1
|
Kim DW, Duncan LH, Xu J, Chang M, Sørensen SS, Terrillion CE, Kanold PO, Place E, Blackshaw S. Decoding Gene Networks Controlling Hypothalamic and Prethalamic Neuron Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632449. [PMID: 39829936 PMCID: PMC11741371 DOI: 10.1101/2025.01.10.632449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Neuronal subtypes derived from the embryonic hypothalamus and prethalamus regulate many essential physiological processes, yet the gene regulatory networks controlling their development remain poorly understood. Using single-cell RNA- and ATAC-sequencing, we analyzed mouse hypothalamic and prethalamic development from embryonic day 11 to postnatal day 8, profiling 660,000 cells in total. This identified key transcriptional and chromatin dynamics driving regionalization, neurogenesis, and differentiation. This identified multiple distinct neural progenitor populations, as well as gene regulatory networks that control their spatial and temporal identities, and their terminal differentiation into major neuronal subtypes. Integrating these results with large-scale genome-wide association study data, we identified a central role for transcription factors controlling supramammillary hypothalamic development in a broad range of metabolic and cognitive traits. Recurring cross-repressive regulatory relationships were observed between transcription factors that induced prethalamic and tuberal hypothalamic identity on the one hand and mammillary and supramammillary hypothalamic identity on the other. In postnatal animals, Dlx1/2 was found to severely disrupt GABAergic neuron specification in both the hypothalamus and prethalamus, resulting in a loss of inhibition of thalamic neurons, hypersensitivity to cold, and behavioral hyperactivity. By identifying core gene regulatory networks controlling the specification and differentiation of major hypothalamic and prethalamic neuronal cell types, this study provides a roadmap for future efforts aimed at preventing and treating a broad range of homeostatic and cognitive disorders.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Leighton H. Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jenny Xu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Sejer Sørensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick O. Kanold
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsie Place
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Davydenko K, Filatova A, Skoblov M. Assessing Splicing Variants in the PAX6 Gene: A Comprehensive Minigene Approach. J Cell Mol Med 2025; 29:e70459. [PMID: 40133207 PMCID: PMC11936725 DOI: 10.1111/jcmm.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Haploinsufficiency of the PAX6 gene causes aniridia, a congenital eye disorder characterised by the absence or malformation of the iris and foveal hypoplasia. Previous studies indicate that pathogenic splice variants account for up to 15% of all disease-causing PAX6 variants. However, this proportion may be significantly underestimated because the pathogenicity of splice variants can only be accurately established through experimental validation. In this study, we developed and validated a system of eight minigene constructions for the functional analysis of splicing variants in the PAX6 gene. This system covers all PAX6 coding exons and allows the analysis of any exon and most intronic variants of PAX6. Our comprehensive approach, employing fragment analysis and deep targeted sequencing, enabled us to accurately characterise 38 previously described PAX6 variants, including challenging cases with multiple splicing events. The application of our system revealed that the number of pathogenic splicing variants might be closer to 30% of all pathogenic PAX6 variants. This finding considerably reshapes our understanding of their significance in the genetic landscape of aniridia.
Collapse
Affiliation(s)
- Kseniya Davydenko
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Alexandra Filatova
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Mikhail Skoblov
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| |
Collapse
|
3
|
Daems C, Baz ES, D'Hooge R, Callaerts-Végh Z, Callaerts P. Gene expression differences in the olfactory bulb associated with differential social interactions and olfactory deficits in Pax6 heterozygous mice. Biol Open 2025; 14:BIO061647. [PMID: 39902612 PMCID: PMC11832127 DOI: 10.1242/bio.061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025] Open
Abstract
Mutations in the highly conserved Pax6 transcription factor have been implicated in neurodevelopmental disorders and behavioral abnormalities, yet the mechanistic basis of the latter remain poorly understood. Our study, using behavioral phenotyping, has identified aberrant social interactions, characterized by withdrawal behavior, and olfactory deficits in Pax6 heterozygous mutant mice. The molecular mechanisms underlying the observed phenotypes were characterized by means of RNA-sequencing on isolated olfactory bulbs followed by validation with qRT-PCR. Comparative analysis of olfactory bulb transcriptomes further reveals an imbalance between neuronal excitation and inhibition, synaptic dysfunction, and alterations in epigenetic regulation as possible mechanisms underlying the abnormal social behavior. We observe a considerable overlap with autism-associated genes and suggest that studying Pax6-dependent gene regulatory networks may further our insight into molecular mechanisms implicated in autistic-like behaviors in Pax6 mutations, thereby paving the way for future research in this area.
Collapse
Affiliation(s)
- Carmen Daems
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - El-Sayed Baz
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Mouse behavior core facility mINT, KU Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Obst J, Fries FN, Amini M, Náray A, Munteanu C, Stachon T, Suiwal S, Lagali N, Seitz B, Käsmann-Kellner B, Szentmáry N. Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia. Ophthalmol Ther 2025; 14:433-445. [PMID: 39755898 PMCID: PMC11754556 DOI: 10.1007/s40123-024-01084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry. METHODS Our retrospective, monocentric study included patients who underwent a comprehensive ophthalmic examination at Saarland University Medical Center beginning in June 2003. Age, gender, genetic test results, and information on systemic anomalies were recorded. In addition, parents and affected patients were interviewed about developmental and other disease-related conditions. RESULTS Data from 337 patients (mean age 22 ± 20 [0.3-90] years; 181 women [53.7%]) were analyzed. Genetic testing was performed in 187 (55.5%) patients. A PAX6 mutation was detected in 174 of 187 (93%) cases, of which 20 (10.7%) had WAGR(O) syndrome. Systemic diseases were detected in 155 of 337 (46%) patients, with the most common being obesity (29 [8.6%]), thyroid disease (28 [8.3%]), hypertension (26 [7.7%]), intellectual disability (22 [6.5%]), diabetes mellitus (19 [5.6%]), auditory perception disorder/speech development delay (16 [4.7%]), and epilepsy (12 [3.6%]). CONCLUSIONS A comprehensive analysis of patients with aniridia and systemic effects reveals the complexity of this rare disorder, which goes beyond ocular symptoms and can have profound effects on metabolic balance, cardiovascular health, and the central nervous system. Therefore, early genetic diagnosis, early systemic checkup, and adequate treatment, as well as cooperation with pediatrists, neurologists, and audiologists, is suggested in congenital aniridia, which should be considered a syndrome and not an isolated ocular disease.
