barlier A, Jacques S, Simeoni U, Dandolo L, Letourneur F, Jammes H, Vaiman D. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics 2012; 7:1079-90. [PMID: 22894909 PMCID: PMC3466192 DOI: 10.4161/epi.21495] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.
Collapse
|
29
|
Reddy TE, Gertz J, Pauli F, Kucera KS, Varley KE, Newberry KM, Marinov GK, Mortazavi A, Williams BA, Song L, Crawford GE, Wold B, Willard HF, Myers RM. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res 2012; 22:860-9. [PMID: 22300769 PMCID: PMC3337432 DOI: 10.1101/gr.131201.111] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/01/2012] [Indexed: 01/01/2023]
Abstract
A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences.
Collapse
Affiliation(s)
- Timothy E. Reddy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Jason Gertz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Florencia Pauli
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Katerina S. Kucera
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | - Georgi K. Marinov
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Ali Mortazavi
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Brian A. Williams
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Lingyun Song
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Gregory E. Crawford
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Barbara Wold
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Huntington F. Willard
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
30
|
Abstract
DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species.
Collapse
|
31
|
Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer. Oncogene 2012; 32:307-17. [PMID: 22370639 DOI: 10.1038/onc.2012.54] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zinc-finger protein 331 (ZNF331), a Kruppel-associated box zinc-finger protein gene, was identified as a putative tumor suppressor in our previous study. However, the role of ZNF331 in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. ZNF331 was silenced or downregulated in 71% (12/17) gastric cancer cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancer tissues. In contrast, ZNF331 was readily expressed in various normal adult tissues. The downregulation of ZNF331 was closely linked to the promoter hypermethylation as evidenced by methylation-specific PCR, bisulfite genomic sequencing and reexpression by demethylation agent treatment. DNA sequencing showed no genetic mutation/deletion of ZNF331 in gastric cancer cell lines. Ectopic expression of ZNF331 in the silenced cancer cell lines MKN28 and HCT116 significantly reduced colony formation and cell viability, induced cell cycle arrests and repressed cell migration and invasive ability. Concordantly, knockdown of ZNF331 increased cell viability and colony formation ability of gastric cancer cell line MKN45. Two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic approach were applied to analyze the molecular basis of the biological functions of ZNF331. In all, 10 downstream targets of ZNF331 were identified to be associated with regulation of cell growth and metastasis. The tumor-suppressive effect of ZNF331 is mediated at least by downregulation of genes involved in cell growth promotion (DSTN, EIF5A, GARS, DDX5, STAM, UQCRFS1 and SET) and migration/invasion (DSTN and ACTR3), and upregulation of genome-stability gene (SSBP1) and cellular senescence gene (PNPT1). A novel target of ZNF331 (DSTN) was functionally validated. Overexpression of DSTN in BGC-823 cells increased colony formation and migration ability. In conclusion, our results suggest that ZNF331 possesses important functions for the suppression of gastric carcinogenesis as a novel functional tumor-suppressor gene.
Collapse
|
32
|
Nothnagel M, Wolf A, Herrmann A, Szafranski K, Vater I, Brosch M, Huse K, Siebert R, Platzer M, Hampe J, Krawczak M. Statistical inference of allelic imbalance from transcriptome data. Hum Mutat 2011; 32:98-106. [PMID: 21120951 DOI: 10.1002/humu.21396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Next-generation sequencing and the availability of high-density genotyping arrays have facilitated an analysis of somatic and meiotic mutations at unprecedented level, but drawing sensible conclusions about the functional relevance of the detected variants still remains a formidable challenge. In this context, the study of allelic imbalance in intermediate RNA phenotypes may prove a useful means to elucidate the likely effects of DNA variants of unknown significance. We developed a statistical framework for the assessment of allelic imbalance in next-generation transcriptome sequencing (RNA-seq) data that requires neither an expression reference nor the underlying nuclear genotype(s), and that allows for allele miscalls. Using extensive simulation as well as publicly available whole-transcriptome data from European-descent individuals in HapMap, we explored the power of our approach in terms of both genotype inference and allelic imbalance assessment under a wide range of practically relevant scenarios. In so doing, we verified a superior performance of our methodology, particularly at low sequencing coverage, compared to the more simplistic approach of completely ignoring allele miscalls. Because the proposed framework can be used to assess somatic mutations and allelic imbalance in one and the same set of RNA-seq data, it will be particularly useful for the analysis of somatic genetic variation in cancer studies.
