1
|
Dilower I, Niloy AJ, Kumar V, Kothari A, Lee EB, Rumi MAK. Hedgehog Signaling in Gonadal Development and Function. Cells 2023; 12:358. [PMID: 36766700 PMCID: PMC9913308 DOI: 10.3390/cells12030358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Collapse
Affiliation(s)
| | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
3
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
4
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
5
|
Hong S, Hu P, Roessler E, Hu T, Muenke M. Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly. Hum Mol Genet 2019; 27:1989-1998. [PMID: 29584859 DOI: 10.1093/hmg/ddy106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
The utilization of next generation sequencing has been shown to accelerate gene discovery in human disease. However, our confidence in the correct disease-associations of rare variants continues to depend on functional analysis. Here, we employ a sensitive assay of human FGF8 variants in zebrafish to demonstrate that the spectrum of isoforms of FGF8 produced by alternative splicing can provide key insights into the genetic susceptibility to human malformations. In addition, we describe novel mutations in the FGF core structure that have both subtle and profound effects on ligand posttranslational processing and biological activity. Finally, we solve a case of apparent digenic inheritance of novel variants in SHH and FGF8, two genes known to functionally coregulate each other in the developing forebrain, as a simpler case of FGF8 diminished function.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Tommy Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| |
Collapse
|
6
|
Casillas C, Roelink H. Gain-of-function Shh mutants activate Smo cell-autonomously independent of Ptch1/2 function. Mech Dev 2018; 153:30-41. [PMID: 30144507 PMCID: PMC6165682 DOI: 10.1016/j.mod.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Sonic Hedgehog (Shh) signaling is characterized by non-cell autonomy; cells expressing Shh do not respond to the ligand. Here, we identify several Shh mutations that can activate the Hedgehog (Hh) pathway cell-autonomously. Cell-autonomous pathway activation requires the extracellular cysteine rich domain of Smoothened, but is otherwise independent of the Shh receptors Patched1 and -2. Many of the Shh mutants that gain activity fail to undergo auto processing resulting in the perdurance of the Shh pro-peptide, a form of Shh that is sufficient to activate the Hh response cell-autonomously. Our results demonstrate that Shh is capable of activating the Hh pathway via Smoothened, independently of Patched1/2, and that it harbors an intrinsic mechanism that prevents cell-autonomous activation of the Shh response.
Collapse
Affiliation(s)
- Catalina Casillas
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Fattahi S, Pilehchian Langroudi M, Akhavan-Niaki H. Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development. J Cell Physiol 2018; 233:5726-5735. [PMID: 29380372 DOI: 10.1002/jcp.26506] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway have critical roles in development and homeostasis of tissues. Under physiological conditions, Hh is controlled at different levels via stem cell maintenance and tissue regeneration. Aberrant activation of this signaling pathway may occur in a wide range of human diseases including different types of cancer. In this review we present a concise overview on the key genes composing Hh signaling pathway and provide recent advances on the molecular mechanisms that regulate Hh signaling pathway from extracellular and receptors to the cytoplasmic and nuclear machinery with a highlight on the role of microRNAs. Furthermore, we focus on critical studies demonstrating dysregulation of the Hh pathway in human disease development, and potential therapeutic implications. Finally, we introduce recent therapeutic drugs acting as Shh signaling pathway inhibitors, including those in clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Golestan Hashemi FS, Razi Ismail M, Rafii Yusop M, Golestan Hashemi MS, Nadimi Shahraki MH, Rastegari H, Miah G, Aslani F. Intelligent mining of large-scale bio-data: Bioinformatics applications. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1364977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Farahnaz Sadat Golestan Hashemi
- Plant Genetics, AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Razi Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahboobe Sadat Golestan Hashemi
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hossein Nadimi Shahraki
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Hamid Rastegari
- Department of Software Engineering, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan,Iran
| | - Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Al-Neama MW, Reda NM, Ghaleb FFM. Fast vectorized distance matrix computation for multiple sequence alignment on multi-cores. INT J BIOMATH 2015. [DOI: 10.1142/s1793524515500849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although high quality multiple sequence alignment is an essential task in bioinformatics, it becomes a big dilemma nowadays due to the gigantic explosion in the amount of molecular data. The most consuming time and space phase is the distance matrix computation. This paper addresses this issue by proposing a vectorized parallel method that accomplishes the huge number of similarity comparisons faster in less space. Performance tests on real biological datasets using core-i7 show superior results in terms of time and space.