Collapse
Affiliation(s)
- Jessica Obst
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany.
| | - Fabian N Fries
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Annamária Náray
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Cristian Munteanu
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Barbara Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center (UKS), Kirrberger Str. 100, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
5
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
6
|
Shi S, Hamann CA, Lee JC, Brunger JM. Use of CRISPRoff and synthetic Notch to modulate and relay endogenous gene expression programs in engineered cells. Front Bioeng Biotechnol 2024; 12:1346810. [PMID: 38957576 PMCID: PMC11218679 DOI: 10.3389/fbioe.2024.1346810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Uncovering the stimulus-response histories that give rise to cell fates and behaviors is an area of great interest in developmental biology, tissue engineering, and regenerative medicine. A comprehensive accounting of cell experiences that lead to the development of organs and tissues can help us to understand developmental anomalies that may underly disease. Perhaps more provocatively, such a record can also reveal clues as to how to drive cell collective decision-making processes, which may yield predictable cell-based therapies or facilitate production of tissue substitutes for transplantation or in vitro screening of prospective therapies to mitigate disease. Toward this end, various methods have been applied to molecularly trace developmental trajectories and record interaction histories of cells. Typical methods involve artificial gene circuits based on recombinases that activate a suite of fluorescent reporters or CRISPR-Cas9 genome writing technologies whose nucleic acid-based record keeping serves to chronicle cell-cell interactions or past exposure to stimuli of interests. Exciting expansions of the synthetic biology toolkit with artificial receptors that permit establishment of defined input-to-output linkages of cell decision-making processes opens the door to not only record cell-cell interactions, but to also potentiate directed manipulation of the outcomes of such interactions via regulation of carefully selected transgenes. Here, we combine CRISPR-based strategies to genetically and epigenetically manipulate cells to express components of the synthetic Notch receptor platform, a widely used artificial cell signaling module. Our approach gives rise to the ability to conditionally record interactions between human cells, where the record of engagement depends on expression of a state-specific marker of a subset of cells in a population. Further, such signal-competent interactions can be used to direct differentiation of human embryonic stem cells toward pre-selected fates based on assigned synNotch outputs. We also implemented CRISPR-based manipulation of native gene expression profiles to bias outcomes of cell engagement histories in a targeted manner. Thus, we present a useful strategy that gives rise to both state-specific recording of cell-cell interactions as well as methods to intentionally influence products of such cell-cell exchanges.
Collapse
Affiliation(s)
- Shuqun Shi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Joanne C. Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Hung SS, Tsai PS, Po CW, Hou PS. Pax6 isoforms shape eye development: Insights from developmental stages and organoid models. Differentiation 2024; 137:100781. [PMID: 38631141 DOI: 10.1016/j.diff.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.
Collapse
Affiliation(s)
- Shih-Shun Hung
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Po-Sung Tsai
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Ching-Wen Po
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
8
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
10
|
Li Y, Chen J, Zheng Y, Chen Z, Wang T, Sun Q, Wan X, Liu H, Sun X. A novel microdeletion of 517 kb downstream of the PAX6 gene in a Chinese family with congenital aniridia. BMC Ophthalmol 2023; 23:393. [PMID: 37752489 PMCID: PMC10523764 DOI: 10.1186/s12886-023-03147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND To identify the disease-causing gene in a Chinese family affected with congenital aniridia. METHODS Patients underwent systematic ophthalmic examinations such as anterior segment photography, fundus photography, optical coherence tomography, and fundus fluorescein angiography. The proband was screened for pathogenic variants by whole exome sequencing (WES) and copy number variant (CNV) analysis. Real-time quantitative PCR (RT-qPCR) was applied to confirm the CNV results. Breakpoints were identified by long-range PCR followed by Sanger sequencing. RESULTS All seven members of this Chinese family, including four patients and three normal individuals, were recruited for this study. All patients showed bilateral congenital aniridia with nystagmus, except the son of the proband, who presented with bilateral partial coloboma of the iris. A novel heterozygous deletion (chr11:31,139,019-31,655,997) containing the 3' regulatory enhancers of the PAX6 gene was detected in this family. We also reviewed the reported microdeletions downstream of PAX6 in patients with aniridia. CONCLUSIONS We identified a novel microdeletion, 517 kb in size located about 133 kb downstream of the PAX6 gene, responsible for congenital aniridia in this Chinese family, which expands the spectrum of aniridia-associated mutations in PAX6.
Collapse
Affiliation(s)
- Yinwen Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Zheng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhixuan Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Haiyun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
11
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
12
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
13
|
Tomas-Roca L, Qiu Z, Fransén E, Gokhale R, Bulovaite E, Price DJ, Komiyama NH, Grant SGN. Developmental disruption and restoration of brain synaptome architecture in the murine Pax6 neurodevelopmental disease model. Nat Commun 2022; 13:6836. [PMID: 36369219 PMCID: PMC9652404 DOI: 10.1038/s41467-022-34131-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the molecular composition of excitatory synapses, the postnatal expansion of synapse diversity and the acquisition of normal synaptome architecture were delayed in all brain regions, interfering with networks and electrophysiological simulations of cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synapse diversity and synaptome architecture to the normal developmental trajectory. Synapse subtypes with rapid protein turnover mediated the synaptome remodeling. This brain-wide capacity for remodeling of synapse molecular composition to recover and maintain the developmental trajectory of synaptome architecture may help confer resilience to neurodevelopmental genetic disorders.
Collapse
Affiliation(s)
- Laura Tomas-Roca
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Erik Fransén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-171 65, Solna, Sweden
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David J Price
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
14
|
Sekiya M, Yuhara M, Murayama Y, Ohyama Osawa M, Nakajima R, Ohuchi N, Matsumoto N, Yamazaki D, Mori S, Matsuda T, Sugano Y, Osaki Y, Iwasaki H, Suzuki H, Shimano H. A case of early-onset diabetes with impaired insulin secretion carrying a PAX6 gene Gln135* mutation. Endocrinol Diabetes Metab Case Rep 2022; 2022:22-0271. [PMID: 35979842 PMCID: PMC9422263 DOI: 10.1530/edm-22-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Summary A paired homeodomain transcription factor, PAX6 (paired-box 6), is essential for the development and differentiation of pancreatic endocrine cells as well as ocular cells. Despite the impairment of insulin secretion observed in PAX6-deficient mice, evidence implicating causal association between PAX6 gene mutations and monogenic forms of human diabetes is limited. We herein describe a 33-year-old Japanese woman with congenital aniridia who was referred to our hospital because of her uncontrolled diabetes with elevated hemoglobin A1c (13.1%) and blood glucose (32.5 mmol/L) levels. Our biochemical analysis revealed that her insulin secretory capacity was modestly impaired as represented by decreased 24-h urinary C-peptide levels (38.0 μg/day), primarily explaining her diabetes. Intriguingly, there was a trend toward a reduction in her serum glucagon levels as well. Based on the well-recognized association of PAX6 gene mutations with congenital aniridia, we screened the whole PAX6 coding sequence, leading to an identification of a heterozygous Gln135* mutation. We tested our idea that this mutation may at least in part explain the impaired insulin secretion observed in this patient. In cultured pancreatic β-cells, exogenous expression of the PAX6 Gln135* mutant produced a truncated protein that lacked the transcriptional activity to induce insulin gene expression. Our observation together with preceding reports support the recent attempt to include PAX6 in the growing list of genes causally responsible for monogenic diabetes. In addition, since most cases of congenital aniridia carry PAX6 mutations, we may need to pay more attention to blood glucose levels in these patients. Learning points PAX6 Gln135* mutation may be causally associated not only with congenital aniridia but also with diabetes. Blood glucose levels may deserve more attention in cases of congenital aniridia with PAX6 mutations. Our case supports the recent attempt to include PAX6 in the list of MODY genes, and Gln135* may be pathogenic.