Collapse
Affiliation(s)
- Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared.
Collapse
|
34
|
Jones BL, Swallow DM. The impact of cis-acting polymorphisms on the human phenotype. THE HUGO JOURNAL 2011. [PMID: 23205161 DOI: 10.1007/s11568-011-9155-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cis-acting polymorphisms that affect gene expression are now known to be frequent, although the extent and mechanisms by which such variation affects the human phenotype are, as yet, only poorly understood. Key signatures of cis-acting variation are differences in gene expression that are tightly associated with regulatory SNPs or expression Quantitative Trait Loci (eQTL) and an imbalance of allelic expression (AEI) in heterozygous samples. Such cis-acting sequence differences appear often to have been under selection within and between populations and are also thought to be important in speciation. Here we describe the example of lactase persistence. In medical research, variants that affect regulation in cis have been implicated in both monogenic and polygenic disorders, and in the metabolism of drugs. In this review we suggest that by further understanding common regulatory variations and how they interact with other genetic and environmental variables it will be possible to gain insight into important mechanisms behind complex disease, with the potential to lead to new methods of diagnosis and treatments.
Collapse
Affiliation(s)
- Bryony L Jones
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT UK
| | | |
Collapse
|
35
|
Zhang A, Skaar DA, Li Y, Huang D, Price TM, Murphy SK, Jirtle RL. Novel retrotransposed imprinted locus identified at human 6p25. Nucleic Acids Res 2011; 39:5388-400. [PMID: 21421564 PMCID: PMC3141237 DOI: 10.1093/nar/gkr108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 01/24/2011] [Accepted: 02/11/2011] [Indexed: 01/02/2023] Open
Abstract
Differentially methylated regions (DMRs) are stable epigenetic features within or in proximity to imprinted genes. We used this feature to identify candidate human imprinted loci by quantitative DNA methylation analysis. We discovered a unique DMR at the 5'-end of FAM50B at 6p25.2. We determined that sense transcripts originating from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except for ovary, in which expression is biallelic. Furthermore, an antisense transcript, FAM50B-AS, was identified to be monoallelically expressed from the paternal allele in a variety of tissues. Comparative phylogenetic analysis showed that FAM50B orthologs are absent in chicken and platypus, but are present and biallelically expressed in opossum and mouse. These findings indicate that FAM50B originated in Therians after divergence from Prototherians via retrotransposition of a gene on the X chromosome. Moreover, our data are consistent with acquisition of imprinting during Eutherian evolution after divergence of Glires from the Euarchonta mammals. FAM50B expression is deregulated in testicular germ cell tumors, and loss of imprinting occurs frequently in testicular seminomas, suggesting an important role for FAM50B in spermatogenesis and tumorigenesis. These results also underscore the importance of accounting for parental origin in understanding the mechanism of 6p25-related diseases.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - David A. Skaar
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yue Li
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dale Huang
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas M. Price
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K. Murphy
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Randy L. Jirtle
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Nakabayashi K, Trujillo AM, Tayama C, Camprubi C, Yoshida W, Lapunzina P, Sanchez A, Soejima H, Aburatani H, Nagae G, Ogata T, Hata K, Monk D. Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes. Hum Mol Genet 2011; 20:3188-97. [PMID: 21593219 DOI: 10.1093/hmg/ddr224] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear transfer experiments undertaken in the mid-80's revealed that both maternal and paternal genomes are necessary for normal development. This is due to genomic imprinting, an epigenetic mechanism that results in parent-of-origin monoallelic expression of genes regulated by germline-derived allelic methylation. To date, ∼100 imprinted transcripts have been identified in mouse, with approximately two-thirds showing conservation in humans. It is currently unknown how many imprinted genes are present in humans, and to what extent these transcripts exhibit human-specific imprinted expression. This is mainly due to the fact that the majority of screens for imprinted genes have been undertaken in mouse, with subsequent analysis of the human orthologues. Utilizing extremely rare reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we analyzed ∼0.1% of CpG dinculeotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium methylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs, first, one maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon. Secondly, we found a paternally methylated, bidirectional repressor located between maternally expressed ZNF597 and NAT15 genes. These three genes are biallelically expressed in mice due to lack of differential methylation, suggesting that these genes have become imprinted after the divergence of mouse and humans.