Collapse
Affiliation(s)
- Mohammed W. Al-Neama
- Department of Mathematics, Faculty of Science, Al-Azhar University, P. O. Box (11884) Al-Nasr Road, Cairo, Egypt
- Education College for Girls, Mosul University, Mosul, Iraq
| | - Naglaa M. Reda
- Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fayed F. M. Ghaleb
- Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Owen TS, Ngoje G, Lageman TJ, Bordeau BM, Belfort M, Callahan BP. Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor. Anal Biochem 2015; 488:1-5. [PMID: 26095399 DOI: 10.1016/j.ab.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins function in cell/cell signaling processes linked to human embryo development and the progression of several types of cancer. Here, we describe an optical assay of hedgehog cholesterolysis, a unique autoprocessing event critical for Hh function. The assay uses a recombinant Förster resonance energy transfer (FRET)-active Hh precursor whose cholesterolysis can be monitored continuously in multi-well plates (dynamic range=4, Z'=0.7), offering advantages in throughput over conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays. Application of the optical assay in a pilot small molecule screen produced a novel cholesterolysis inhibitor (apparent IC50=5×10(-6)M) that appears to inactivate hedgehog covalently by a substitution nucleophilic aromatic (SNAr) mechanism.
Collapse
Affiliation(s)
- Timothy S Owen
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - George Ngoje
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Travis J Lageman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brandon M Bordeau
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
11
|
Long J, Tokhunts R, Old WM, Houel S, Rodgriguez-Blanco J, Singh S, Schilling N, J Capobianco A, Ahn NG, Robbins DJ. Identification of a family of fatty-acid-speciated sonic hedgehog proteins, whose members display differential biological properties. Cell Rep 2015; 10:1280-1287. [PMID: 25732819 DOI: 10.1016/j.celrep.2015.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023] Open
Abstract
Hedgehog (HH) proteins are proteolytically processed into a biologically active form that is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is overexpressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels and showed that it was more potent than SHH isolated from overexpressing cells. Furthermore, the SHH in our preparations was modified with a diverse spectrum of fatty acids on its amino termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH affected its trafficking to lipid rafts as well as its potency. Our results suggest that HH proteins exist as a family of diverse lipid-speciated proteins that might be altered in different physiological and pathological contexts in order to regulate distinct properties of HH proteins.
Collapse
Affiliation(s)
- Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Robert Tokhunts
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Program in Experimental and Molecular Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Stephane Houel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Jezabel Rodgriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Samer Singh
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Neal Schilling
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Program in Experimental and Molecular Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.,Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| |
Collapse
|
12
|
Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C, Capobianco A, Bai F, Pei XH, Ayad NG, Robbins DJ. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem 2014; 289:35494-502. [PMID: 25355313 DOI: 10.1074/jbc.m114.595348] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epigenetic enzymes modulate signal transduction pathways in different biological contexts. We reasoned that epigenetic regulators might modulate the Hedgehog (HH) signaling pathway, a main driver of cell proliferation in various cancers including medulloblastoma. To test this hypothesis, we performed an unbiased small-molecule screen utilizing an HH-dependent reporter cell line (Light2 cells). We incubated Light2 cells with small molecules targeting different epigenetic modulators and identified four histone deacetylase inhibitors and a bromodomain and extra terminal domain (BET) protein inhibitor (I-BET151) that attenuate HH activity. I-BET151 was also able to inhibit the expression of HH target genes in Sufu(-/-) mouse embryonic fibroblasts, in which constitutive Gli activity is activated in a Smoothened (Smo)-independent fashion, consistent with it acting downstream of Smo. Knockdown of Brd4 (which encodes one of the BET proteins) phenocopies I-BET151 treatment, suggesting that Brd4 is a regulator of the HH signaling pathway. Consistent with this suggestion, Brd4 associates with the proximal promoter region of the Gli1 locus, and does so in a manner that can be reversed by I-BET151. Importantly, I-BET151 also suppressed the HH activity-dependent growth of medulloblastoma cells, in vitro and in vivo. These studies suggest that BET protein modulation may be an attractive therapeutic strategy for attenuating the growth of HH-dependent cancers, such as medulloblastoma.