Collapse
Affiliation(s)
- Motohiro Sekiya
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mikiko Yuhara
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mariko Ohyama Osawa
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rikako Nakajima
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nami Ohuchi
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nako Matsumoto
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daichi Yamazaki
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sayuri Mori
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaaki Matsuda
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoko Sugano
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- 1Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
de Souza VS, da Cunha GCR, Versiani BR, de Oliveira CP, Rosa MTAS, de Oliveira SF, Moretti PN, Mazzeu JF, Pic-Taylor A. Characterization of Associated Nonclassical Phenotypes in Patients with Deletion in the WAGR Region Identified by Chromosomal Microarray: New Insights and Literature Review. Mol Syndromol 2022; 13:290-304. [PMID: 36158055 PMCID: PMC9421677 DOI: 10.1159/000518872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
WAGR syndrome (Wilms' tumor, aniridia, genitourinary changes, and intellectual disability) is a contiguous gene deletion syndrome characterized by the joint deletion of PAX6 and WT1 genes, located in the short arm of chromosome 11. However, most deletions include other genes, leading to multiple associated phenotypes. Therefore, understanding how genes deleted together can contribute to other clinical phenotypes is still considered a challenge. In order to establish genotype-phenotype correlation in patients with interstitial deletions of the short arm of chromosome 11, we selected 17 patients with deletions identified by chromosomal microarray analysis: 4 new subjects and 13 subjects previously described in the literature with detailed clinical data. Through the analysis of deleted regions and the phenotypic changes, it was possible to suggest the contribution of specific genes to several nonclassical phenotypes, contributing to the accuracy of clinical characterization of the syndrome and emphasizing the broad phenotypic spectrum found in the patients. This study reports the first patient with a PAX6 partial deletion who does not present any eye anomaly thus opening a new set of questions about the functional activity of PAX6.
Collapse
Affiliation(s)
- Vanessa Sodré de Souza
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Gabriela Corassa Rodrigues da Cunha
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Beatriz R. Versiani
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Claudiner Pereira de Oliveira
- Hospital de Apoio de Brasília, Secretária de Estado de Saúde do Distrito Federal, Brasília, Brazil,Hospital Universitário, Universidade de Brasília, Brasília, Brazil
| | - Maria Teresa Alves Silva Rosa
- Hospital Universitário, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Silviene F. de Oliveira
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Patricia N. Moretti
- Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil
| | - Juliana F. Mazzeu
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil,*Juliana F. Mazzeu,
| | - Aline Pic-Taylor
- Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brazil,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil,**Aline Pic-Taylor,
| |
Collapse
|
16
|
Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty Years' History since the Discovery of Pax6: From Central Nervous System Development to Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:6115. [PMID: 35682795 PMCID: PMC9181425 DOI: 10.3390/ijms23116115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.
Collapse
Affiliation(s)
| | | | | | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.O.); (S.M.); (T.K.)
| |
Collapse
|
17
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Zosen D, Austdal LPE, Bjørnstad S, Lumor JS, Paulsen RE. Antiepileptic drugs lamotrigine and valproate differentially affect neuronal maturation in the developing chick embryo, yet with PAX6 as a potential common mediator. Neurotoxicol Teratol 2022; 90:107057. [DOI: 10.1016/j.ntt.2021.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
|
19
|
Tian C, Duan L, Fu C, He J, Dai J, Zhu G. Study on the Correlation Between Iris Characteristics and Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:811-820. [PMID: 35431547 PMCID: PMC9005354 DOI: 10.2147/ndt.s361614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recently, researchers have conducted many studies on the potential contribution of the retina and other eye structures on schizophrenia. This study aimed to evaluate differences in iris characteristics between patients with schizophrenia and healthy individuals so as to find more easily accessible and easily measurable biomarkers with a view to improving clinical assessments and furthering our understanding of the disease. METHODS Overall, 80 patients with schizophrenia and 52 healthy individuals were included in the case group and the control group, respectively. Iris images were collected from all subjects to compare differences in the structure and color of the iris. The Positive and Negative Symptom Scale (PANSS) and the Modified Overt Aggression Scale (MOAS) were used to evaluate the clinical symptoms and characteristics of 45 first-episode untreated schizophrenics, and analyzed correlations between iris characteristics and schizophrenia symptoms. RESULTS There were significant differences in iris crypts (P<0.05) and pigment spots (P<0.01) between the case and control group, but no significant difference was found in iris wrinkles (P<0.05). The logistic regression analysis demonstrated that the total iris crypts [odds ratio (OR) 1.166, 95% confidence interval (CI) 1.022-1.330] and total iris pigment spots (OR 1.815, 95% CI 1.186-2.775) increased the risk of suffering from schizophrenia. Furthermore, it was demonstrated that the number of iris crypts was positively associated with the MOAS score (r=0.474, P<0.01). Moreover, the number of the iris pigment spots (r=0.395, P<0.01) and wrinkles (r=0.309, P<0.05) were positively correlated with the subjects' negative symptom scores, respectively. CONCLUSION Iris crypts and pigment spots were identified as potential biomarkers for detecting schizophrenia. In patients with first-episode untreated schizophrenia, iris characteristics may help psychiatrists to identify the illness and its severity, and to detect characteristic clinical symptoms.