Collapse
Affiliation(s)
- Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morcos L, Ge B, Koka V, Lam KCL, Pokholok DK, Gunderson KL, Montpetit A, Verlaan DJ, Pastinen T. Genome-wide assessment of imprinted expression in human cells. Genome Biol 2011; 12:R25. [PMID: 21418647 PMCID: PMC3129675 DOI: 10.1186/gb-2011-12-3-r25] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/21/2011] [Accepted: 03/21/2011] [Indexed: 01/19/2023] Open
Abstract
Background Parent-of-origin-dependent expression of alleles, imprinting, has been suggested to impact a substantial proportion of mammalian genes. Its discovery requires allele-specific detection of expressed transcripts, but in some cases detected allelic expression bias has been interpreted as imprinting without demonstrating compatible transmission patterns and excluding heritable variation. Therefore, we utilized a genome-wide tool exploiting high density genotyping arrays in parallel measurements of genotypes in RNA and DNA to determine allelic expression across the transcriptome in lymphoblastoid cell lines (LCLs) and skin fibroblasts derived from families. Results We were able to validate 43% of imprinted genes with previous demonstration of compatible transmission patterns in LCLs and fibroblasts. In contrast, we only validated 8% of genes suggested to be imprinted in the literature, but without clear evidence of parent-of-origin-determined expression. We also detected five novel imprinted genes and delineated regions of imprinted expression surrounding annotated imprinted genes. More subtle parent-of-origin-dependent expression, or partial imprinting, could be verified in four genes. Despite higher prevalence of monoallelic expression, immortalized LCLs showed consistent imprinting in fewer loci than primary cells. Random monoallelic expression has previously been observed in LCLs and we show that random monoallelic expression in LCLs can be partly explained by aberrant methylation in the genome. Conclusions Our results indicate that widespread parent-of-origin-dependent expression observed recently in rodents is unlikely to be captured by assessment of human cells derived from adult tissues where genome-wide assessment of both primary and immortalized cells yields few new imprinted loci.
Collapse
Affiliation(s)
- Lisanne Morcos
- McGill University and Genome Quebec Innovation Centre, 740 Dr Penfield Avenue, Montreal, Quebec, H3A 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Choufani S, Shapiro JS, Susiarjo M, Butcher DT, Grafodatskaya D, Lou Y, Ferreira JC, Pinto D, Scherer SW, Shaffer LG, Coullin P, Caniggia I, Beyene J, Slim R, Bartolomei MS, Weksberg R. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res 2011; 21:465-76. [PMID: 21324877 DOI: 10.1101/gr.111922.110] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Evaluation of allelic expression of imprinted genes in adult human blood. PLoS One 2010; 5:e13556. [PMID: 21042416 PMCID: PMC2958851 DOI: 10.1371/journal.pone.0013556] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression.
Collapse
|
40
|
Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O'Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28:1097-105. [PMID: 20852635 PMCID: PMC2955169 DOI: 10.1038/nbt.1682] [Citation(s) in RCA: 508] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression.