Collapse
Affiliation(s)
- Jun Long
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | - Bin Li
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | | | - Chiara Pastori
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and
| | - Claude-Henry Volmar
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and
| | - Claes Wahlestedt
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and the Sylvester Cancer Center and
| | - Anthony Capobianco
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136
| | - Feng Bai
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | - Xin-Hai Pei
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and
| | - Nagi G Ayad
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and the Sylvester Cancer Center and
| | - David J Robbins
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136
| |
Collapse
|
13
|
Tatsi C, Sertedaki A, Voutetakis A, Valavani E, Magiakou MA, Kanaka-Gantenbein C, Chrousos GP, Dacou-Voutetakis C. Pituitary stalk interruption syndrome and isolated pituitary hypoplasia may be caused by mutations in holoprosencephaly-related genes. J Clin Endocrinol Metab 2013; 98:E779-84. [PMID: 23476075 DOI: 10.1210/jc.2012-3982] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Holoprosencephaly (HPE) is a developmental defect characterized by wide phenotypic variability, ranging from minor midline malformations (eg, single central incisor) to severe deformities. In 10-15% of HPE patients, mutations in specific genes have been identified (eg, SHH, TGIF, SIX3). Pituitary stalk interruption syndrome (PSIS) constitutes a distinct abnormality of unknown pathogenesis, whereas isolated pituitary hypoplasia (IPH) has been linked to various developmental genes. OBJECTIVE Three of our patients with PSIS had a single central incisor, a malformation encountered in some HPE cases. Based on this observation, we initiated a search for mutations in HPE-associated genes in 30 patients with PSIS or IPH. DESIGN AND PARTICIPANTS The entire coding region of the TGIF, SHH, and SIX3 genes was sequenced in patients with combined pituitary hormone deficiency associated with either PSIS or IPH and in healthy controls. RESULTS Two novel mutations in the HPE-related genes were detected (ie, c.799 C>T, p.Q267X in the TGIF gene, and c.1279G>A, p.G427R in the SHH gene) in 2 of our patients. The overall incidence of HPE-related gene mutations in our nonsyndromic and nonchromosomal patients was 6.6%. No molecular defect in the SIX3 gene was detected in our cohort. CONCLUSIONS The data suggest that HPE-related gene mutations are implicated in the etiology of isolated pituitary defects (PSIS or IPH). Alternatively, PSIS or IPH may constitute mild forms of an expanded HPE spectrum.
Collapse
Affiliation(s)
- Christina Tatsi
- Division of Endocrinology, Metabolism, and Diabetes, First Department of Pediatrics, Athens University Medical School, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hardy RY, Resh MD. Identification of N-terminal residues of Sonic Hedgehog important for palmitoylation by Hedgehog acyltransferase. J Biol Chem 2012; 287:42881-9. [PMID: 23112049 DOI: 10.1074/jbc.m112.426833] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that regulates embryonic development. After removal of the signal peptide, Shh is processed to the mature, active form through autocleavage and a series of lipid modifications, including the attachment of palmitate. Covalent attachment of palmitate to the N-terminal cysteine of Shh is catalyzed by Hedgehog acyltransferase (Hhat) and is critical for proper signaling. The sequences within Shh that are responsible for palmitoylation by Hhat are not known. Here we show that the first six amino acids of mature Shh (CGPGRG) are sufficient for Hhat-mediated palmitoylation. Alanine scanning mutagenesis was used to determine the role of each amino acid and the positional sequence requirement in a cell-based Shh palmitoylation assay. Mutation of residues in the GPGR sequence to Ala had no effect on palmitoylation, provided that a positively charged residue was present within the first seven residues. The N-terminal position exhibited a strong but not exclusive requirement for Cys. Constructs with an N-terminal Ala were not palmitoylated. However, an N-terminal Ser served as a substrate for Hhat, but not the Drosophila melanogaster ortholog Rasp, highlighting a critical difference between the mammalian and fly enzymes. These findings define residues and regions within Shh that are necessary for its recognition as a substrate for Hhat-mediated palmitoylation. Finally, we report the results of a bioinformatics screen to identify other potential Hhat substrates encoded in the human genome.
Collapse
Affiliation(s)
- Rayshonda Y Hardy
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
15
|
Rodriguez-Blanco J, Schilling NS, Tokhunts R, Giambelli C, Long J, Liang Fei D, Singh S, Black KE, Wang Z, Galimberti F, Bejarano PA, Elliot S, Glassberg MK, Nguyen DM, Lockwood WW, Lam WL, Dmitrovsky E, Capobianco AJ, Robbins DJ. The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 2012; 32:2335-45. [PMID: 22733134 DOI: 10.1038/onc.2012.243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.