Collapse
Affiliation(s)
- Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Shenyang Mental Health Center, Shenyang, 110168, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,School of Nursing, Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Juan He
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiali Dai
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
20
|
Buehne KL, Hart S, Williams B, Cohen JL. Novel PAX6 variant in a family with ophthalmologic, pancreatic, and olfactory features. Cold Spring Harb Mol Case Stud 2021; 8:mcs.a006149. [PMID: 34893493 PMCID: PMC8744493 DOI: 10.1101/mcs.a006149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Variants in the PAX6 gene have been associated with ophthalmologic, neurologic, and pancreatic differences. We report on a proband, mother, and affected brother who presented with congenital cataracts and glaucoma at a young age. Nonocular findings are also reported among these family members. After a congenital cataracts next-generation sequencing (NGS) gene panel was found to be nondiagnostic in 2016, a more expanded panel in 2020 revealed a novel variant: c.178T > A; p.Tyr60Asn in exon 6 of the PAX6 gene in the proband. The variant is also present in the affected mother and affected brother; it is absent in an unaffected brother. The clinical findings of these three relatives, in conjunction with their genetic testing and the associated PAX6 features reported in the literature, suggest that this novel familial variant may be an underlying etiology for these individuals’ ophthalmologic, pancreatic, and olfactory symptoms.
Collapse
Affiliation(s)
| | - Sarah Hart
- Duke University School of Medicine, Department of Pediatrics, Division of Medical Genetics
| | | | - Jennifer L Cohen
- Duke University School of Medicine, Department of Pediatrics, Division of Medical Genetics;
| |
Collapse
|
21
|
Wawrocka A, Walczak-Sztulpa J, Socha M, Kuszel L, Sowinska-Seidler A, Budny B, Bukowska-Olech E, Pilas-Pomykalska M, Jamsheer A, Krawczynski MR. Homozygous microdeletion in the 11p13 region in the patient with isolated form of aniridia: New challenges in the genetic diagnostics of aniridia. Am J Med Genet A 2021; 188:642-647. [PMID: 34773354 DOI: 10.1002/ajmg.a.62559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Sowinska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartlomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
22
|
Eto H, Kishi Y. Brain regionalization by Polycomb-group proteins and chromatin accessibility. Bioessays 2021; 43:e2100155. [PMID: 34536032 DOI: 10.1002/bies.202100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022]
Abstract
During brain development, neural precursor cells (NPCs) in different brain regions produce different types of neurons, and each of these regions plays a different role in the adult brain. Therefore, precise regionalization is essential in the early stages of brain development, and irregular regionalization has been proposed as the cause of neurodevelopmental disorders. The mechanisms underlying brain regionalization have been well studied in terms of morphogen-induced expression of critical transcription factors for regionalization. NPC potential in different brain regions is defined by chromatin structures that regulate the plasticity of gene expression. Herein, we present recent findings on the importance of chromatin structure in brain regionalization, particularly with respect to its regulation by Polycomb-group proteins and chromatin accessibility.
Collapse
Affiliation(s)
- Hikaru Eto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Berry V, Ionides A, Pontikos N, Moore AT, Quinlan RA, Michaelides M. Variants in PAX6, PITX3 and HSF4 causing autosomal dominant congenital cataracts. Eye (Lond) 2021; 36:1694-1701. [PMID: 34345029 PMCID: PMC9307513 DOI: 10.1038/s41433-021-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Background Lens development is orchestrated by transcription factors. Disease-causing variants in transcription factors and their developmental target genes are associated with congenital cataracts and other eye anomalies. Methods Using whole exome sequencing, we identified disease-causing variants in two large British families and one isolated case with autosomal dominant congenital cataract. Bioinformatics analysis confirmed these disease-causing mutations as rare or novel variants, with a moderate to damaging pathogenicity score, with testing for segregation within the families using direct Sanger sequencing. Results Family A had a missense variant (c.184 G>A; p.V62M) in PAX6 and affected individuals presented with nuclear cataract. Family B had a frameshift variant (c.470–477dup; p.A160R*) in PITX3 that was also associated with nuclear cataract. A recurrent missense variant in HSF4 (c.341 T>C; p.L114P) was associated with congenital cataract in a single isolated case. Conclusions We have therefore identified novel variants in PAX6 and PITX3 that cause autosomal dominant congenital cataract.
Collapse
Affiliation(s)
- Vanita Berry
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Roy A Quinlan
- School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Rep 2021; 31:107521. [PMID: 32320667 DOI: 10.1016/j.celrep.2020.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.
Collapse
|
25
|
Nieves-Moreno M, Noval S, Peralta J, Palomares-Bralo M, del Pozo A, Garcia-Miñaur S, Santos-Simarro F, Vallespin E. Expanding the Phenotypic Spectrum of PAX6 Mutations: From Congenital Cataracts to Nystagmus. Genes (Basel) 2021; 12:genes12050707. [PMID: 34065151 PMCID: PMC8151272 DOI: 10.3390/genes12050707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype–phenotype correlations difficult to establish. Methods: we describe the phenotype of eight patients from seven unrelated families with confirmed mutations in PAX6, and very different clinical manifestations. Results: Only two patients had the classical aniridia phenotype while the other two presented with aniridia-related manifestations, such as aniridia-related keratopathy or partial aniridia. Congenital cataracts were the main manifestation in three of the patients in this series. All the patients had nystagmus and low visual acuity. Conclusions: The diagnosis of mild forms of aniridia is challenging, but these patients have a potentially blinding hereditary disease that might present with a more severe phenotype in future generations. Clinicians should be aware of the mild aniridia phenotype and request genetic testing to perform an accurate diagnosis.
Collapse
Affiliation(s)
- Maria Nieves-Moreno
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
- Correspondence:
| | - Susana Noval
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
| | - Jesus Peralta
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.N.); (J.P.)
| | - María Palomares-Bralo
- Department of Molecular Developmental Disorders, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Angela del Pozo
- Department of Bioinformatics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Sixto Garcia-Miñaur
- Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.G.-M.); (F.S.-S.)
| | - Fernando Santos-Simarro
- Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (S.G.-M.); (F.S.-S.)