Collapse
Affiliation(s)
- R Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Proudhon C, Bourc'his D. Identification and resolution of artifacts in the interpretation of imprinted gene expression. Brief Funct Genomics 2010; 9:374-84. [PMID: 20829207 DOI: 10.1093/bfgp/elq020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.
Collapse
|
42
|
Wagner JR, Ge B, Pokholok D, Gunderson KL, Pastinen T, Blanchette M. Computational analysis of whole-genome differential allelic expression data in human. PLoS Comput Biol 2010; 6:e1000849. [PMID: 20628616 PMCID: PMC2900287 DOI: 10.1371/journal.pcbi.1000849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/02/2010] [Indexed: 12/16/2022] Open
Abstract
Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (∼750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic expression such as alternative promoters and alternative 3′ end. The approaches developed not only shed light on the incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression and identify cases where this variation may be linked to diseases. Measures of gene expression, and the search for regulatory regions in the genome responsible for differences in levels of gene expression, is one of the key paths of research used to identify disease causing genes, as well as explain differences between healthy individuals. Typically, experiments have measured and compared gene expression in multiple individuals, and used this information to attempt to map regulatory regions responsible. Differences in environment between individuals can, however, cause differences in gene expression unrelated to the underlying regulatory sequence. New genotyping technologies enable the measurement of expression of both copies of a particular gene, at loci that are heterozygous within a particular individual. This will therefore act as an internal control, as environmental factors will continue to affect the expression of both copies of a gene at presumably equal levels, and differences in expression are more likely to be explicable by differences in regulatory regions specific to the two copies of the gene itself. Differences between regulatory regions are expected to lead to differences in expression of the two copies (or the two alleles) of a particular gene, also known as allelic imbalance. We describe a set of signal processing methods for the reliable detection of allelic expression within the genome.
Collapse
Affiliation(s)
- James R. Wagner
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Bing Ge
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | | | | | - Tomi Pastinen
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Department of Human and Medical Genetics, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
43
|
Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, Cavaillé J. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566-82. [PMID: 20610438 DOI: 10.1093/hmg/ddq272] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes play crucial roles in mammalian development and disruption of their expression is associated with many human disorders including tumourigenesis; yet, the actual number of imprinted genes in the human genome remains a matter of debate. Here, we report on the unexpected finding that the chromosome 19 microRNA cluster (C19MC), the largest human microRNA gene cluster discovered so far, is regulated by genomic imprinting with only the paternally inherited allele being expressed in the placenta. DNA methylation profiling identified a differentially methylated region (C19MC-DMR1) that overlaps an upstream CpG-rich promoter region associated with short tandem repeats. It displays a maternal-specific methylation imprint acquired in oocytes and generates a complex population of large, compartimentalized non-coding RNA (ncRNA) species retained in close proximity to the C19MC transcription site. This occurs adjacent to, but not within, a poorly characterized nuclear Alu-rich domain. Interestingly, C19MC maps near another imprinted gene, the maternally expressed ZNF331 gene, and therefore may define a novel, previously unrecognized large imprinted primate-specific chromosomal domain. Altogether, our study adds C19MC to the growing list of imprinted repeated small RNA gene clusters and further strengthens the potential involvement of small ncRNAs in the function and/or the evolution of imprinted gene networks.
Collapse
Affiliation(s)
- Marie Noguer-Dance
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Brideau CM, Eilertson KE, Hagarman JA, Bustamante CD, Soloway PD. Successful computational prediction of novel imprinted genes from epigenomic features. Mol Cell Biol 2010; 30:3357-70. [PMID: 20421412 PMCID: PMC2897571 DOI: 10.1128/mcb.01355-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/19/2009] [Accepted: 03/29/2010] [Indexed: 11/20/2022] Open
Abstract
Approximately 100 mouse genes undergo genomic imprinting, whereby one of the two parental alleles is epigenetically silenced. Imprinted genes influence processes including development, X chromosome inactivation, obesity, schizophrenia, and diabetes, motivating the identification of all imprinted loci. Local sequence features have been used to predict candidate imprinted genes, but rigorous testing using reciprocal crosses validated only three, one of which resided in previously identified imprinting clusters. Here we show that specific epigenetic features in mouse cells correlate with imprinting status in mice, and we identify hundreds of additional genes predicted to be imprinted in the mouse. We used a multitiered approach to validate imprinted expression, including use of a custom single nucleotide polymorphism array and traditional molecular methods. Of 65 candidates subjected to molecular assays for allele-specific expression, we found 10 novel imprinted genes that were maternally expressed in the placenta.