Collapse
Affiliation(s)
- J Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Thompson JD, Linard B, Lecompte O, Poch O. A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 2011; 6:e18093. [PMID: 21483869 PMCID: PMC3069049 DOI: 10.1371/journal.pone.0018093] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/21/2011] [Indexed: 12/18/2022] Open
Abstract
Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets that result from today's high throughput biotechnologies. We show that alignmentmethods have significantly progressed and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally conserved regions, that reflect functional specificities or that modulate a protein's function in a given cellular context,are less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or fragmentary protein sequences, which make up a large proportion of today's databases, lead to a significant number of alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction and exploitation in future evolutionary systems biology studies.
Collapse
Affiliation(s)
- Julie D Thompson
- Département de Biologie Structurale et Génomique, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS/INSERM/Université de Strasbourg, Illkirch, France.
| | | | | | | |
Collapse
|
17
|
Zhang W, Hong M, Bae GU, Kang JS, Krauss RS. Boc modifies the holoprosencephaly spectrum of Cdo mutant mice. Dis Model Mech 2010; 4:368-80. [PMID: 21183473 PMCID: PMC3097458 DOI: 10.1242/dmm.005744] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Holoprosencephaly (HPE) is caused by a failure to form the midline of the forebrain and/or midface. It is one of the most common human birth defects, but clinical expression is extremely variable. HPE is associated with mutations in the sonic hedgehog (SHH) pathway. Mice lacking the Shh pathway regulator Cdo (also called Cdon) display HPE with strain-dependent penetrance and expressivity, implicating silent modifier genes as one cause of the variability. However, the identities of potential HPE modifiers of this type are unknown. We report here that whereas mice lacking the Cdo paralog Boc do not have HPE, Cdo;Boc double mutants on a largely Cdo-resistant genetic background have lobar HPE with strong craniofacial anomalies and defects in Shh target gene expression in the developing forebrain. Boc is therefore a silent HPE modifier gene in mice. Furthermore, Cdo and Boc have specific, selective roles in Shh signaling in mammals, because Cdo;Boc double-mutant mice do not display the most severe HPE phenotype seen in Shh-null mice, nor do they have major defects in digit patterning or development of vertebrae, which are also Shh-dependent processes. This is in contrast to reported observations in Drosophila, where genetic removal of the Cdo and Boc orthologs Ihog and Boi results in a complete loss of response to the hedgehog ligand. Therefore, there is evolutionary divergence between mammals and insects in the requirement of the hedgehog pathway for Cdo/Ihog family members, with mammalian development involving additional factors and/or distinct mechanisms at this level of pathway regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
18
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
19
|
Roessler E, Muenke M. The molecular genetics of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:52-61. [PMID: 20104595 DOI: 10.1002/ajmg.c.30236] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | | |
Collapse
|
20
|
Roessler E, El-Jaick KB, Dubourg C, Vélez JI, Solomon BD, Pineda-Álvarez DE, Lacbawan F, Zhou N, Ouspenskaia M, Paulussen A, Smeets HJ, Hehr U, Bendavid C, Bale S, Odent S, David V, Muenke M. The mutational spectrum of holoprosencephaly-associated changes within the SHH gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis. Hum Mutat 2009; 30:E921-35. [PMID: 19603532 PMCID: PMC2772877 DOI: 10.1002/humu.21090] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations within either the SHH gene or its related pathway components are the most common, and best understood, pathogenetic changes observed in holoprosencephaly patients; this fact is consistent with the essential functions of this gene during forebrain development and patterning. Here we summarize the nature and types of deleterious sequence alterations among over one hundred distinct mutations in the SHH gene (64 novel mutations) and compare these to over a dozen mutations in disease-related Hedgehog family members IHH and DHH. This combined structural analysis suggests that dysfunction of Hedgehog signaling in human forebrain development can occur through truncations or major structural changes to the signaling domain, SHH-N, as well as due to defects in the processing of the mature ligand from its pre-pro-precursor or defective post-translation bi-lipid modifications with palmitate and cholesterol.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenia B. El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | - Jorge I. Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E. Pineda-Álvarez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Felicitas Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhou
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maia Ouspenskaia
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aimée Paulussen
- Academic Hospital and Department of Clinical Genetics, University of Maastricht, the Netherlands
| | - Hubert J. Smeets
- Academic Hospital and Department of Clinical Genetics, University of Maastricht, the Netherlands
| | - Ute Hehr
- Center for Human Genetics and Department of Human Genetics, University of Regensburg, Germany
| | - Claude Bendavid
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | | | - Sylvie Odent
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
- Service de génétique clinique,CHU Hôpital Sud, Rennes, France
| | - Véronique David
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|