| | - Elena Vallespin
- Department of Molecular Ophthalmology, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| |
Collapse
|
26
|
Trujillo CA, Rice ES, Schaefer NK, Chaim IA, Wheeler EC, Madrigal AA, Buchanan J, Preissl S, Wang A, Negraes PD, Szeto RA, Herai RH, Huseynov A, Ferraz MSA, Borges FS, Kihara AH, Byrne A, Marin M, Vollmers C, Brooks AN, Lautz JD, Semendeferi K, Shapiro B, Yeo GW, Smith SEP, Green RE, Muotri AR. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 2021; 371:371/6530/eaax2537. [PMID: 33574182 DOI: 10.1126/science.aax2537] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/27/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Edward S Rice
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Isaac A Chaim
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily C Wheeler
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Assael A Madrigal
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priscilla D Negraes
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ryan A Szeto
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Mariana S A Ferraz
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Fernando S Borges
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Ashley Byrne
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Maximillian Marin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Katerina Semendeferi
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alysson R Muotri
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
28
|
Lv N, Wang Y, Zhao M, Dong L, Wei H. The Role of PAX2 in Neurodevelopment and Disease. Neuropsychiatr Dis Treat 2021; 17:3559-3567. [PMID: 34908837 PMCID: PMC8665868 DOI: 10.2147/ndt.s332747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
In developmental biology, transcription factors are involved in regulating the process of neural development, controlling the differentiation of nerve cells, and affecting the normal functioning of neural circuits. Transcription factors regulate the expression of multiple genes at the same time and have become a key gene category that is recognized to be disrupted in neurodevelopmental disorders such as autism spectrum disorders. This paper briefly introduces the expression and role of PAX2 in neurodevelopment and discusses the neurodevelopmental disorders associated with Pax2 mutations and its possible mechanism. Firstly, mutations in the human Pax2 gene are associated with abnormalities in multiple systems which can result in neurodevelopmental disorders such as intellectual disability, epilepsy and autism spectrum disorders. Secondly, the structure of Pax2 gene and PAX2 protein, as well as the function of Pax2 gene in neural development, was discussed. Finally, a diagram of the PAX2 protein regulatory network was made and a possible molecular mechanism of Pax2 mutations leading to neurodevelopmental disorders from the perspectives of developmental process and protein function was proposed.
Collapse
Affiliation(s)
- Na Lv
- Department of Physiology, Basic Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
29
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
30
|
Casingal CR, Kikkawa T, Inada H, Sasaki Y, Osumi N. Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis. Mol Brain 2020; 13:167. [PMID: 33323119 PMCID: PMC7739466 DOI: 10.1186/s13041-020-00706-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023] Open
Abstract
Corticogenesis is one of the most critical and complicated processes during embryonic brain development. Any slight impairment in corticogenesis could cause neurodevelopmental disorders such as Fragile X syndrome (FXS), of which symptoms contain intellectual disability (ID) and autism spectrum disorder (ASD). Fragile X mental retardation protein (FMRP), an RNA-binding protein responsible for FXS, shows strong expression in neural stem/precursor cells (NPCs) during corticogenesis, although its function during brain development remains largely unknown. In this study, we attempted to identify the FMRP target mRNAs in the cortical primordium using RNA immunoprecipitation sequencing analysis in the mouse embryonic brain. We identified 865 candidate genes as targets of FMRP involving 126 and 118 genes overlapped with ID and ASD-associated genes, respectively. These overlapped genes were enriched with those related to chromatin/chromosome organization and histone modifications, suggesting the involvement of FMRP in epigenetic regulation. We further identified a common set of 17 FMRP “core” target genes involved in neurogenesis/FXS/ID/ASD, containing factors associated with Ras/mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin (mTOR) pathways. We indeed showed overactivation of mTOR signaling via an increase in mTOR phosphorylation in the Fmr1 knockout (Fmr1 KO) neocortex. Our results provide further insight into the critical roles of FMRP in the developing brain, where dysfunction of FMRP may influence the regulation of its mRNA targets affecting signaling pathways and epigenetic modifications.
Collapse
Affiliation(s)
- Cristine R Casingal
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsumuri-ku, Yokohama, 230-0045, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
31
|
Toral-Lopez J, Huerta LMG, Messina-Baas O, Cuevas-Covarrubias SA. Submicroscopic 11p13 deletion including the elongator acetyltransferase complex subunit 4 gene in a girl with language failure, intellectual disability and congenital malformations: A case report. World J Clin Cases 2020; 8:5296-5303. [PMID: 33269262 PMCID: PMC7674752 DOI: 10.12998/wjcc.v8.i21.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We described the main features of an infant diagnosed with facial dysmorphic, language failure, intellectual disability and congenital malformations to strengthen our understanding of the disease. Currently, treatment is only rehabilitation and surgery for cleft lip and palate. CASE SUMMARY The proband was a 2-years-8-months-old girl. Familial history was negative for congenital malformations or intellectual disability. The patient had microcephaly, upward-slanting palpebral fissures, depressed nasal bridge, bulbous nose and bilateral cleft lip and palate. Brain magnetic resonance imaging showed cortical atrophy and band heterotopia. Her motor and intellectual development is delayed. A submicroscopic deletion in 11p13 involving the elongator acetyltransferase complex subunit 4 gene (ELP4) and a loss of heterozygosity in Xq25-q26.3 were detected. CONCLUSION There is no treatment for the ELP4 deletion caused by a submicroscopic 11p3 deletion. We describe a second case of deletion of the ELP4 gene without aniridia, which confirms the association between ELP4 gene with several defects and absence of this ocular defect. Additional clinical data in the deletion of the ELP4 gene as cleft palate, facial dysmorphism, and changes at level brain could be associated to this gene or be part of the effect of the recessives genes involved in the loss of heterozygosity region of Xq25-26.3.
Collapse
Affiliation(s)
- Jaime Toral-Lopez
- Departamento de Genética Medica, Centro Medico Ecatepec, ISSEMYM, Ecatepec 55000, México
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud/Hospital Infantil de México, Universidad Nacional Autónoma de México, México 06720, México
| | | | - Olga Messina-Baas
- Departamento de Oftalmología, Hospital General de México, Cuauhtémoc 06720, México
| | - Sergio A Cuevas-Covarrubias
- Genetica, Hospital General de México, Cuauhtémoc 06726, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, México 06720, Mexico
| |
Collapse
|
32
|
Fan F, Luo Y, Wu J, Gao C, Liu X, Mei H, Zhou X. The mutation spectrum in familial versus sporadic congenital cataract based on next-generation sequencing. BMC Ophthalmol 2020; 20:361. [PMID: 32883240 PMCID: PMC7469093 DOI: 10.1186/s12886-020-01567-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Congenital cataract (CC) is a significant cause of lifelong visual loss, and its genetic diagnosis is challenging due to marked genetic heterogeneity. The purpose of this article is to report the genetic findings in sporadic and familial CC patients. METHODS Patients (n = 53) who were clinically diagnosed with CC and their parents were recruited. Blood samples were collected in our hospital. Mutations were detected by panel-based next-generation DNA sequencing (NGS) targeting 792 genes frequently involved in common inherited eye diseases. RESULTS We identified variants in 10/37 cases (27.02%) of sporadic CC and 14/16 cases (87.5%) of familial CC, which indicated a significant difference (P = 0.000). Of the 13 variants identified in sporadic cases, nine were previously reported mutations, and three were novel mutations, including one de novo mutation (CRYBB2 c.487C > T). The most frequent variants in our cohort were in crystallins and cytoskeletal genes (5/27, 18.52%), followed by proteins associated with X-linked syndromic conditions (14.81%) and transcriptional factors (11.11%). Additional information on the possibility of complications with inherited ocular or systemic diseases other than CC was provided in 17/27 (62.96%) variants. CONCLUSIONS These results contribute to expanding the mutation spectrum and frequency of genes responsible for CC. Targeted NGS in CC provided significant diagnostic information and enabled more accurate genetic counselling. This study reports the different distributions of mutation genes in familial and sporadic CC cases.