Collapse
Affiliation(s)
- Chelsea M. Brideau
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - Kirsten E. Eilertson
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - James A. Hagarman
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - Carlos D. Bustamante
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
45
|
Henckel A, Arnaud P. Genome-wide identification of new imprinted genes. Brief Funct Genomics 2010; 9:304-14. [DOI: 10.1093/bfgp/elq016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Daelemans C, Ritchie ME, Smits G, Abu-Amero S, Sudbery IM, Forrest MS, Campino S, Clark TG, Stanier P, Kwiatkowski D, Deloukas P, Dermitzakis ET, Tavaré S, Moore GE, Dunham I. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet 2010; 11:25. [PMID: 20403199 PMCID: PMC2871261 DOI: 10.1186/1471-2156-11-25] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/19/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. RESULTS Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). CONCLUSIONS Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term placenta. ZNF331 is imprinted in human term placenta and might be a new ubiquitously imprinted gene, part of a primate-specific locus. Demonstration of partial imprinting of PHACTR2 calls for re-evaluation of the allelic pattern of expression for the PHACTR2-PLAGL1 locus. ASE was common in human term placenta.
Collapse
Affiliation(s)
- Caroline Daelemans
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
- Molecular and Clinical Genetics Unit, Institute of Child Health, London, WC1 1EH, UK
- Department of Obstetrics and Gynecology, Institute for Women's Health, University College London, London, WC1E 6HX, UK
| | - Matthew E Ritchie
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Guillaume Smits
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
| | - Sayeda Abu-Amero
- Molecular and Clinical Genetics Unit, Institute of Child Health, London, WC1 1EH, UK
| | - Ian M Sudbery
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
| | | | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
| | - Taane G Clark
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
| | - Philip Stanier
- Molecular and Clinical Genetics Unit, Institute of Child Health, London, WC1 1EH, UK
| | | | - Panos Deloukas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
| | - Emmanouil T Dermitzakis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Simon Tavaré
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gudrun E Moore
- Molecular and Clinical Genetics Unit, Institute of Child Health, London, WC1 1EH, UK
| | - Ian Dunham
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1 SA, UK
- European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
47
|
Differential decay of parent-of-origin-specific genomic sharing in cystic fibrosis-affected sib pairs maps a paternally imprinted locus to 7q34. Eur J Hum Genet 2010; 18:553-9. [PMID: 20051989 DOI: 10.1038/ejhg.2009.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease characterized by a high variability of disease severity and outcome that points to the role of environmental factors and modulating genes that shape the course of this multiorgan disease. We genotyped families of cystic fibrosis sib pairs homozygous for F508del-CFTR who represent extreme clinical phenotypes at informative microsatellite markers spanning a 38 Mb region between CFTR and 7qtel. Recombination events on both parental chromosomes were compared between siblings with concordant clinical phenotypes and siblings with discordant clinical phenotypes. Monitoring parent-of-origin-specific decay of genomic sharing delineated a 2.9-Mb segment on 7q34 in which excess of recombination on paternal chromosomes in discordant pairs was observed compared with phenotypically concordant sibs. This 2.9-Mb core candidate region was enriched in imprinting-related elements such as predicted CCCTC-binding factor consensus sites and CpG islands dense in repetitive elements. Moreover, allele frequencies at a microsatellite marker within the core candidate region differed significantly comparing mildly and severely affected cystic fibrosis sib pairs. The identification of this paternally imprinted locus on 7q34 as a modulator of cystic fibrosis disease severity shows that imprinted elements can be identified by straightforward fine mapping of break points in sib pairs with informative contrasting phenotypes.