Collapse
Affiliation(s)
- Fan Fan
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Luo
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao Gao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Liu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hengjun Mei
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiyue Zhou
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
33
|
The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci 2020; 21:ijms21114171. [PMID: 32545285 PMCID: PMC7312987 DOI: 10.3390/ijms21114171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial and still poorly understood, but it is commonly known that significantly elevated intraocular pressure (IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as currently used medical therapies against glaucoma are limited and may evoke numerous adverse side-effects in patients.
Collapse
|
34
|
Vasilyeva TA, Marakhonov AV, Voskresenskaya AA, Kadyshev VV, Käsmann-Kellner B, Sukhanova NV, Katargina LA, Kutsev SI, Zinchenko RA. Analysis of genotype-phenotype correlations in PAX6-associated aniridia. J Med Genet 2020; 58:270-274. [PMID: 32467297 DOI: 10.1136/jmedgenet-2019-106172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
BackgroundAniridia is a severe autosomal dominant panocular disorder associated with pathogenic sequence variants of the PAX6 gene or 11p13 chromosomal aberrations encompassing the coding and/or regulatory regions of the PAX6 gene in a heterozygous state. Patients with aniridia display several ocular anomalies including foveal hypoplasia, cataract, keratopathy, and glaucoma, which can vary in severity and combination.MethodsA cohort of 155 patients from 125 unrelated families with identified point PAX6 pathogenic variants (118 patients) or large chromosomal 11p13 deletions (37 patients) was analyzed. Genetic causes were divided into 6 types. The occurrence of 6 aniridic eye anomalies was analyzed. Fisher's exact test was applied for 2×2 contingency tables assigning numbers of patients with/without each sign and each type of the PAX6 variants or 11p13 deletions with Benjamini-Hochberg correction. The age of patients with different types of mutation did not differ.ResultsPatients with 3'-cis-regulatory region deletions had a milder aniridia phenotype without keratopathy, nystagmus, or foveal hypoplasia. The phenotypes of the patients with other rearrangements involving 11p13 do not significantly differ from those associated with point pathogenic variants in the PAX6 gene. Missense mutations and genetic variants disrupting splicing are associated with a severe aniridia phenotype and resemble loss-of-function mutations. It is particularly important that in all examined patients, PAX6 mutations were found to be associated with multiple eye malformations. The age of patients with keratopathy, cataract, and glaucoma was significantly higher than the age of patients without these signs.ConclusionWe got clear statistically significant genotype-phenotype correlations in congenital aniridia and evident that aniridia severity indeed had worsened with age.
Collapse
Affiliation(s)
- Tatyana A Vasilyeva
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Andrey V Marakhonov
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Anna A Voskresenskaya
- Cheboksary Branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Vitaly V Kadyshev
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Barbara Käsmann-Kellner
- Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Saarland, Germany
| | - Natella V Sukhanova
- Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russian Federation
| | | | - Sergey I Kutsev
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Rena A Zinchenko
- Laboratory of Genetic Epidemiology, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
35
|
Berry V, Georgiou M, Fujinami K, Quinlan R, Moore A, Michaelides M. Inherited cataracts: molecular genetics, clinical features, disease mechanisms and novel therapeutic approaches. Br J Ophthalmol 2020; 104:1331-1337. [PMID: 32217542 DOI: 10.1136/bjophthalmol-2019-315282] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 01/28/2020] [Indexed: 02/01/2023]
Abstract
Cataract is the most common cause of blindness in the world; during infancy and early childhood, it frequently results in visual impairment. Congenital cataracts are phenotypically and genotypically heterogeneous and can occur in isolation or in association with other systemic disorders. Significant progress has been made in identifying the molecular genetic basis of cataract; 115 genes to date have been found to be associated with syndromic and non-syndromic cataract and 38 disease-causing genes have been identified to date to be associated with isolated cataract. In this review, we briefly discuss lens development and cataractogenesis, detail the variable cataract phenotypes and molecular mechanisms, including genotype-phenotype correlations, and explore future novel therapeutic avenues including cellular therapies and pharmacological treatments.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK
| | - Michalis Georgiou
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Centre, Tokyo, Japan
| | - Roy Quinlan
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Department of Biosciences, School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Anthony Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Ophthalmology Department, University of California School of Medicine, San Francisco, California, USA
| | - Michel Michaelides
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK .,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
37
|
Song J, Yang X, Zhou Y, Chen L, Zhang X, Liu Z, Niu W, Zhan N, Fan X, Khan AA, Kuang Y, Song L, He G, Li W. Dysregulation of neuron differentiation in an autistic savant with exceptional memory. Mol Brain 2019; 12:91. [PMID: 31699123 PMCID: PMC6836402 DOI: 10.1186/s13041-019-0507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders without a unique or definite underlying pathogenesis. Although savant syndrome is common in ASD, few models are available for studying the molecular and cellular mechanisms of this syndrome. In this study, we generated urinary induced pluripotent stem cells (UiPSCs) from a 13-year-old male autistic savant with exceptional memory. The UiPSC-derived neurons of the autistic savant exhibited upregulated expression levels of ASD genes/learning difficulty-related genes, namely PAX6, TBR1 and FOXP2, accompanied by hypertrophic neural somas, enlarged spines, reduced spine density, and an increased frequency of spontaneous excitatory postsynaptic currents. Although this study involved only a single patient and a single control because of the rarity of such cases, it provides the first autistic savant UiPSC model that elucidates the potential cellular mechanisms underlying the condition.
Collapse
Affiliation(s)
- Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiujuan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuxi Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nengpeng Zhan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelian Fan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yifang Kuang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
38
|
Macdonald GC, Hesselson SE, Chan JY, Jenkins AB, Laybutt DR, Hesselson D, Campbell LV. Deletion distal to the PAX6 coding region reveals a novel basis for familial cosegregation of aniridia and diabetes mellitus. Diabetes Res Clin Pract 2019; 148:64-71. [PMID: 30572005 DOI: 10.1016/j.diabres.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
Abstract
AIMS Analyze cosegregation of aniridia and diabetes to identify genetic criteria for detection and early treatment of diabetes-susceptible aniridia patients. METHODS We assessed a two-generation family: three individuals with aniridia, two previously diagnosed as type 2 diabetes. One individual with aniridia, with unknown diabetes status, was evaluated by oral glucose tolerance test. Genetic analysis of aniridia-associated genes was performed on all available family members. Candidate genes were functionally tested by gene silencing in MIN6 pancreatic β-cells. RESULTS A 25 year old male with aniridia had a diabetic oral glucose tolerance test despite a normal fasting blood glucose. A 484-630 kb deletion ∼120 kb distal to PAIRED BOX 6 (PAX6) showed dominant cosegregation with aniridia and diabetes in all affected family members. The deleted region contains regulatory elements for PAX6 expression and four additional coding regions. Knockdown of two of the deleted genes (Dnajc24 or Immp1l) with Pax6 impaired glucose-stimulated insulin secretion. CONCLUSIONS We demonstrate dominant cosegregation of diabetes and aniridia with a deletion distal to PAX6, which is clinically distinct from the mild glucose intolerance previously reported with PAX6 coding mutations. Asymptomatic aniridia individuals appear at risk of diabetes (and its complications) and could benefit from earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Gemma C Macdonald
- Diabetes Centre, St Vincent's Hospital, Sydney, New South Wales, Australia.
| | - Stephanie E Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Arthur B Jenkins
- School of Medicine, University of Wollongong, Wollongong, Australia
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| | - Lesley V Campbell
- Diabetes Centre, St Vincent's Hospital, Sydney, New South Wales, Australia; Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW Sydney, Australia; Department of Endocrinology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
39
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
40
|
Bai Z, Kong X. Extension of the mutation spectrum of PAX6 from three Chinese congenital aniridia families and identification of male gonadal mosaicism. Mol Genet Genomic Med 2018; 6:1053-1067. [PMID: 30334364 PMCID: PMC6305634 DOI: 10.1002/mgg3.481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Congenital aniridia is a severe autosomal dominant binocular developmental disorder, the primary feature of which is congenital absence or hypoplasia of the iris. PAX6 is the main disease‐causing gene of congenital aniridia; inheritance is autosomal dominant. But the current mutations do not fully explain this disorder. Methods We investigated the mutation profile of genes related in three Chinese families with congenital aniridia through targeted sequencing technology. And we validated the candidate variants by PCR‐based Sanger sequencing. Different degree impairments of islet function were observed in the patients with aniridia by carbohydrate tolerance butter and insulin release tests in our study. Results We identified four novel mutations of PAX6 from three Chinese families with congenital aniridia, which included heterozygous double mutation c.879_880delCA (p.S294Cfs*46) and c.1124C>G (p.P375R) in Family 1 with three patients, heterozygous frameshift mutation c.308delG (p.P103Qfs*21) in Family 2 with one patient, and c.1192delT (p.S398Pfs*126) in Family 3 with two patients. The three frameshift mutations of PAX6 are co‐segregated with the aniridia from controls in the families, but the novel missense mutation is not co‐segregated with the phenotype. The frameshift mutations in Family 1 and Family 2 have effects to truncate the protein, but the frameshift mutation in Family 3 will prolong it. We confirmed the phenomenon of male gonadal mosaicism of PAX6 by the sequencing of two linked novel mutations in Family 1. Most of the patients with isolated aniridia have different degrees of islet damage through related clinical tests. Conclusion It is therefore noteworthy that we found different types of pathogenic mutation, which have effects of truncating or prolonging protein leaded by frameshift mutation. Our results of this study extended the pathogenic mutation spectrum of PAX6 for congenital aniridia and demonstrated the male germline chimerism by molecular experiments.
Collapse
Affiliation(s)
- Zhouxian Bai
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
42
|
Liu X, Wu Y, Miao Z, Zhang H, Gong B, Zhu X, Huang L, Shi Y, Hao F, Ma S, Lin H, Wang L, Yang Z. A novel deletion downstream of the PAX6 gene identified in a Chinese family with congenital aniridia. Ophthalmic Genet 2018; 39:428-436. [PMID: 29902091 DOI: 10.1080/13816810.2018.1466336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Xiaoqi Liu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yaqi Wu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zequn Miao
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Center of Optometry, Peking University People’s Hospital, Beijing, China
| | - Houbin Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yi Shi
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Fang Hao
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Ma
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Lin
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lejin Wang
- Department of Ophthalmology, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Center of Optometry, Peking University People’s Hospital, Beijing, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center of Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
43
|
Syrimis A, Nicolaou N, Alexandrou A, Papaevripidou I, Nicolaou M, Loukianou E, Christophidou-Anastasiadou V, Malas S, Sismani C, Tanteles GA. Aniridia due to a novel microdeletion affecting PAX6 regulatory enhancers: case report and review of the literature. J Genet 2018; 97:555-562. [PMID: 29932076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aniridia is a rare congenital ocular malformation that follows an autosomal dominant mode of inheritance. Most patients carry pathogenic point mutations in the paired box 6 gene (PAX6), but some carry deletions involving the 11p13 region, encompassing partly or completely PAX6 or the region downstream. We identified a novel deletion, ~564 kb in size located about 46.5 kb downstream of PAX6 in a family with bilateral aniridia and foveal hypoplasia using array-CGH and multiplex ligation-dependent probe amplification. We also reviewall of the reported deletions downstream of PAX6 in patients with aniridia and/or other congenital malformations and define the overlapping region that leads to aniridia when deleted.