Collapse
|
48
|
Aceto GM, De Lellis L, Catalano T, Veschi S, Radice P, Di Iorio A, Mariani-Costantini R, Cama A, Curia MC. Nonfluorescent denaturing HPLC-based primer-extension method for allele-specific expression: application to analysis of mismatch repair genes. Clin Chem 2009; 55:1711-1718. [PMID: 19628660 DOI: 10.1373/clinchem.2009.126300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Altered germline expression of genes may represent a powerful marker of genetic or epigenetic predisposition to cancer or other diseases. METHODS We developed and validated a method of nonfluorescent primer extension that uses a single dideoxynucleotide and denaturing HPLC (DHPLC) to analyze the relative allele expression. We devised 5 independent assays for measuring allele-specific expression (ASE) to exploit different markers of mismatch repair genes MLH1 [mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)] and MSH2 [mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)]. We initially confirmed method reproducibility with genomic DNA (gDNA) from individuals heterozygous for a frequent single-nucleotide polymorphism in the MLH1 gene. After this preliminary validation with gDNA, we confirmed assay reproducibility with cDNA templates from control individuals. Relative allele expression was estimated by comparing the heights of the peaks corresponding to the 2 alleles. Results obtained with gDNA templates were used to normalize cDNA results. RESULTS With these DHPLC-based primer-extension assays, we detected and confirmed a 5-fold imbalance in MLH1 allele expression in a mutation-negative patient with hereditary nonpolyposis colorectal cancer and in another patient with a modest degree of imbalance in MLH1 expression. Among control individuals, the relative expression of MLH1 alleles displayed a narrow range of variation. CONCLUSIONS Independent DHPLC-based primer-extension assays for measuring and confirming ASE can be developed for different sequence variants of interest. This DHPLC application provides a cost-effective method for detecting ASE in cases for which conventional screening fails to detect pathogenic mutations in candidate genes and may be applicable for confirming ASE revealed by other methods, such as those used for transcriptome-wide analyses. .
Collapse
Affiliation(s)
- Gitana M Aceto
- Department of Human Movement Sciences, University G d'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Allele-specific expression (ASE) is essential for normal development and many cellular processes but, if impaired, can result in disease. ASE is a feature of organisms with genomes consisting of more than one set of homologous chromosomes. The higher the number of chromosome sets (ploidy) per cell, the higher the potential complexity of ASE. Humans, for instance, are diploid (except germ cells, which are haploid), resulting in multiple possible expression states in time and space for each set of alleles. ASE is invoked and modulated by both genetic and epigenetic changes, affecting the underlying DNA sequence or chromatin of each allele, respectively. Although numerous methods have been developed to assay ASE, they usually require RNA to be available and are dependent upon genetic polymorphisms (such as single nucleotide polymorphisms (SNPs)) to differentiate between allelic transcripts. The rapid convergence to second-generation sequencing as the method of choice to examine genomic, epigenomic and transcriptomic data enables an integrated and more general approach to define and predict ASE, independent of SNPs. This 'Omni-Seq' approach has the potential to advance our understanding of the biology and pathophysiology of ASE-mediated processes by elucidating subtle combinatorial effects, leading to the accurate delineation of sub-phenotypes with consequential benefit for improved insight into disease etiology.
Collapse
Affiliation(s)
- Christopher G Bell
- Medical Genomics, University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
| | | |
Collapse
|
50
|
Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008; 3:e3839. [PMID: 19052635 PMCID: PMC2585789 DOI: 10.1371/journal.pone.0003839] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/05/2008] [Indexed: 11/19/2022] Open
Abstract
Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York, United States of America
| | - Sean D. McGrath
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elaine R. Mardis
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|