Collapse
Affiliation(s)
- Andreas Syrimis
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aniridia due to a novel microdeletion affecting
$$\textit{PAX6}$$
PAX
6
regulatory enhancers: case report and review of the literature. J Genet 2018. [DOI: 10.1007/s12041-018-0925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Srivastava K, Tripathi R, Mishra R. Age-dependent alterations in expression and co-localization of Pax6 and Ras-GAP in brain of aging mice. J Chem Neuroanat 2018; 92:25-34. [PMID: 29787792 DOI: 10.1016/j.jchemneu.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
As the brain ages, the survival and plasticity of neurons and glia are compromised. The data-mining and in silico studies suggest interactions of Pax6 with Ras and binding sites in Ras-GAP promoter. The Pax6 also shows age-dependent alterations. Therefore, it is presumed that Pax6 may be associated with the Ras-GAP, a synaptic protein, either directly or indirectly in brain. The expression, co-localization and interaction of Pax6 and Ras-GAP in different regions of brain of mice during aging were investigated through immunofluorescence assay, co-immunoprecipitation and western blotting, respectively. The co-localization of Pax6 and Ras-GAP were observed in dentate gyrus (DG) and sub-granular zone (SGZ) of hippocampus, in glomerular (GlLa) and mitral cells (MiCe) of olfactory lobe, granular cells (GrCe), Purkinje cell (PuCe) and molecular cell layer (MoLa) of cerebellum, internal plexiform layer (InPl), molecular layer (MoLa) of cerebral cortex and in intercalated cells of amygdala (ITC), caudate nucleus regions in brain of aging mice. The expression of Pax6 and Ras-GAP was altered in hippocampus, amygdala, caudate nucleus, olfactory lobe, cerebral cortex and cerebellum from young to old mice. The Pax6 interacts with Ras-GAP in brain of mice. Results indicate impact of Pax6 on Ras-GAP-mediated activities of synapses, learning and memory, emotions and fear as well as motor functions. Alterations in expression and co-localization of Pax6 and Ras-GAP during aging may be responsible for age-associated compromised survival and plasticity of neurons and glia.
Collapse
Affiliation(s)
- Khushboo Srivastava
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratnakar Tripathi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
47
|
Dai M, Zhang Q, Zheng Z, Wang J. Retinal ganglion cell-conditioned medium and surrounding pressure alters gene expression and differentiation of rat retinal progenitor cells. Mol Med Rep 2018; 17:7177-7183. [PMID: 29568879 PMCID: PMC5928676 DOI: 10.3892/mmr.2018.8738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Loss of retinal ganglion cells is implicated in glaucoma and high intraocular pressure. Factors that affect the differentiation of retinal progenitor cells into retinal ganglion cells remain unclear. The present study aimed to investigate the effects of retinal ganglion cell‑conditioned medium on gene expression and differentiation in retinal progenitor cells, and the effects of surrounding pressure on the survival and differentiation of retinal progenitor cells. Retinal progenitor cells and retinal ganglion cells were isolated from rats. Immunofluorescence staining of Nestin and Thy1 was performed to identify rat retinal progenitor cells and retinal ganglion cells, respectively. Retinal progenitor cells and ganglion cells were cultured for 48 h under surrounding pressure of 0, 20, 40, 60 and 80 mmHg. Cellular apoptosis was detected using a caspase‑3 assay kit. In addition, the culture supernatant of rat retinal ganglion cells was collected. Retinal progenitor cells were cultured in the presence or absence of retinal ganglion‑conditioned medium for 72 h under normal pressure. Gene expression of Nestin, paired box protein 6 (PAX6), Thy1 and brain‑specific homeobox/POU domain protein 3 (Brn‑3) in retinal progenitor cells was detected by reverse transcription‑quantitative polymerase chain reaction. Retinal progenitor cells were cultured in retinal ganglion‑conditioned medium for 72 h under surrounding pressure of 0 and 40 mmHg, respectively, and flow cytometry was utilized to evaluate the effects of pressure on the differentiation of retinal progenitor cells into retinal ganglion cells. The results demonstrated that isolated retinal progenitor cells were Nestin‑positive and retinal ganglion cells were Thy1‑positive, suggesting successful isolation. The activity of caspase‑3 increased in retinal progenitor cells and retinal ganglion cells in a pressure‑dependent manner. When the surrounding pressure reached 40, 60 and 80 mmHg, the activity of caspase‑3 in retinal progenitor cells and ganglion cells increased significantly compared with cells that were not under pressure. Compared with retinal progenitor cells cultured without ganglion‑conditioned medium, those cultured with ganglion‑conditioned medium had significantly decreased expression levels of Nestin and PAX6, and increased expression levels of Thy1 and Brn3. Compared with 0 mmHg pressure, retinal progenitor cells cultured in ganglion‑conditioned medium under 40 mmHg pressure had increased percentages of Thy1‑positive cells. In conclusion, the apoptosis of rat retinal progenitor cells and retinal ganglion cells was pressure‑dependent. Retinal ganglion cell‑conditioned medium increased the differentiation of retinal progenitor cells into retinal ganglion‑like cells, and the differentiation increased as surrounding pressure increased. Current study provides insights that may contribute to the efforts of developing a treatment for glaucoma.
Collapse
Affiliation(s)
- Min Dai
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Qing Zhang
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Zhikun Zheng
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Jianzhou Wang
- Department of Ophthalmology, Yan'an Hospital, Kunming, Yunan 650051, P.R. China
| |
Collapse
|
48
|
Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet 2018; 59:151-159. [PMID: 29460221 PMCID: PMC5895662 DOI: 10.1007/s13353-017-0426-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
49
|
Chen CA, Yin J, Lewis RA, Schaaf CP. Genetic causes of optic nerve hypoplasia. J Med Genet 2017; 54:441-449. [PMID: 28501829 DOI: 10.1136/jmedgenet-2017-104626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023]
Abstract
Optic nerve hypoplasia (ONH) is the most common congenital optic nerve anomaly and a leading cause of blindness in the USA. Although most cases of ONH occur as isolated cases within their respective families, the advancement in molecular diagnostic technology has made us realise that a substantial fraction of cases has identifiable genetic causes, typically de novo mutations. An increasing number of genes has been reported, mutations of which can cause ONH. Many of the genes involved serve as transcription factors, participating in an intricate multistep process critical to eye development and neurogenesis in the neural retina. This review will discuss the respective genes and mutations, human phenotypes, and animal models that have been created to gain a deeper understanding of the disorders. The identification of the underlying gene and mutation provides an important step in diagnosis, medical care and counselling for the affected individuals and their families. We envision that future research will lead to further disease gene identification, but will also teach us about gene-gene and gene-environment interactions relevant to optic nerve development. How much of the functional impairment of the various forms of ONH is a reflection of altered morphogenesis versus neuronal homeostasis will determine the prospect of therapeutic intervention, with the ultimate goal of improving the quality of life of the individuals affected with ONH.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Jiani Yin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
50
|
Maurya SK, Mishra R. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice. J Chem Neuroanat 2017; 82:60-64. [PMID: 28476689 DOI: 10.1016/j.jchemneu.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|